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Abstract Multiple sclerosis (MS) is a chronic, inflamma-

tory, autoimmune disease of the central nervous system,

and is an important cause of disability in young adults. In

genetically susceptible individuals, several environmental

factors may play a partial role in the pathogenesis of MS.

Some studies suggests that high-salt diet ([5 g/day) may

contribute to the MS and other autoimmune disease

development through the induction of pathogenic Th17

cells and pro-inflammatory cytokines in both humans and

mice. However, the precise mechanisms of pro-inflamma-

tory effect of sodium chloride intake are not yet explained.

The purpose of this review was to discuss the present state

of knowledge on the potential role of environmental and

dietary factors, particularly sodium chloride on the devel-

opment and course of MS.
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Introduction

Multiple sclerosis (MS) is a chronic, inflammatory,

autoimmune disease of the central nervous system (CNS),

and is a major cause of disability in young adults [1]. In

genetically susceptible individuals, environmental factors

play a significant partial role in the pathogenesis of MS [2].

Numerous studies examined the influence of environmental

factors, such as Epstein–Barr infection [3–5], vitamin D

levels [6–11], smoking [12, 13], obesity [14], sunlight

exposure [15, 16], and geographic variation, on MS

[17, 18].

Methodology

All quotable references were searched using Pubmed and

Google scholar between March and May 2016. References

that allowed free access to full text by the Medical

University of Silesia were retrieved and read. The oldest

publications were retrieved from the Medical University of

Silesia Library. One reviewer performed literature searches

and two other researchers independently screened the

articles. All disagreements were discussed and resolved by

the authors or in consultation with other experts. Infor-

mation used in our review was evaluated using evidence-

based medicine. Inclusion criteria for the articles were:

original papers, systematic reviews, systematic summaries,

and meta-analysis. We excluded publications written in

foreign languages, such as Spanish, German, or Russian.

Keywords used for literature searches were as follows:

‘‘multiple sclerosis’’, ‘‘MS’’, ‘‘sodium’’, ‘‘sodium chlo-

ride’’, ‘‘autoimmunity’’, ‘‘diet’’, and ‘‘VGSCs’’. All key-

words were in accordance with the MeSH terms. To

identify the appropriate publications, we searched Pubmed

and Google scholar using combinations of keywords in the

following order: ‘‘MS and diet’’, ‘‘MS and salt intake’’,

‘‘MS and environmental factors,’’ and ‘‘MS and VGSCs’’.

After reading titles and abstracts, some articles from each

combination of keywords were excluded. Most of the

excluded articles were in a foreign language. The
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comprehensive literature search identified 907 articles that

were relevant for our review. Titles, abstracts, or full

articles were reviewed to determine whether each search

result matched our selection criteria. We also reviewed the

references of the selected original papers and review arti-

cles found by our search for additional papers relevant to

our review. Only high-quality publications from the last

decades were included. In addition, 306 articles were

retrieved from the Medical University of Silesia Library.

Of these 306 articles, we eliminated those that were too

general in scope for our review.

Environmental factors influencing MS

Although some studies confirmed the link between a previous

infection with Epstein–Barr virus (EBV) and the development

of multiple sclerosis [3–5, 19–21], the involvement of EBV in

the etiology of MS is unclear. However, certain viral infec-

tions likely increase susceptibility to MS [22]. Sero-epi-

demiological studies have demonstrated that almost 100% of

adult MS patients are infected with EBV [19]. Late childhood

infection of EBV is proposed to be the serious risk factor for

the disease. Moreover, there is a strong EBV-specific CD8?

response in the blood of MS patients in the beginning of the

disease and the intensity decreases in the course of the illness

[2–5, 19, 20].

Low serum vitamin D levels are currently one of the

most studied environmental factors influencing the

development of MS. It has been shown that intake of food

rich in vitamin D significantly prevents the development

of MS or reduce activity of the disease [6–9, 16]. Nev-

ertheless, some authors did not report a protective role of

vitamin D supplementation for the development of MS

[9, 10].

