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Introduction

Pseudouridine (5-ribosyluracil, abbreviated by the Greek letter 
Ψ) is the most prevalent RNA (ribonucleic acid) modification 
and has been found in virtually all kingdoms of life.1 Recent 
findings have demonstrated that Ψ is present in various cat-
egories of RNAs, such as tRNA (transfer RNA), mRNA (mes-
senger RNA), snRNA (small nuclear RNA), snoRNA (small 
nucleolar RNA), and rRNA (ribosomal RNA).2 As shown in 
Figure 1, Ψ is the isomer of uridine and is catalyzed by highly 
conserved pseudouridine synthase that detaches the uridine 
residue’s base from its sugar, followed by “rotating” it 180° 
along the N3-C6 axis, and subsequently by reattachment of 
the base’s 5-carbon to the 1’-carbon of the sugar.3

The molecular functions of Ψ modification have just been 
revealed in recent years. For example, Ψ modification plays 
an integral part in the stabilization of tRNA structure,2–4 and 
it also has a prominent role in spliceosomal RNA respon-
sible for gene regulation. The Ψ modification is present in the 
regions involved with RNA-RNA or RNA-protein interactions 
to promote the assembly and reaction of a spliceosome to 
yield viable mRNA such as in AU/AC intron splicing.2,3,5 More-
over, it has been demonstrated that incorporation of Ψ into 
mRNA may increase the translation efficiency and reduce the 
RNA-elicited innate immune responses.6 Despite great pro-
gresses have been made in uncovering the roles of Ψ modifi-
cation, its biological functions and action mechanisms remain 
elusive for most RNA systems. Therefore, the information of 

the Ψ modification sites during transcriptome is crucial for in-
depth revealing the biological principle concerned.

By using high-throughput techniques such as Ψ-Seq,7 
the distribution of Ψ modification has been characterized for 
the transcriptome in H. sapiens, M. musculus, and S. cere-
visiae.7–10 But these techniques are time-consuming and 
costly for genome-wide analysis. Facing the rapidly increas-
ing number of sequenced genomes, it is highly desired to 
develop computational methods for timely acquiring this kind 
of information.

Actually, an effort has been made by Li et al.11 recently 
in this regard. These authors proposed a predictor called 
PPUS for identifying PUS-specific pseudouridine sites. The 
PPUS predictor,11 however, is only able to identify Ψ modi-
fication sites in H. sapiens and S. cerevisiae. Besides, its 
accuracy definitely needs to be improved, which can be real-
ized by incorporating the nucleotide chemical property into 
consideration.

The present study was initiated in an attempt to develop a 
new and more powerful predictor for identifying the Ψ modifi-
cation sites with higher success rates and being able to cover 
more species.

In order to develop a predictor with crystal-clear logic and 
widely useful value, let us follow the five-step guidelines12 as 
done by a series of recent publications (see, e.g., refs. 13–21):  
(i) how to construct or select a valid benchmark dataset 
to train and test the predictor; (ii) how to formulate the 
biological sequence samples with a valid mathematical 
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As the most abundant RNA modification, pseudouridine plays important roles in many biological processes. Occurring at the 
uridine site and catalyzed by pseudouridine synthase, the modification has been observed in nearly all kinds of RNA, including 
transfer RNA, messenger RNA, small nuclear or nucleolar RNA, and ribosomal RNA. Accordingly, its importance to basic research 
and drug development is self-evident. Despite some experimental technologies have been developed to detect the pseudouridine 
sites, they are both time-consuming and expensive. Facing the explosive growth of RNA sequences in the postgenomic age, we 
are challenged to address the problem by computational approaches: For an uncharacterized RNA sequence, can we predict 
which of its uridine sites can be modified as pseudouridine and which ones cannot? Here a predictor called “iRNA-PseU” was 
proposed by incorporating the chemical properties of nucleotides and their occurrence frequency density distributions into the 
general form of pseudo nucleotide composition (PseKNC). It has been demonstrated via the rigorous jackknife test, independent 
dataset test, and practical genome-wide analysis that the proposed predictor remarkably outperforms its counterpart. For the 
convenience of most experimental scientists, the web-server for iRNA-PseU was established at http://lin.uestc.edu.cn/server/
iRNA-PseU, by which users can easily get their desired results without the need to go through the mathematical details.
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expression that can truly reflect their essential correla-
tion with the target to be predicted; (iii) how to introduce 
or develop a powerful algorithm (or engine) to operate the 
prediction; (iv) how to appropriately conduct cross-valida-
tion to objectively estimate its anticipated accuracy; (v) how 
to establish a user-friendly web-server that is accessible to 
the public. Below, we are to address the aforementioned 
five steps one-by-one.

