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Abstract. The glomerulus is the blood filtering unit of the kidney. Each human kidney contains ∼1 million glo-
meruli. Several renal conditions originate from structural damage to glomerular microcompartments, such as
proteinuria, the excessive loss of blood proteins into urine. The gold standard for evaluating structural damage
in renal pathology is histopathological and immunofluorescence examination of needle biopsies under a light
microscope. This method is limited by qualitative or semiquantitative manual scoring approaches to the evalu-
ation of glomerular structural features. Computational quantification of equivalent features promises to improve
the precision of glomerular structural analysis. One large obstacle to the computational quantification of renal
tissue is the identification of complex glomerular boundaries automatically. To mitigate this issue, we developed
a computational pipeline capable of extracting and exactly defining glomerular boundaries. Our method, com-
posed of Gabor filtering, Gaussian blurring, statistical F -testing, and distance transform, is able to accurately
identify glomerular boundaries with mean sensitivity/specificity of 0.88∕0.96 and accuracy of 0.92, on n ¼ 1000
glomeruli images stained with standard renal histological stains. Our method will simplify computational parti-
tioning of glomerular microcompartments hidden within dense textural boundaries. Automatic quantification of
glomeruli will streamline structural analysis in clinic and can pioneer real-time diagnoses and interventions for
renal care. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.021102]
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1 Introduction
The kidney is the organ of the body that filters blood to make
urine. This essential regulatory role in invertebrates is performed
by the nephron, and adult humans have on average 900,000 to
1 million in each kidney.1 Each nephron is spearheaded by
a glomerulus, a complex bundle of capillaries surrounded by
numerous cell types and filtration membranes, compacted into
a sphere of 200-μm diameter.2 Proteinuria, excessive loss of
blood serum proteins into the urine, is a symptom of kidney
disease, indicating structural damage to one or more of these
glomerular compartments.3,4 Quantifying the number and
distribution of glomerular structures is exceedingly tedious to
perform by manual inspection under light microscopy (the stan-
dard clinical approach). This has two consequences: (1) the time
taken to accurately provide a diagnosis to patients may be long
and (2) prediction of disease trajectory in an early proteinuric
disease, where structural damage is not yet blatant, is challeng-
ing and not precise. This is a clinical obstacle, as proteinuria can
lead to kidney failure and death. Each year Medicare spends

∼24 billion to care for over 525,000 U.S. patients with end
stage kidney failure,5 many of whom display proteinuria as
a component of their renal failure progression.

If a computational model that quantitatively characterizes
a histologically stained tissue could be developed, then global
distributions of important renal structures could be rapidly
extracted by diagnostic pathologists, thus improving diagnostic
efficiency. To our knowledge, there exists no method that is
unsupervised, robust, and capable of extracting glomerular
regions under a diverse set of conditions from a diverse popu-
lation of histology images. However, there have been some
works on the topic, one using a combination of edge detection,
fitting curves, and a genetic algorithm;6 a second work using
edge detection followed by edge patching using a genetic
algorithm;7 a third work using segmental histogram of orien-
tated gradients (S-HOG);8 and one work combining two
software packages, Icy9,10 and Cytomine.11–13 The methods
presented in Refs. 8 and 12 are supervised methods, both of
which can claim great performance. However, these methods
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may have clinical limitation, where pathologists do not have
time to gather and annotate the large datasets required for train-
ing supervised methods. S-HOG reported high precision and
recall with their method on 993 images of glomeruli. We objec-
tively compare our results with S-HOG in Sec. 2.6. The methods
in Refs. 6 and 7 utilize edge detection to define glomerular
boundaries. These methods have not demonstrated their perfor-
mance in a diverse population of samples and are constrained by
the prominence of the renal capsule to define the glomerular
edge, which is not prominent in some stain types, such as hema-
toxylin and eosin (H&E). Additionally, both of the methods in
Refs. 6 and 7 are sensitive to selection of the deviation of the
Gaussian filter, which is difficult to optimize under a variety of
microscopy imaging conditions. Furthermore, disease condi-
tions change the distribution and/or presence of glomerular
structures dramatically, and none of the above works have
demonstrated application to disease data. We will briefly dem-
onstrate proof-of-concept of our method applied to animal
model disease data in Sec. 2.5. Demonstration of application
to animal disease models is highly important because the
flexibility of proteinuric animal models allows control over
the pathological symptoms observed in an image. Control
over the corresponding pathological structural changes allows
the modeling of important diagnostic biomarkers with high
predictive power on the trajectory of renal disease, which can
be translated to human analysis. To our knowledge, this is
the first report of computational segmentation of the glomerular
boundary in a diseased renal tissue.