Smoking is another possible factor for the development

of MS or might be responsible for worst prognosis of

course of the disease [13, 23]. Furthermore, smoking ces-

sation improved the prognosis in patients with MS.

Ramanujam et al. confirmed that the time to conversion to

secondary progressive MS (SPMS) decreases by 4.7% for

each additional year of smoking after the diagnosis in

patients with RRMS (acceleration factor 1.047; 95% CI

1.023–1.072; P \ 0.01) [13].

Obesity is a probable susceptibility factor for MS and

several other autoimmune diseases [24], but the relation-

ship between increased body mass index (BMI) and disease

activity has not been fully explained. There is no doubt that

obesity increases levels of pro-inflammatory cytokines and

is associated with low-grade inflammatory state [25]. There

are reports providing that RRMS activity is higher in obese

and overweight patients than in patients with normal BMI

undergoing IFN b treatment [14]. Moreover, Oliveira et al.

reported a positive relationship between elevated BMI and

disability in MS patients [26].

Ultraviolet radiation was proposed to be a significant

environmental factor influencing prevalence of the disease

[15]. Reduced risk of MS through exposure to sunlight is

probably mediated not only by increased production of

vitamin D in the skin, but also by the synthesis of anti-

inflammatory factors, such as IL-10, TNF-a, and Treg cells

[16]. Therefore, the latitude is nowadays considered to be

related with prevalence of MS. The disease is less frequent

near the equator and more frequent in northern countries

[18, 27]. Exceptions to this trend, namely, Sardinia, where

the prevalence of the disease is significantly higher [28],

and northern Scandinavia, with markedly low prevalence

[29], may be due to genetic and behavioral factors [18].

Influence of diet on MS

It seems that diet might have a significant relationship with

the inflammatory process of MS. Many studies have shown

that diet plays the role in the pathogenesis of MS

[17, 30–32]. Recent studies have provided the evidence for

a protective role of polyunsaturated fatty acids on the risk

of MS; however, there is no conclusive evidence for a

beneficial role of polyunsaturated fatty acid supplementa-

tion in patients with MS. Hoare et al. demonstrated that the

amount of omega-3 polyunsaturated fatty acids taken orally

is inversely proportional to the risk of demyelination in the

CNS [33]. Moreover, Khalili et al. found a strong corre-

lation between oral intake of lipoic acid (1.2 mg/day) and

decrease in the levels of pro-inflammatory cytokines,

including INF-c, ICAM-1, and anti-inflammatory cytoki-

nes, including TGF-b and IL-4, compared with placebo

group [35]. On the other hand, Torkildsen et al. showed

that consumption of omega-3 fatty acids used as

monotherapy or in combination with interferon beta-1a had

no beneficial effect on the disease compared to placebo

[34]. Retinoic acid (RA), an active metabolite of vitamin

A, revealed a strong immunosuppressive activity [36]. RA

has been shown to modulate the balance between Th1/Th2

and Th17/Treg cells and B cell function, contributing to

augmented tolerance and inhibited inflammatory response.

It also contributes to enhanced tolerance and reduction of

inflammatory effects [37]. Bitarafan et al. investigated the

impact of vitamin A on disease progression in MS patients.

The study evaluated the expanded disability status scale

(EDSS) and MS functional composite (MSFC). The results

showed that vitamin A improved MSFC in RRMS patients,

but did not affect EDSS, relapse rate, or active brain lesions

in MRI [38]. Ketogenic diet (high amount of fat, decreased

protein content, and very low carbohydrates) was shown as

potentially therapeutic in progressive forms of MS, which
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is especially relevant, because currently, there is no treat-

ment for progressive forms of the disease [39, 40]. Kim

et al. reported that ketogenic diet improved motor disability

and cognitive impairment in mice with experimental

autoimmune encephalomyelitis compared with mice on the

standard diet. Furthermore, a ketogenic diet reversed

structural brain lesions and reduced CNS inflammation and

oxidative stress [41]. On the other hand, it was reported

that creatine supplementation did not improve muscle

capacity or habitual fatigue in MS individuals [42] or that

restricted intake of animal fat (no more than 10–15 g/day)

caused remission of the disease in patients with RRMS

[43].