Results
As mentioned in Introduction, among the five important steps 
for developing a useful predictor, one of them is how to objec-
tively evaluate its anticipated success rates.12 To address 
this, the following two considerations are needed: one is what 
metrics should be adopted to reflect the predictor’s success 
rates; the other is what test method should be used to derive 
the metrics rates. Below, we are to address the two problems.

Metrics for quantitatively measuring the predictor’s 
quality
The following four metrics are usually used to measure the 
quality of a predictor: (i) overall accuracy or Acc; (ii) Mathew’s 
correlation coefficient or MCC; (iii) sensitivity or Sn; and (iv) 
specificity or Sp.22 Unfortunately, the conventional formula-
tions for the four metrics are not intuitive, and most experi-
mental scientists feel difficult to understand them, particularly 
for the MCC metrics. It is interesting, however, that if using 
the Chou’s symbols and derivation for studying the signal 
peptides,23 the above four metrics can be formulated as 
follows13,24:
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where N+ represents the total number of true Ψ-site-containing 
RNA samples investigated, whereas N−

+  the number of true 
Ψ-site-containing RNA samples incorrectly predicted to be 

of false Ψ-site-containing RNA sample; N− the total number 
of false Ψ-site-containing RNA samples, whereas N+

−  the 
number of false Ψ-site-containing RNA samples incorrectly 
predicted to be of true Ψ-site-containing RNA sample.

According to Equation 1, it is crystal clear to see the follow-
ing. When N−

+ = 0  meaning none of the true Ψ-site-containing 
RNA samples is incorrectly predicted to be of false one, we 
have the sensitivity Sn = 1. When N N−

+ +=  meaning that all the 
true Ψ-site-containing RNA samples are incorrectly predicted 
to be of false one, we have the sensitivity Sn = 0. Likewise, 
when N+

− = 0  meaning none of the false Ψ-site-containing 
RNA samples is incorrectly predicted to be of true one, we 
have the specificity Sp = 1; whereas N N+

− −=  meaning that 
all the false Ψ-site-containing RNA samples are incorrectly 
predicted to be of true one, we have the specificity Sp = 0.  
When N N−

+
+
−= = 0  meaning that none of the true Ψ-site-

containing RNA samples in the positive dataset and none of 
the false Ψ-site-containing RNA samples in the negative data-
set was incorrectly predicted, we have the overall accuracy 
Acc = 1 and MCC = 1; when N N−

+ +=  and N N+
− −=  meaning 

that all the true Ψ-site-containing RNA samples in the posi-
tive dataset and all the false Ψ-site-containing RNA samples 
in the negative dataset were incorrectly predicted, we have 
the overall accuracy Acc = 0 and MCC = −1; whereas when 
N N−

+ += / 2  and N N+
− −= / 2  we have Acc = 0.5 and MCC = 

0 meaning no better than random guessing. As we can see 
from the above discussion, the formulation of Equation 1 has 
made the meanings of sensitivity, specificity, overall accu-
racy, and Mathew’s correlation coefficient much more intui-
tive and easier-to-understand, particularly for the meaning of 
MCC, as concurred and adopted by many investigators in a 
series of recent publications (see, e.g., refs. 14,17,25–30).  
Note that, of the four metrics in Equation 1, the most impor-
tant are the Acc and MCC since the former reflects the overall 
accuracy of a predictor while the latte its stability. The metrics 
Sn and Sp are used to measure a predictor from two different 
angles, and they are constrained with each other.31

It should be pointed out, however, the set of equations 
defined in Equation 1 is valid only for the single-label systems. 
For the multi-label systems whose emergence has become 
more frequent in system biology32–34 and system medicine,35 a 
completely different set of metrics is needed as elucidated in 
ref. 36.