Renal architecture is exceptionally diverse and hetero-
geneous, thereby making computational analysis difficult to
encompass within a single model, while being easily observable
by eye. Gabor filtering is ideal to tackle such a system as it
has been shown to reflect the way mammalian vision systems
interpret spatial and frequency stimuli.14,15 The utility of Gabor
textural segmentation to analyze histopathological images has
been referenced in the literature.16–18 One work successfully
implemented Gabor filters as textural descriptors used to clas-
sify histopathological images of oral submucous fibrosis (OSF)
as OSF with dysplasia and OSF without dysplasia.17 Another
work uses Gabor filters as textural descriptors to distinguish
between epithelium and stoma in tumor tissue microarrays.18

However, we were unable to find literature that utilizes Gabor
filters to automatically detect textural difference within renal
tissue architecture. We will demonstrate that Gabor filtering
can produce highly precise and accurate structural boundaries
as compared to human visual annotation for both mouse and
rat glomeruli, and we expect that the method is generalizable
to other species as well.

In the past, we have reported using Gabor filters to detect
glomeruli.19 Here, we propose an improved method, a pipeline
of image processing and statistical tools working in complement
to discriminate dense glomerular textural density from sparse
extraglomerular textural density. Our method first uses a form
of hotspot analysis for glomerular nuclear clustering to select
candidate glomerular regions for a more detailed analysis.
Hotspot detection is commonly used to identify regions of
dense features of interest in images and has been applied to
extensive imaging modalities, such as positron emission tomog-
raphy,20 magnetic resonance imaging,21 and thermography.22

Hotspot detection is also popular in histological applications.
Two works use clustered Ki-67 positive nuclei to detect cancer-
ous regions.23,24 Another work proposes a strong method for

detection of cancerous hotspots in breast cancer by multiplexing
Getis–Ord25 statistical analyses of multiple classified nuclei
types to find colocalized density of specific cells.26 Our work
is similar to these analyses in that clustered hematoxylin nuclear
pixels form dense clusters, which are the regions of interest.
However, we were unable to find literature that reports the
use of hotspot analysis for hematoxylin stained pixels in normal,
healthy renal tissue.

After hotspot extraction, the glomerular boundary is further
refined through a combination of Gabor textural segmentation,27

Gaussian blurring,28 F-testing29 for intraglomerular space, and
a spatial weighting map emphasizing glomerular concentricity.
Gaussian blurring is an effective noise removal and signal
approximation tool.28 F-testing is used to refute or reinforce
the pixels segmented by Gabor textural segmentation on the
basis of variance. A spatial weighting map is used to connect
any gaps between both segmentations in a smooth, continuous
manner. We can accurately identify glomeruli in five common
histopathology stains: H&E, periodic acid-Schiff (PAS),
Gömöri’s trichrome, Congo red (CR), and Jones silver. When
compared to human annotation of the glomerular boundary,
our method localizes the exact boundary with mean sensitivity/
specificity of 0.88∕0.96 and accuracy of 0.92 on 1000 rat
renal tissue images.

By enabling the boundary of the glomerulus to be seg-
mented, we have opened a gateway that will allow streamlined
analysis of standard intraglomerular structures, which promise
high clinical impact if computationally quantified. A compre-
hensive clinical analysis of such structures includes quantifica-
tion of glomerular volumes, podocyte effacement and death,
changes in mesangial cellularity and matrix volume, and lumen
content.30 These benchmark indicators are already clinically
known to provide informative power on the source and trajec-
tory of renal disease but cannot be quantified if glomerular
regions are not identified from tubular regions. We envision
our method to be part of a semisupervised pipeline for digital
pathology workflow, where pathologists accept or reject proper
segmentations to speed data collection and accurate feature
extraction. This approach will provide a faster statistical sam-
pling in clinical pathology than the current practice and will
ensure accuracy in diagnosis. The ultimate aim of our approach
is to further facilitate the development of digital protocols
that quantify glomerular features and motivate the shift of
renal pathology to a computational era.

2 Results

2.1 Single Glomerular Location Estimation from
Biopsies

Figure 1 shows the process by which images of single glomeruli
can automatically be extracted from large fields of view. Biopsy
sized sections of tissue are cropped from whole-slide images of
rat or mouse kidneys and are stain normalized with histogram
specification28 to a well-stained image [Fig. 1(a)]. Converting
the true color image to grayscale intensity and inverting all
pixel values reveals that glomerular regions demonstrate higher
nuclei density than surrounding regions [Fig. 1(b)]. Smoothing
the image in Fig. 1(b) with a Gaussian blur generates an approxi-
mate nuclei heat map; see Fig. 1(c). Thresholding the image
in Fig. 1(c) produces approximate estimates of glomerular boun-
daries; see Fig. 1(d). Cropping a squared block centering around
an estimated boundary yields singular glomerular images; see
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Fig. 1(e). This method accurately extracts 87% of the glomeruli
identified by a manual annotator in each biopsy mimicking
image [Fig. 1(f)].