Polyphenols and carotenoids from vegetables, n-3

PUFA from fish, vitamins A, C, D, and E, thiol compounds,

such as lipoic acid, and oligoelements, such as selenium

and magnesium, have anti-oxidant properties [44, 45].

Th17 cells, which produce pro-inflammatory cytokines, are

increased, whereas Treg cells are decreased in MS, and

thus, the balance between Th17 and Treg cells is impaired

in this disease. Vitamin A and its active metabolites (all-

trans-retinoic acid and 9-cis-retinoic acid) modulate the

imbalance of Th17 and Treg cells and might be beneficial

to the prevention and treatment of MS [46]. Moreover, this

vitamin was proposed to have a beneficial effect during

interferon therapy and improved psychiatric outcomes for

anti-inflammatory mechanisms [37].

Sodium channels in MS

Voltage-gated sodium channels (VGSCs) are key media-

tors of action potential initiation and propagation in

excitable cells [47–49]. Their expression has also been

reported in cell types that are traditionally regarded as non-

excitable, including glia, human vascular endothelial cells,

human epidermal keratinocytes, and carcinoma cells,

where their role is less clear [50–55]. Aberrant functional

expression/activity of VGSCs has been identified as a

major contributing factor in a number of human patholo-

gies, including cardiac arrhythmia [55], epilepsy

[56, 57, 58], pain [59, 60], periodic paralysis [61, 62],

migraine [63], MS [64], and cancer [65]. VGSCs exist as

heteromeric membrane-bound protein complexes that typ-

ically consist of a single pore-forming a subunit in asso-

ciation with one or more b subunits [66, 67].

The mammalian sodium channels include ten members

(Nav1.1–Nav1.9 and Nax) encoded by genes SCN1A–

SCN11A. While substantial homology exists between the

isoforms, differences in amino acid sequence confer dis-

tinct voltage dependence, kinetic and pharmacological

properties on each of the isotypes [68, 69]. Data concerning

the location and function of each VGSCs subunit are

included in Table 1.

b subunits (b1–b4) combine in vivo with either b1 or b3

through non-covalent bonding and with either b2 or b4 via

a covalent bond [101–104]. Numerous studies have

revealed the presence of Nav1.1, Nav1.2, Nav1.3 [105],

Nav1.6 [106], and Nav1.5 [107] in rodent astrocytes.

Sodium channels in these glial cells are localized to the

plasma membrane, where they mediate sodium currents

[108]. The star-shaped glial cells situated in the CNS take

an essential part in the response of the CNS to injury,

including inflammation and degeneration in MS. Herzog

et al. have shown that VGSCs can contribute to axonal

injury in MS by providing a pathway for sustained sodium

influx that drives the Na?/Ca2? exchanger to import cal-

cium into axons [109]. Elevated calcium levels can activate

nitric oxide synthase and deleterious proteolytic enzymes

[109–112]. The harmful effects of nitric oxide on mito-

chondrial function include a reduction in adenosine

triphosphate (ATP) levels and an exhaustion of sodium–

potassium adenosine triphosphatase (Na?K?-ATPase),

hence compromising the axons’ capacity to maintain nor-

mal transmembrane sodium gradient. This action provides

a positive feedback loop that imports even more intracel-

lular calcium, thereby further enhancing the damage [113].

Consequently, these mechanisms lead to axonal injury and

further to disability (Fig. 1).