Validation by Jackknife tests
With a good set of evaluation metrics defined, the next thing 
is what validation method should be used to derive the met-
rics values.

In statistical prediction, the following three cross-validation 
methods are often used to derive the metrics values for a 
predictor: independent dataset test, subsampling (or K-fold 
cross-validation) test, and jackknife test.37 Of these three, how-
ever, the jackknife test is deemed the least arbitrary that can 
always yield a unique outcome for a given benchmark data-
set as elucidated in ref. 12 and demonstrated by Equations 
28–32 therein. Accordingly, the jackknife test has been widely 
recognized and increasingly used by investigators to exam-
ine the quality of various predictors (see, e.g., refs. 38–46).  
Accordingly, the jackknife test was also used to examine 
the performance of the model proposed in the current study. 

Figure 1  Illustration to show the pseudouridine (Ψ) modification. Its 
formation is catalyzed by the Ψ synthase.
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During the jackknife test, each RNA sample in the bench-
mark dataset was in turn singled out as an independent test 
sample and all the rule-parameters were calculated without 
including the one being identified.

The result obtained by the jackknife test on the benchmark 
datasets  1( )  for H. sapiens (see Equation 1 as well as  
Supplementary Information S1) are given by

(2)

that on  2( )  for S. cerevisiae (see Supplementary Infor
mation S2) by

S = 64.65%
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And that on  3( )  for M. musculus (see Supplementary  Infor-
mation S3) given by
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Discussion
Comparison with the existing predictor
To our best knowledge, PPUS11 is so far the only existing pre-
dictor available for identifying the Ψ sites in RNA sequences. 
It should be pointed out that the results given in Equation 4 
are beyond the reach of PPUS11 because it can be used to 
identify the Ψ sites in the RNA sequences from H. sapiens 
and S. cerevisiae species but not from M. musculus.

For the cases of H. sapiens and S. cerevisiae species, 
however, it is also hard to give the corresponding jackknife 
results without the program code of PPUS. Fortunately, like 
the iRNA-PseU predictor, PPUS also has a web-server pre-
dictor, which will make it possible to compare the two predic-
tors via their performances on a same independent dataset.

To realize this, we constructed two independent datasets 
 4( )  and  5( )  for H. sapiens and S. cerevisiae, respectively. 

None of the samples in  4( )  occurs in the benchmark data-
set  1( ) ; none of the samples in  5( )  occurs in the bench-
mark dataset  2( ) . For the detailed sequences in the two 
independent datasets, see Supplementary Information S4 
and Supplementary Information S5, respectively.

Listed in Table 1 are the results obtained by using the web-
server of PPUS11 and that of iRNA-PseU on the two indepen-
dent datasets for the species of H. sapiens and S. cerevisiae, 
respectively. From the table we can see the following. (i) The 
rates of both Acc and MCC achieved by iRNA-PseU are 
remarkably higher than those by PPUS, indicating that the pro-
posed predictor is not only more accurate but also more stable 
in comparison with its counterpart. (ii) The gap between Sn 
and Sp yielded by PPUS11 is much larger than that by iRNA-
PseU. This kind of extremely skewed profile generated by 
PPUS implies its predicted results contain many false positive 
or negative as well as a lot of noise. As mentioned in the section 
“Metrics for quantitatively measuring the predictor’s quality”, Sn 
and Sp are mutually restrained.31 Accordingly, it is meaning-
less to use only one of the two for comparison. A meaningful 
comparison should be based on the result of their combination, 
which is none but MCC.