2.2 Glomerular Boundary Segmentation

Figure 2 depicts the pipeline to derive accurate individual glo-
merular boundaries. Figures 2(a) and 2(b) depict a glomerulus
image and its grayscale intensity image, respectively. The gray-
scale image is blurred with a Gaussian filter [Fig. 2(c)], which
improves the detection of textural density by Gabor filtering.
The filtering image shown in Fig. 2(c) with a Gabor filter
bank produces one image output for each Gabor filter.
Figure 2(d) depicts the projection along the first principal com-
ponent of these images, delineating the intraglomerular space.
Clustering images at the output of Gabor filter bank into two
classes yields a binary mask [Fig. 2(e)] corresponding to the
glomerular foreground. These foreground pixels are compared
with the background using a statistical F-test29 to obtain a sec-
ondary binary mask; see Fig. 2(f). Morphological operation28

removes the structural noise and results in an image shown
in Fig. 2(g). Next, a distance transform operation is applied
to binary masks derived from Gabor and F-testing, generating
intensity images shown in Figs. 2(h) and 2(i), respectively.
Moving to Fig. 2(j), a spatial weighting map has utility in filling
in small gaps between Gabor and F-testing distance transforms.
Normalizing and averaging the images in Figs. 2(h)–2(j) yields
the output shown in Fig. 2(k). This object is then fixed value
thresholded to yield the segmented boundary [shown using
dashed black line, see Fig. 2(l)]. A comparison with the original
boundary identified by Gabor [shown using black line, see
Fig. 2(l)] demonstrates that F-testing and spatial weighting
improve accuracy of the segmentation boundary.

2.3 Parameter Performance Analysis

Gaussian blurring was found to be a positive influential factor as
a preprocessor step to the segmentation of individual glomerular

boundaries. The single mandatory parameter for this step is the
standard deviation σb of the Gaussian function to blur with and
was tested in the range σb ∈ ½0;3�. Maximum radial frequency31

used in the Gabor filtering is found to be another influential fac-
tor in glomerular segmentation. A scalar multiplier β ∈ ½0;1�
was used to vary the maximum radial frequency; see Sec. 3.4.1.
The Gabor orientation parameter, tested for θ ∈ ½0 deg; 90 deg�,
defines how evenly the angles of the filters should be spaced,31

and this parameter value shows optimal segmentation at λ ¼
1 deg spacing. The degree of spatial weighting γ ∈ ½0;1� con-
trols the weight that the spatial map [Fig. 2(j)] has when aver-
aged with the Gabor and F-test distance transform [Figs. 2(h)
and 2(i)]. Average threshold refers to the threshold used to
define the final glomerular boundary, segmenting the image
seen in Fig. 2(k), and has bounds [0,0.3].

Figure 3 shows the influence of the parameters specified
above on the mean precision and accuracy32 of all 1000 tested
rat renal glomerular images. Figure 3(a) shows the deviation of
Gaussian filter, σb, which achieves optimal performance at
σb ¼ 1.1. Figure 3(b) shows the spacing between orientations of
the Gabor filters, θ, with optimal performance at λ ¼ 1 deg
spacing between orientations. Figure 3(c) shows the restriction
of the radial frequency of Gabor filters, β, optimized at
β ¼ 0.35. Figure 3(d) demonstrates that the percent of spatial
weighting is optimized at γ ¼ 0.8. Finally, Fig. 3(e) shows that
performance is optimized at a final threshold value of 0.15.
For the cases shown in Figs. 3(a)–3(c), we defined optimality
at a parameter value where both precision and accuracy become
maximum. For the other two cases, we defined optimality at
a parameter value where the combined precision and accuracy
score becomes maximum.

The remaining parameters did not require tuning for optimal
segmentation. Resize amount defines the fraction to shrink the
image to increase computational speed. We defined this fraction
to be 0.25. The significance level α used for the F-test was 0.05.
Window size defines a square window of size 20 × 20 pixels
used to compute the background variance for F-testing; see
also Sec. 3.4.2. Area threshold defines the maximum size of

Fig. 1 Estimation of glomerular locations from renal biopsies. (a) A renal biopsy mimic image, (b) the
inverse grayscale intensity of a depicting higher signals in the nuclei locations, (c) Gaussian blurring of
the high intensity nuclei in b, (d) approximated glomerular regions obtained from c, (e) singly extracted
glomerulus, and (f) the above method detects 87% of the glomeruli that a manual examination discovers.
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Fig. 3 Evaluation of parameter tuning. All scores reported precision versus accuracy: (a) amount of
blurring with Gaussian filter, (b) spacing between Gabor filter orientations, (c) restriction on the maximum
frequency size of the Gabor filter bank, (d) overall weighting of the spatial weighting map, and (e) value of
the final threshold, which defines the glomerular boundary. Optimal parameter values are presented in
Sec. 2.3.