Numerous studies have shown that partial blockade of

voltage-gated sodium channels could result in neuroprotec-

tion in patients with MS [112]. Indeed, the axonal protection

has been demonstrated in animals with experimental

autoimmune encephalomyelitis (EAE) by means of the

sodium channel blocking drugs flecainide [114, 115], safi-

namide [115], phenytoin [116], and, recently, lamotrigine

[117]. Neuroprotection is emerging as a potentially impor-

tant strategy for preventing disability progression in MS

[118]. In contrast, some clinical studies do not support the

protective role of VGSC blockers in MS. Counihan et al.

studied 400 patients, 51 of whom received CBZ symp-

tomatic therapy (average duration of therapy was

27 months), and showed that the long term exposure to the

VGSC-blocking drug CBZ does not affect the long-term

disability and disease progression in MS patients, despite

studies in animals suggesting a neuroprotective role of

VGSC blockers [119]. Furthermore, using CSF neurofila-

ment (NfH) as a good surrogate marker of neurodegenera-

tion in MS, Gnanapavan et al. revealed no benefit of

lamotrigine in the prevention of axonal breakdown by

lowering NfH levels compared to the placebo arm [120].

The protective role of lamotrigine is also disputed by

Kapoor et al. [121], but it is premature to fully dismiss this

hypothesis.
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Sodium chloride intake and MS

High intake of sodium chloride is currently considered to

be a potentially important factor influencing the onset of

MS. Changes in eating habits that have occurred in recent

decades in developed countries may account for an

increase in incidence of MS and other autoimmune dis-

eases [122]. Today’s typical Western diet includes more

sodium chloride than it was in the past [123]. Therefore,

popular processed meals, such as ‘‘fast food’’, contain

approximately 100 times more sodium chloride than

homemade meals [124, 125]. Increased hypertonicity can

stimulate the immune system [126], and furthermore,

superior sodium chloride uptake can affect the innate

immune system [127].

Recent studies have demonstrated the importance of

interleukin-17 (IL-17)-induced CD4? Th17 cell population

in autoimmune diseases [128]. Kleinewietfield et al.

showed that the addition of a modest amount of NaCl

(40 mM) to a culture of differentiating Th17 cells caused a

roughly logarithmic augmentation of IL-17A in naı̈ve CD4

cells in vitro and this process was mediated by p38/MAPK,

NFAT5, and SGK [122]. Moreover, high-salt concentration

results in growth of pathogenic phenotype of Th17 cells

[122, 129, 130]. Thus, the change in eating habits that

includes a high amount of salt may contribute to the recent

increase in MS incidence through the induction of patho-

genic Th17 cells [122, 126, 128]. The Th17 cells induced

by high-salt concentration upregulate the production of

pro-inflammatory cytokines GM-CSF, TNFa, IL-2, IL-9,

several chemokines [131, 132], and CCR6 [133], which are

essential for the autoimmune function of Th17 cells.

Higher Na? concentration, such as that between 160 and

250 mM, in the interstitium and lymphoid tissue and sig-

nificantly lower concentration of Na? in plasma, approxi-

mately 140 mM, are likely to be the mechanism for

Table 1 Voltage-gated sodium channels (VGSCs)

Protein Human gene Location Function

(A) The a subunits

Nav1.1 SCN1A CNS, PNS, heart CBH, dementia [70], Dravet syndrome [71], epilepsy [71, 72]

Nav1.2 SCN2A CNS, PNS CBH, dementia [70], epilepsy [73, 74], autism [74]

Nav1.3 SCN3A CNS, PNS Diabetes [75], neuropathic pain [76–78]

Nav1.4 SCN4A Skeletal muscle, heart Brugada syndrome [79], myotonia, periodic paralysis [80]

Nav1.5 SCN5A Uninnervated skeletal muscle, heart,

brain

Breast cancer [81, 82], arrhythmia [83], Brugada syndrome [84],

angiogenic disorders [85]

Nav1.6 SCN8A CNS, PNS, heart Epilepsy [86], cervical cancer [87]