To further demonstrate its power in practical application, 
the genome-wide analysis by iRNA-PseU was performed on 
the chromosome XII of the S.cerevisiae genome. The results 
thus obtained on such an independent RNA sequence are 
given in Figure 2, where for facilitating comparison the corre-
sponding experimental results7 obtained by the Pseudo-Seq 
technique are also shown. As can be seen from the figure, 
of the six known Ψ sites, five were correctly identified by  
iRNA-PseU, demonstrating once again that the iRNA-PseU 
is indeed quite promising for Ψ site identification.

Graphical analysis
Why could the proposed method be so successful? It is not easy 
to give a simple answer to address this problem. Fortunately, 
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Figure 2  A comparison between predicted results of iRNA-PseU 
and experimental results on a 200-nt (from 452168 to 452367) 
genomic region of chromosome XII from S. cerevisiae. The top panel 
shows the probability values calculated by iRNA-PseU. The middle 
panel shows the experimental results determined by using the 
Pseudo-Seq technique, where the six known Ψ sites are highlighted 
with red rectangles.7 The dashed blue line shows the consistency 
between the predicted result and the experimental one. The lower 
panel shows the relative genomic coordinate.
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Table 1  A comparison of the new predictor with the existing predictor when 
performed on the independent dataset of H. sapiens (Supplementary In-
formation S4) and that of S. cerevisiae (Supplementary Information S5), 
respectively

Species Predictor
Acc 
(%)c MCCc Sn (%)c Sp (%)c

H. sapiens PPUSa 52.50 0.13 6.0 99.00

iRNA-PseUb 65.00 0.30 60.00 70.00

S. cerevisiae PPUSa 71.00 0.44 56.00 86.00

iRNA-PseUb 73.00 0.46 81.00 65.00
aThe predictor developed by Li et al.,11 which is available at http://lyh.pkmu.
cn/ppus/. bThe predictor proposed in this paper. cSee Equation 1 for the 
definition of metrics.

http://lyh.pkmu.cn/ppus/
http://lyh.pkmu.cn/ppus/
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many biological systems and the complicated relations therein 
could be revealed via the intuitive graphical approaches, such 
as in studying enzyme-catalyzed reactions,47–49 protein folding 
kinetics and folding rates,50 inhibition of HIV-1 reverse transcrip-
tase,51,52 drug metabolism systems,53 analyzing large-scale bio-
logical sequences,54 and recently using wenxiang diagrams or 
graphs55 to analyze protein-protein interactions.56

To provide an intuitive graph about the performance of the 
newly proposed method, the receiver operating characteristic 
(ROC)57,58 was utilized. In the ROC graph, the vertical coor-
dinate is for the true positive rate (sensitivity) while the hori-
zontal coordinate for the false positive rate (1-specificity). The 
best possible prediction method would yield a point with the 
coordinate (0, 1) representing 100% sensitivity with 0 false 
positive rate or 100% specificity.57,58 Therefore, the (0, 1) point 
is also called a perfect classification. A completely random 
guess would give a point along a diagonal from the point 

(0, 0) to (1, 1). The area under the ROC curve, also called 
AUROC, is often used to indicate the performance quality of 
a binary classifier: the value 0.5 of AUROC is equivalent to 
random prediction, while 1 of AUROC represents a perfect 
one. Accordingly, in order to objectively evaluate the overall 
performance of iRNA-PseU for identifying Ψ sites, we plotted 
the ROC curves and reported the AUROCs in Figure 3. As 
shown from the figure, the AUROC scores for iRNA-PseU in 
identifying Ψ sites are 0.64, 0.75, and 0.81 for H. sapiens, M. 
musculus, and S. cerevisiae genomes, respectively.