Fig. 2 Computational pipeline for segmenting the glomerular boundary. (a) H&E stained glomerular tis-
sue image, (b) grayscale version of the image shown in a, (c) Gaussian blurred image of b, (d) intensity
image of the first principal component of the Gabor filter bank outputs using as input the image shown in
c, and (e) K -means clustering was used to find final Gabor boundary. (f) F -testing examines the entire
image for similarity with e, and outputs 0 or 1 for each pixel, (g) morphological noise removal for the image
in f, (h, i) respective binary masks obtained from F -testing and Gabor filter bank were distance trans-
formed, (j) intensity image of a spatial weighting intensity map obtained from a, (k) heatmap of an average
of intensity images in h–j, and (l) final segmentation after thresholding is shown using dashed black line.
The segmentation obtained from initial Gabor [see (e)] is shown using black. The dashed black boundary
depicts improved detection of glomerulus.
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objects to be removed from the binary mask obtained at the out-
put of the F-test, and we defined this threshold to be 600 pixels.
A final morphological disk is used to smooth the glomerular
boundary, and its radius was fixed at 25 pixels. A summary
of all the parameters used for this method can be found in
Sec. 3.5.

2.4 Glomerular Segmentation Performance Analysis

We evaluated the glomerular segmentation performance using
n ¼ 1000 rat glomeruli images, composed of five sets of 200
images stained with different histological reagents. To demon-
strate the proof-of-concept, we manually cropped the glomerular
regions [e.g., Fig. 2(a)] from all images. Glomerular locations
can also be estimated using the method and analysis as described
in Secs. 2.1 and 3.3. Figure 4 shows the performance of the glo-
merular segmentation. Figures 4(a)–4(e) demonstrate exemplar
final segmentation for each of the five tested stain types.
Figures 4(f)–4(k) show sensitivity and specificity of segmenta-
tions as scatters (see Sec. 3.4 for the method.) Overall, our
method localizes the exact glomerular boundary with mean sen-
sitivity/specificity of 0.88∕0.96 and accuracy of 0.92 on 1000
images. The H&E and trichrome images showed the most
specific performance as compared to manual annotation, with
a mean sensitivity/specificity of 0.87∕0.97. Jones silver staining
was least specific but also most sensitive, with mean sensitivity/
specificity of 0.90∕0.92. CR and PAS staining fall between the
other contenders, with sensitivity/specificity of 0.88∕0.95 each.

H&E and trichrome images showed the lowest variance of per-
formance metrics; Jones silver and PAS showed the highest.

2.5 Application to Focal Segmental
Glomerulosclerosis

For proof-of-concept, Fig. 5 shows automatic segmentation of
glomerular boundaries in both a healthy model and a mouse
model of focal segmental glomerulosclerosis (FSGS).33 The
glomerulus in the bottom row shows pathological changes, such

Fig. 4 Glomerular segmentation performance for five different stains. (a–e) Automatic segmentations of
glomeruli stained by H&E, PAS, Gömöri’s trichrome, CR, and Jones silver, respectively. (f) Scatter of
sensitivity versus specificity for all 1000 glomerular images. (g–k) Scatter of sensitivity versus specificity
for individual stains. Overall, H&E showed the highest performance with the lowest variation between
samples.

Fig. 5 Segmentation of a disease glomerulus. (a) A healthy glomeru-
lus and (b) glomerulus from mouse model of FSGS. Bowman’s space
is marked with a yellow arrow, hyalinosis with a red-green arrow,
lumen space with a black arrow, and automatic boundary with a
black line.
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as hyalinosis, marked with a red-green arrow, expansion of the
Bowman’s space, marked with a yellow arrow, and change in
lumen space, marked with a black arrow. Despite the pathologi-
cal differences, our method is able to identify both glomeruli.

2.6 Comparison with the Segmental Histogram of
Orientated Gradients Method Developed by
Kato et al.

To objectively compare the performance of our method with
S-HOG, we generated histograms of our precision, recall,
and F-measure for 1000 rat glomeruli images and presented
the results in Fig. 6. Kato et al.8 generated similar metrics to
report the performance of the S-HOG method. They reported
that 90.1% of the glomeruli from a large sample had an F-mea-
sure of 0.8 or greater using their method. We found that 99.1%
of glomeruli scored an F-measure of 0.8 or greater using our
method.

3 Methods

3.1 Overview of Computational Pipeline

Figure 7 shows an overview of the entire computational pipe-
line. Figure 7(a) shows a brief overview of the method for
glomerular location estimation from renal biopsies. Stain
normalization is recommended with the open source toolbox
available from the University of Warwick.34 Glomerular location
estimation methodology is explicated briefly in Sec. 2.1 and
more extensively in our recent work.19 Figure 7(b) shows
the pipeline to localize individual glomeruli boundaries.
Individual glomeruli images are preprocessed for Gabor filter-
ing, and each image is filtered with a bank of Gabor filters for
textural discrimination, which creates an initial mask of glo-
merular area. A second mask is generated by statistically F-test-
ing every pixel from the Gabor segmentation within a local
window. Both masks are distance transformed and averaged
along with a spatial weighting map. The averaged image is
thresholded to determine the output segmentation boundary.

3.2 Renal Tissue Slicing, Slide Preparation, and
Digital Imaging

Intact kidney tissues from normal healthy untreated rats (gener-
ously provided by Dr. Tracey Ignatowski, Pathology and
Anatomical Sciences, University at Buffalo) and normal healthy
untreated mice were collected and euthanized under an institu-
tionally approved laboratory protocol. Tissues were formalin
fixed, processed in a standard fashion, and embedded in paraffin
blocks. Microtome tissue slices from those paraffin blocks were
cut using an Olympus CUT 4060 microtome at 2-μm thickness
along the sagittal plane and stained with Jones silver; slices with
5-μm thickness were cut and stained with Gömöri’s trichrome,
H&E, and PAS; and slices with 8-μm thickness were cut and
stained with CR. These thicknesses mimic clinical practice.
Imaging was conducted using a whole-slide bright-field micro-
scope (Aperio, Leica, Buffalo Grove, Illinois), using a 40×
objective with 0.75 NA. Resolution of the acquired image
was 0.25 μm∕pixel. Disease data described in Sec. 2.5 were pro-
vided by Dr. Feng Chen, Washington University School of
Medicine at St. Louis and prepared under the protocol described
in Ref. 33. Results presented in Figs. 5, 8, and 9 were conducted
using murine tissue, and all other results were obtained using
rat tissue.

3.3 Single Glomerular Location Estimation from
Biopsies

To identify candidate glomerular regions, we apply an image
filtering method, which is similar to hotspot analysis for
histological images. In this application, the pixels, which stain
intensely for hematoxylin, are the points to be clustered into
hotspots. For computational speed, each full size, full resolu-
tion image was compressed to 10% of its original size using
MATLAB® command “imresize.”35 Rat renal biopsy mimic
images [Fig. 1(a)] were grayscale transformed, normalized,
and then subtracted from 1, to obtain high intensity, dense
clusters of nuclei corresponding to glomerular regions. Transfor-
mation to grayscale was performed using the weighted sum

Fig. 6 Histogram representations of the performance of our method. (a) Distribution of F -measure for
1000 images, (b) distribution of precision for 1000 images, and (c) distribution of recall for 1000 images.
Using similar performance metrics Kato et al.8 reported 90.1% of the glomeruli from a large sample
had an F -measure of 0.8 or greater using their method. We found that 99.1% of glomeruli scored
an F -measure of 0.8 or greater using our method.
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inbuilt with MATLAB® “rgb2gray” command and is shown in
Fig. 1(b).35 Next, Gaussian blurring was used to smooth high
intensity regions with close proximity together, seen in Fig. 1
(c). Thresholding at a fixed value yields approximate locations
of glomeruli, and an area opening eliminates outlier regions

[Fig. 1(d)]. The value of this area opening was calculated based
on estimated rat glomerular size, reported in Sec. 3.2 and
Table 2. To extract each individual glomerulus from the biopsy
mimic images, a 500 × 500 pixelswidth box was used, centered
on the centroid of each object. The box size was chosen to

Fig. 7 Computational pipeline overview. (a) Glomerular location estimation outline. Biopsy sized images
are recommended to be stain normalized; a free MATLAB® toolbox is available from the University of
Warwick.34 Glomerular biopsy location estimation is extensively discussed in Ref. 19. Each candidate
region is sent to the boundary estimation method. (b) Images are preprocessed, and an initial mask is
segmented by Gabor textural segmentation. Next, the Gabor textural segmentation output is F -tested
locally at every pixel. The results of these steps are distance transformed and averaged with a spatial
weighting map. Thresholding the average of all three sources yields the final glomerular boundary.

Fig. 8 Motivation of using Gabor analysis and F -testing. (a) Patch of intraglomerular region, (b) Fourier
transform of a, (c) patch of extraglomerular region, (d) Fourier transform of c, (e) representative intensity
histograms for 16 regions similar to a and c, respectively, and (f) sum of Fourier spectra coefficients for
intra- and extraglomerular regions. Error-bars represent standard deviations of the sum metrics com-
puted using data from four different mice.
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reflect the average glomerular size reported in Table 2. Note that
the method described here may not work for silver stains
because nuclei are not prominently stained under this method.
For tissue sections cut serially and stained with differing dyes,
we expect that a mask automatically extracted from an adjacent
serial slice of different stain will also accurately segment glo-
merular regions in the next silver slice.