Furthermore, for in-depth analyzing the contributions from 
different features to the Ψ site identification, we had built two 
models: one was based on nucleotide chemical property 
and the other based on the nucleotide density. The validated 
results are shown in Figure 4, where the orange, green and 
blue histograms denote the accuracy scores for the models 
trained based on nucleotide density, nucleotide chemical prop-
erties and their combinations, respectively. As shown from the 
figure, the nucleotide chemical property (green) had greater 
contribution than the nucleotide density (orange) for Ψ site 
identification, but the latter did play the complementary role in 
the prediction, as reflected by the blue histogram that is higher 
than both the blue and orange ones. Since pseudouridine is 
catalyzed by Ψ synthases that need to recognize and bind 
with specific genomic regions, the above findings suggest that 
nucleotide chemical properties may closely correlate with the 
interactions between the synthases and RNA sequence.

Conclusion
It is anticipated that the proposed predictor will become a 
very useful high throughput tool for identifying the Ψ sites in 
genome analysis, or at the very least, play a complementary 
role to the existing PPUS predictor11 for genome analysis.

Materials and methods

Benchmark dataset. For facilitating description later, we use 
the following scheme to represent a RNA sample

Rξ ξ ξ ξ ξ ( ) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− − −( ) − − + + + −( ) +Ν Ν Ν Ν Ν Ν Ν Ν1 2 1 1 2 1 (5)

where the center   represents “uridine”, the subscript ξ is 
an integer, Ν−ξ  represents the ξ-th upstream nucleotide from 
the center, the Ν+ξ  the ξ-th downstream nucleotide, and so 
forth. The (2ξ + 1)-tuple RNA sample Rξ ( )  can be further 
classified into the following two categories:

(6)R
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where Rξ
+ ( )  denotes a RNA sample whose center uridine 

can be converted to pseudouridine via Ψ modification as con-
firmed by experiments, Rξ

− ( )  a RNA sample whose center 
uridine cannot be so, and the symbol  means “a member of” 
in the set theory.

In literature the benchmark dataset usually consists of a 
training dataset and an independent testing dataset: the for-
mer is used to train a model, while the latter used to test 
the model. But as pointed out in a comprehensive review,59 
there is no need at all to artificially separate a benchmark 

Figure 3  A graphical illustration to show the performance of  
iRNA-PseU by means of the receiver operating characteristic curve. 
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dataset into the two parts if the model is evaluated by the 
jackknife test or subsampling (K-fold) cross-validation since 
the outcome thus obtained is actually from a combination of 
many different independent dataset tests. Thus, the bench-
mark dataset set S for the current study can be formulated as

  ξ ξ
+

ξ
−= U (7)

where the positive subset ξ+  only contains the RNA sam-
ples of true Ψ site; the negative subset ξ−  only contains the 
RNA samples of false Ψ site; and U represents the symbol for 
“union” in the set theory.

Because the length of RNA sample Rξ ( )  is 2ξ + 1 (see 
Equation 5), the benchmark dataset with different ξ value will 
contain RNA segments with different number of nucleotides, 
as illustrated below

The length of RNA samples in
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(8)

The RNA sequences with experimentally validated Ψ sites of  
H. sapiens, M. musculus and S. cerevisiae were downloaded 
from RMBase.60 The detailed procedures of constructing the 
benchmark dataset for each of the three species are as follows: 
(i) As done in ref. 61, slide the (2ξ + 1)-tuple nucleotide window 
along each of the RNA sequences concerned (Figure 5), and 
collected were only those RNA segments that have uridine (U) 
at the center (see Equation 5). (ii) If the upstream or downstream 
in an RNA was less than ξ or greater than L–ξ (L is the RNA’s 
length), the lacking nucleotide was filled with its mirror image 
(Figure 6). (iii) The RNA samples thus obtained were deemed 
as the positive ones if their centers have been experimentally 
confirmed as the Ψ sites; otherwise, the negative. (iv) Using 
the CD-HIT software,62 the aforementioned samples were fur-
ther subject to a screening procedure to winnow those that had 
≥60% pairwise sequence identity to any other in a same class 