3.4 Glomerular Boundary Segmentation

We review Gabor textural segmentation, statistical F-testing,
and distance transform, which are key methods for glomerular
boundary segmentation.

3.4.1 Gabor textural segmentation

Simple cells in the visual cortex of mammalian brains can be
modeled by Gabor functions. It is then intuitive that processing
digital image information with Gabor filtering is an effective
tool to render frequency and spatial signals into objects in
a manner similar to the human visual system.

Here, we have implemented the unsupervised texture segmen-
tation method using Gabor filter banks.27 A two-dimensional
(2-D) Gabor function is defined as a sinusoidal plane wave at
a specific frequency and orientation modulated by a 2-D
Gaussian envelope. This function is given by

EQ-TARGET;temp:intralink-;e001;63;472gðx; yÞ ¼ exp
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where σx and σy are the standard deviation of the Gaussian
envelope along x- and y-axes, respectively, and u0 and ϕ are
the frequency and phase of the sinusoidal plane wave along
the x axis with θ ¼ 0 deg orientation, respectively. A Gabor
filter at any other orientation can be obtained by rigid rotation
of the xy plane. In the frequency domain, with ϕ ¼ 0, the Gabor
function is given by
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where σu ¼ 1∕2πσx, σv ¼ 1∕2πσy, and A ¼ 2πσxσy. The width
of the filter in the spatial domain is inversely related to the band-
width in the frequency domain. To resolve fine texture, smaller
bandwidths are required, and to localize textural boundaries,
the magnitude of the filter in the spatial domain must match
that of the structure of interest.

MathWorks has developed an algorithm to implement
textural segmentation using an array of filters generated from
Eq. (1). This method uses a set of filter banks at multiple
orientations and radial frequencies to filter an image into its
Gabor components. For images of size m × k, the filter bank
orientations were spaced at λ ∈ ½0 deg; 90 deg� in an interval
of θ ∈ ½0;180 − λ�, and the radial frequencies were 4∕

ffiffiffi
2

p
up

to β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, where β ∈ ½0;1�. Values for σx, σy were dictated

by MATLAB® inbuilt default and can be found in MATLAB®

documentation for “imgaborfilt.”35 To normalize the Gabor fil-
ters’ outputs, pixel-wise mean and standard deviation of these
filters’ outputs were computed. Each pixel value of each Gabor
filter output was reduced by its respective mean and divided

by its respective standard deviation to compute the normalized
outputs. The resulting matrices were then clustered into two
classes using K-means clustering, repeated five times to avoid
local minima.36

3.4.2 F-test based segmentation

To perform the F-test based segmentation, first, the independent
measurements z1; z2; z3; : : : ; zN and w1; w2; w3; : : : ; wM were
collected from independent random variables Z and W with
variances σ2z and σ2w. For 2-D image analysis, Z is formed by
the pixels labeled by Gabor output based on the method
described in Sec. 3.4.1, andW is formed by the pixels in a move-
able window of predefined size, which was iteratively centered
on each pixel in the image. The testing problem is given by

EQ-TARGET;temp:intralink-;e003;326;590H0∶σ2z ¼ σ2w Ha∶σ2z > σ2w: (3)

The test statistic is given by

EQ-TARGET;temp:intralink-;e004;326;547F ¼
bσ2zcσ2w ; (4)

which is F-distributed with N − 1 and M − 1 degrees of free-

dom, and bσ2z , cσ2w are sample variances of Z and W, respectively.
The null hypothesis is rejected when F > Fα;N−1;M−1, where
Fα;N−1;M−1 is the critical value of the F-distribution with
N − 1 and M − 1 degrees of freedom and a significance level
α.29 The above test was performed at every pixel of the image,
iteratively centering the movable window onto every pixel. For
each local window of every pixel in the image, 0 was assigned
for a rejected F-test and 1 for passing F-test, which labeled a
secondary binary mask.

3.4.3 Distance transforms

Distance transforms are performed on binary images, and they
reassign each foreground pixel with its Euclidean distance to the
closest background pixel.37 We applied distance transforms on
the binary Gabor segmentation and F-test segmentation. We
employed a slightly different distance transform to generate a
spatial weighting map corresponding to the glomerulus. Here,
every pixel was assigned its Euclidean distance to the center
of the image to be segmented, and the resulting image was
inverted by subtracting it from 1, so the highest value pixels
were in the center and the lowest were at edges of the image.
The spatial weighting map aided in filling in disjointed gaps
between F-test and Gabor segmentations and de-emphasizing
objects near the image border. To derive the glomerular
boundary, an average of all normalized distance transformed
images was computed. Note that the spatial weighting can be
weighted anywhere between 0% and 100% while averaging,
but we found optimality around 80%. Thresholding this aver-
aged image yields the final segmentation.