because a dataset containing many high similar samples would 
lack statistical representativeness.12 (v) The number of negative 
samples thus obtained would be substantially greater than that 
of positive ones; to avoid the bias caused by such a skewed 
dataset,15 a randomly picking procedure was adopted to make 
the negative subset have the same size as the positive subset.25 
(vi) The length of samples collected via the above procedures 
would depend on the value of ξ, h owever, preliminary tests 
had indicated that best prediction results were achieved when  
ξ = 10 for the case of H. sapiens or M. musculus, whereas 
ξ = 15 for the case of S. cerevisiae (see Figure 7). Accord-
ingly, hereafter we shall focus on the RNA samples with 21 
nucleotides when analyzing the genome from H. sapiens or M. 
musculus, while those with 31 nucleotides when analyzing the 
genome from S. cerevisiae.

After going through the above six procedures, we finally 
obtained three benchmark datasets, as formulated below

S S S
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2 2 2

3 3 3
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(9)

where  1( ) ,  2( ) , and  3( )  and denote the benchmark 
datasets for H. sapiens, S. cerevisiae, and M. musculus, 
respectively. The RNA samples in  1( )  and  3( )  are each 
formed by 21 nucleotides, while those in  2( )  are each 
formed by 31 nucleotides. The subsets + ( )1 , + ( )2 , and 
+ ( )3  contain 495, 314, and 472 positive samples, while the 
subsets − ( )1 , − ( )2 , and − ( )3  contain 495, 314, and 472 
negative samples, respectively.

The detailed sequences for the three benchmark datasets 
are given in Supplementary Information S1, Supplemen-
tary Information S2, and Supplementary Information S3, 
respectively.

Representation of RNA sequence samples. With the explosive 
growth of biological sequences generated in the postgenomic 
age, one of the most challenging problems in computational 

Figure 5  Schematic drawing to show how to use the flexible scaled 
window along an RNA sequence to collect the potential Ψ-site-
containing sequence samples.
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Figure 6  Schematic illustration to show the mirror image of (a) the 
5’ RNA terminal segment, and (b) the 3’ RNA terminal segment. The 
symbol ⇔ represents a mirror, and the real RNA segment is colored 
in blue, while its mirror image in red.

Mirror image for 5′ terminus

Mirror image for 3′ terminus

a

b

Figure 7  A histogram to show the overall accuracy obtained by the 
proposed predictor in identifying Ψ site with different ξ values. The 
accuracy for H.sapiens or M. musculus reaches a peak when ξ = 10, 
while that for S. cerevisiae reaches a peak when ξ = 15.
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biology is how to formulate a biological sequence with a dis-
crete model or vector, yet still considerably keep its key pat-
tern or sequence order information. This is because almost 
all the existing machine-learning algorithms were developed 
to handle vector but not sequence samples, as elaborated in 
a recent review.63 Unfortunately, a vector defined in a discrete 
model may completely lose all the sequence-order informa-
tion or sequence pattern characteristics. To overcome such 
a problem for protein/peptide and DNA/RNA sequences, the 
pseudo amino acid composition (PseAAC)64–69 and pseudo 
nucleotide composition (PseKNC)70–73 were introduced, 
respectively. Ever since they were introduced, PseAAC has 
been widely used in computational proteomics (see a long 
list or references cited12,74) and PseKNC has been increas-
ingly used in computational genomics.75 Recently, a web-
server called “Pse-in-One” was established for generating 
various modes of pseudo components for DNA/RNA and 
protein/peptide sequences.76

According to a recent research,75 the general form of 
PseKNC for an RNA sequence sample can be formulated as

R
T

= [ ]φ φ φ φ1 2 � �u Z (10)

where T is a transpose operator, while the subscript Z is an inte-
ger and its value as well as the components φu (u = 1, 2, ..., Z)  
will depend on how to extract the desired information from 
the RNA sequence sample. In order to make Equation 10 
able to cover the RNA sample’s local site information as well 
as its global sequence pattern characteristics, below let us 
use the nucleotide chemical property and nucleotide density 
to define the components therein.