3.5 Parameter Values

Table 1 summarizes the required parameters of the method, the
range of values tested, if optimized, and our reported optimal
value for each parameter. These parameters were optimized for
the resolution of the rat renal tissue histology image, details of
which are briefed in Sec. 3.2. However, in Figs. 5, 8, and 9,
we use mouse tissue to demonstrate several proof-of-concepts.
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Readers should note that the selection of parameters σb, β, area
threshold, and morphological disk radius are sensitive to glo-
merulus size and, thus, take on different optimal values in differ-
ent species. However, each of these parameters can be estimated
for tissue coming from another species by first estimating the
approximate size of glomeruli and then scaling the parameters
relative to the observed structure size. Table 2 reports our typical
measured sizes of mouse and rat glomeruli as well as the esti-
mated area, assuming each glomerulus to be circular.

4 Discussion
In this work, we presented a robust pipeline for automatically
extracting glomerular regions without supervision. Intuitively,
the detection of glomeruli via texture is supported by the
contrast of dense glomerular nuclear packing juxtaposed with
sparse, repetitive tubular nuclei. Furthermore, these two distri-
butions are demarcated by a prominent edge between them and
manifested in the Bowman’s space. In this section, we will
provide more rigorous motivation for the use of Gabor filters
and statistical testing. We will also discuss the advantages,
drawbacks, and obstacles of the presented method.

To motivate the use of Gabor filtering for glomerular seg-
mentation, we performed a two-sample t-test,29 to determine
if intra- and extraglomerular regions had different responses
in the frequency domain. First, 16 patches, each containing

104 pixels, were extracted from intraglomerular regions, and
then, a second identical set was taken from extraglomerular
regions. Patches were selected randomly from four different
mice. The Fourier transform of each image was computed,
and each transform was cropped to a fixed space–frequency
bandwidth. Within this bandwidth, the sum total of the respec-
tive Fourier coefficients was measured. Such sum metrics from
four different mice were used for the t-test. We found that at the
5% significance level, we can reject the null hypothesis with p
value 0.0022 that the Fourier spectra of intra- and extraglomer-
ular regions are similar. Figure 8(a) shows a sample patch of
glomerular region, and Fig. 8(b) shows the respective Fourier
spectra. Similarly, Fig. 8(c) shows a patch of extraglomerular
region, and Fig. 8(d) shows the respective Fourier spectra.
Comparing Figs. 8(b) with 8(d), the difference in spectra is
readily apparent. Figure 8(f) shows the difference in means
of the respective sum metrics as computed from the Fourier
spectra, where the respective error bars describe the standard
deviation along the mice. In addition to sharp contrast between
frequencies (textures) in intra- and extraglomerular regions, a
spatial difference in edge patterns between these two regions
is also expected. One expects the edge features in spatial domain
of an intraglomerular region [e.g., Fig. 1(e)] to be circularly
patterned, while the edge features outside the glomerulus to
be more linearly patterned. This has been demonstrated in the
literature by Kato et al.;8 hence, we omit a pictorial proof here
for brevity. Due to this, the renal glomerulus is a unique object
recognition problem with both spatial and frequency domain
contrast from its background in renal histology images. The
Gabor filter uniquely discriminates an object from its back-
ground by exploiting both spatial and frequency information,
while balancing the trade-off between space–frequency duality.
Thus, we conclude the motivation for the use of Gabor filters.

Similarly, to motivate and support the use of F-testing to seg-
ment glomerular regions, intensity distributions of intra- and
extraglomerular regions obtained from 16 100 × 100 pixels

Table 1 Parameter values used for the proposed method. Of the listed nine parameters, only two were dynamic over the production of the results
presented above. These parameters are the standard deviation of the Gaussian blur and the scale parameter of the maximum radial frequency of
the Gabor filters.

Parameter Use Description Value range Optimized value

σb Preprocessing Deviation of Gaussian filter 0 to 3 1.1

β Gabor filtering Restricts max radial frequency of the Gabor filter 0 to 1 0.35

Resize amount Gabor filtering Compress image to boost speed 0.25 No optimization

θ Gabor filtering Spacing between Gabor filter orientations 0 deg to 90 deg 1 deg

α F -testing Significance level of the F -test 0.05 No optimization

Window size F -testing Local window to select the background
for the F -testing

20 × 20 pixels No optimization

Area threshold Intermediate processing Eliminates noisy structures from F -test output 600 pixels No optimization

Percent spatial weighting Intermediate processing Binds Gabor and F -test segmentations together 0 to 1 0.8

Average threshold Final processing Defines glomerular boundary 0 to 0.3 0.15

Morphological disk radius Final processing Smoothens small imperfections in
the segmented glomerular boundary

25 pixels No optimization

Table 2 Mean glomerular diameter and equivalent approximated
area assuming circularity.

Species
Mean glomerular
diameter (μm)

Approximate
glomerular area (μm2)

Mouse 63� 6 μm 3110� 30 μm2

Rat 105� 11 μm 8660� 50 μm2
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patches of murine renal tissue images are shown in Fig. 8(e).
The difference in distributions is readily apparent. We found
that the intensity variation of intraglomerular region is higher
than that of extraglomerular region using a right tailed chi-
squared test29 at 5% significance level. This finding justifies
the use of F-testing.

On a different note, digital histopathology images suffer from
uneven contrast due to the imaging scanner, staining variation,
chemical reactivity from different manufacturer batches, stain-
ing protocol, variable tissue thickness, and human errors.38–40 A
common solution is stain normalization. To quantify staining
variation and its influence on our method, we first examined
four biopsy sized images, each from a different mouse and
each containing 5 to 8 glomeruli. Specifically, we examined
the hit ratio of detected glomeruli with our method before
and after stain normalization. Before stain normalization,
between the four images, the ratio of detected glomeruli to
true varied by 0.222. After stain normalization by RGB histo-
gram specification, the variance decreased to 0.020. The stain
normalization toolbox available at the University at Warwick
was used.34 Although it is not always required to normalize
images if they are stained well, poorly stained images signifi-
cantly benefit from normalization. For example, Fig. 1(a)
shows an example of an image that does not require staining
normalization. In contrast, Fig. 9(a) shows an example of a sam-
ple where glomerular nuclei have low contrast as compared with
tubular nuclei. No glomeruli were detected in this sample before
normalization [Fig. 9(a)], and all glomeruli were detected after
normalization [Fig. 9(b)]. In contrast to this, in Fig. 1(a), nearly
all glomeruli were discovered without normalization. We also
stain normalized all 1000 individual rat glomeruli images
used for the study presented in Fig. 4 to that of a well-stained
glomerulus for each stain type, to quantify staining variation on
our glomerular boundary labeling method. We noticed no sig-
nificant statistical difference on the performance before and
after. We believe this is likely because our glomerular boundary
segmentation method is local, and staining is piece-wise invari-
ant in the field of view of a single glomerulus.

Although Gabor filter bank-based segmentation is known in
the literature for texture segmentation, we report for the first
time the use of statistical F-testing to boost the segmentation
performance of the Gabor method. There are several advantages
that support using the proposed pipeline. First, it is unsuper-
vised, meaning large numbers of annotated training data are
not required to be gathered. Second, we have shown that it is

reproducible and robust for a variety of staining conditions
and demonstrated proof-of-concept in disease murine renal tis-
sue image with FSGS. Our method is also efficient; it requires
between 6 and 10 s to extract all glomerular boundaries from
a biopsy sized image with between 5 and 15 glomeruli.
Drawbacks of this method include high parameterization, and
the K-means clustering step in Gabor filter bank-based analysis
can be time-consuming as the size of the image increases.

Although we have validated our method for healthy rat tis-
sues, we have only shown a proof-of-concept example using an
FSGS diseased glomerulus. Future obstacles will likely develop
as we progress to validate our model in diseased rat or murine
tissues.41–43 Diseased renal tissues display a wide range of
structural changes; glomeruli shapes might be different than
expected, completely intact, partially intact, absent, and may
have abnormal ratios of glomerular compartments, all of
which would likely affect intraglomerular texture and require
adaptations to our method to ensure continued robustness.
Additionally, quite often, there are slight anatomical differences
between species. Because we aim for our method to be clinically
impactful, future extensions will also involve application to
human data. Human glomeruli will likely be slightly different
than rat or murine glomeruli in terms of both scale and structure.
This would call for further modifications to our method.
However, all in all, we believe that the results described in
this article are promising and have a high potential for further
clinical and academic research on the automated quantification
of renal microenvironment.

5 Conclusions
Our method is the first to open the gateway to unsupervised,
automated glomerular structural analysis. By removing the
obstacle of automated glomerular identification, future studies
will be able to computationally quantify intraglomerular struc-
tures much more easily than in times prior. The most important
result of our work is the discovery that textural discrimination is
highly effective in identifying glomerular boundaries, over a
wide range of staining types. Our proposed textural segmenta-
tion pipeline was able to efficiently discriminate glomerular
regions, with an average sensitivity and specificity of 0.88∕
0.96 over 1000 rat renal glomeruli images. We hope our method
will expedite future studies in automated, computational quan-
tification of renal structures, to bring about more rapid diagnosis
and intervention at early stages of proteinuric renal disease.

Fig. 9 Influence of stain normalization. (a) Performance of glomerular location estimation before stain
normalization for an image with low contrast between glomerular nuclei and tubular nuclei. (b) Drastic
improvement in detected glomeruli after being normalized to a well-stained image.
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combine quantitative image analysis with multidimensional molecular
data to predict trajectory of disease and its response to treatment with
higher precision and accuracy than the current paradigm.
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