Nucleotide chemical property. RNA is comprised of four kinds 
of nucleotides: adenosine (A), guanosine (G), cytidine (C), 
and uridine (U). Each nucleotide has its own chemical struc-
ture and internal binding feature. A and G have two rings, 
while C and U have only one ring (Figure 8). When form-
ing the secondary or tertiary structures, the hydrogen bond-
ing between G and C is stronger than that between A and U 
(Figure 8). Furthermore, according to the chemical function-
ality, A and C can be classified as amino group, while G and 
U as keto group. Therefore, the four types of nucleotides can 
be classified into three different groups as shown in Table 2.

In order to incorporate these chemical property features into 
the representation for a RNA sample, similar to the approach 
in studying the codon usage in HIV proteins77 and E. Coli 
proteins,78 let us formulate the i-th nucleotide in Equation 5 by

Νi i i ix y z= ( ), , (11)

where79

x yi
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(12)

Thus, according to Table 2, the nucleotide A can be for-
mulated as (1, 1, 1), C as (0, 1, 0), G as (1, 0, 0), and U as 
(0, 0, 1).

Nucleotide density. In order to incorporate the local occur-
rence frequency of a nucleotide and its distribution in a RNA 
sequence, let us introduce the following equations

d fi
i j

j= ( )
=
∑1

1||S
N

||

�

(13)

where di is the density of the nucleotide Ni at position i of a 
RNA sequence, � �Si  is the length of the sliding substring 
concerned, �  the corresponding locator’s sequence position, 
and

f N
N

( )
,

,j
j=
=




1

0

if the nucleotide concerned

otherwise
(14)

For example, suppose a RNA sequence “AGCGUAAC”. 
The density of “A” is 1 (1/1), 0.33 (2/6), 0.43 (3/7) at positions 
1, 6, and 7, respectively. The density of “C” is 0.33 (1/3), 0.25 
(2/8) at positions 3 and 8, respectively. The density of “G” 
is 0.5 (1/2), 0.5 (2/4) at positions 2 and 4, respectively. The 
density of “U” is 0.2 (1/5) at position 5.

Pseudo nucleotide composition (PseKNC). By integrating 
both the nucleotide chemical property (Equation 11) and 
nucleotide frequency information (Equation 13), we have

Νi i i i ix y z d= ( ), , , (15)

Thus, the nucleotides in the RNA sequence “AGCGUAAC” 
can be consecutively denoted by the following eight groups 
of digits: (1, 1, 1, 1), (1, 0, 0, 0.5), (0, 1, 0, 0.33), (1, 0, 0, 0.5), 
(0, 0, 1, 0.2), (1, 1, 1, 0.33), (1, 1, 1, 0.43), and (0, 1, 0, 0.25).

Or, according to the formulation of PseKNC (see Equation 10),  
we have

R AGCGUAAC
T( ) = [ ]. .1 1 1 1 1 0 0 0 5 0 1 0 0 25� (16)

Figure 8  Illustration to show the structure of paired nucleic acid residues. The left panel is the A-U pair bonded to each other with two 
hydrogen bonds; the right panel is the G-C pair with three hydrogen bonds.
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meaning that the 8-tuple nucleotide example can be denoted 
by an 8 × 4 = 32-D (dimensional) PseKNC vector. Accord-
ingly, a sample in  1( )  or  3( )  can be formulated by a 21 × 4 
= 84-D vector, and that in  2( )  by a 31 × 4 = 124-D vector 
(see Equation 9 and the follow-up text).

Support vector machine (SVM). Being a machine learning 
algorithm based on statistical learning theory, SVM has been 
widely and successfully used in the realm of bioinformatics16,80,81 
and computational biology.13–15,26,82 The basic idea of SVM is to 
transform the input data into a high dimensional feature space 
and then determine the optimal separating hyperplane.

For a brief formulation of SVM and how it works, see the 
papers83,84; for more details about SVM, see a monograph.85

In the current study, the LibSVM package 3.18 was used to 
implement SVM, which can be freely downloaded from http://
www.csie.ntu.edu.tw/~cjlin/libsvm/. Because of its effective-
ness and speed in training process, the radial basis kernel 
function (RBF) was used to obtain the best classification 
hyperplane here. In the SVM operation engine, the regular-
ization parameter C and the kernel width parameter γ were 
optimized via an optimization procedure using the grid search 
approach as defined by

2 2

2 2 2

5 15

15 5 1

−

− − −

≤ ≤
≤ ≤







C with step of 2

with step ofγ
(17)

The predictor obtained via the above procedures is called 
iRNA-PseU, where “i” stands for “identify”, “Pse” for “pseudo”, 
and “U” for “uridine”.

Web-server and user guide. As demanded by most experimen-
tal scientists, a publicly accessible web-server for iRNA-PseU 

has been established. Moreover, to maximize their convenience, 
below we are to give a step-by-step guide of the web-server, by 
which users can easily get their desired results without the need 
to go through the detailed mathematical equations involved.

Step 1. 	� Open the web server at http://lin.uestc.edu.cn/
server/iRNA-PseU and you will see the top page of 
the iRNA-PseU predictor on your computer screen, 
as shown in Figure 9. Click on the Read Me button 
to see a brief introduction about the predictor and 
the caveat when using it.

Step 2. 	� Select the organism or species by checking on the 
corresponding open circle. Either type or copy/paste 
the query RNA sequences into the input box at the 
center of Figure 9. The input sequence should be in 
FASTA format. For the examples of RNA sequences 
in FASTA format, click the Example button right 
above the input box.

Step 3. 	� Click on the Submit button to see the predicted 
result. For example, if using the three query RNA 
sequences from the H. sapiens species in the 
Example window as the input and checking on the 
H. sapiens button, after clicking the Submit button, 
you will see the following shown on the screen of 
your computer. (i) The first query sequence includes 
5 U (uridine) residues, of which the one at position 
11 can be modified to be of pseudouridine (Ψ site). 
(ii) The second query sequence includes 3 U resi-
dues, of which none can be modified to be of pseu-
douridine. (iii) The third query sequence includes 
7 U residues, of which the one at position 21 can be 
modified to be of pseudouridine. All these results are 
fully consistent with the experimental observations. 
Note: to get the anticipated prediction accuracy, the 
species button must be consistent with the source of 
query sequences: if the query sequences are from 
H. sapiens, check on the H. sapiens button; from M. 
musculus, check on the M. musculus button; from S. 
cerevisiae, check on the S. cerevisiae button.

Step 4. 	� Click on the Data button to download the datasets 
used to train and test the iRNA-PseU predictor.

Step 5. 	� Click on the Citation button to find the relevant 
papers that document the detailed development 
and algorithm of iRNA-PseU.

Supplementary material

Information S1. The benchmark dataset  1( )  for H. sapiens.
Information S2. The benchmark dataset  2( )  for S. cerevi-
siae.
Information S3. The benchmark dataset  3( )  for M. mus-
culus.
Information S4. The independent dataset  4( )  for H. sa-
piens.
Information S5. The independent dataset  5( )  for S. cere-
visiae.

Acknowledgments The authors wish to thank the three 
anonymous reviewers for their constructive comments, 
which were very helpful for strengthening the presentation 

Figure 9  A semi-screenshot for the top-page of the iRNA-PseU 
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Table 2  Nucleotide chemical propertya

Chemical property Class Nucleotides

Ring structure Purine A, G

Pyrimidine C, U

Functional group Amino A, C

Keto G, U

Hydrogen bond Strong C, G

Weak A, U
aSee the text in section “Nucleotide chemical property” for further explana-
tion.
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