Nav1.7 SCN9A PNS, neuroendocrine cells, sensory

neurons

Angiogenic disorders [85], paroxysmal extreme pain disorder [88]

Nav1.8 SCN10A Sensory neurons Prostate cancer [89], cardiac arrhythmia [90], MS [90, 91]

Nav1.9 SCN11A Sensory neurons Congenital insensitivity [92], cold-aggravated pain [93]

Nax SCN6A,

SCN7A

Heart, uterus, skeletal muscle,

astrocytes, DRG

Atopic dermatitis [94], hypertension [95]

(B) The b subunits

b1 SCN1B Heart, skeletal muscle, CNS, glia, PNS Epilepsy [96], cardiac arrhythmia [97], cancer [98]

b1A(b1B) SCN1B Heart, skeletal muscle, adrenal gland,

PNS

Epilepsy [96]

b2 SCN2B CNS, PNS, heart, glia Altered pain response [59], MS [99]

b3 SCN3B CNS, adrenal gland, kidney, PNS Cancer [98]

b4 SCN4B Heart, skeletal muscle, CNS, PNS Huntington’s disease [100]

CNS central nervous system, MS multiple sclerosis, PNS peripheral nervous system, CBH chronic brain hypoperfusion

Fig. 1 Positive feedback loop of Na/Ca influx to the neuron cell with

a potential damaging effect in multiple sclerosis (VGSC voltage-gated

sodium channel, NO nitric oxide, ATP adenosine triphosphate,

Na?K?-ATPase sodium–potassium adenosine triphosphatase)
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decreasing the inflammatory response in the blood while

favoring immune activation in lymphoid tissues or with

migration of cells into tissue [127, 134]. Otherwise, diet

rich in salt can affect the severity of the disease.

Kleinewietfeld et al. showed that mice fed salty meals

developed deterioration of EAE, with an increase in Th17

cell number and augmented infiltration of Th17 cells into

the CNS [122]. Moreover, in an observational trial on 122

MS patients, Farez et al. demonstrated that the disease

exacerbation rate was 2.75-fold in participants with med-

ium salt intake (2–4.8 g/day) (95% CI 1.3–5.8) and 9.95-

fold in participants with high sodium intake (4.8 g/day or

more) (95% CI 1.4–11.2) compared with the low-intake

group (under 2 g/day) [135]. This finding may be due to the

fact that sodium concentration is tightly regulated within

narrow limits regardless of large variations in sodium

consumption, due to its importance in general metabolism

[136]. The renin–angiotensin–aldosterone system (RAAS),

which is a major regulator of blood pressure, also signifi-

cantly affects autoimmunity in many diseases which

include MS and its animal model—EAE. Han et al. showed

that peptides related to the RAAS are present in CNS

lesions of MS patients [137]. Sodium chloride, among

many other physiological effects, modulates the renin–an-

giotensin system [138]. Interestingly, the activation of

renin and angiotensin has been implicated in the patho-

genesis of EAE [139]. Furthermore, increases in systolic

blood pressure similar to those observed with high-salt

consumption have recently been shown to be associated

with the disruption of white matter integrity in young

normotensive individuals [140]. In addition, Platten et al.

demonstrated an increase in the expression of angiotensin

receptor 1 (AT1R) in lymph node cells, indicating that

AT1R is activated in antigen-specific T cells during the

peripheral immune response to autoantigens. In addition,

angiotensin II (AII) binding was augmented in Periodate–

Lysine–Paraformaldehyde (PLP)-activated CD4 ? T cells

and to a lesser extent in activated CD11b ? monocytes.

Immunization with PLP139–151 led to an induction of AII

in CD4 ? T cells, CD11b ? monocytes, and to an increase

in serum AII levels, demonstrating that the RAAS is acti-

vated in peripheral immune cells. Pretreatment of mice

immunized with PLP139–151 with the angiotensin con-

verting enzyme (ACE) inhibitor lisinopril {N2-[(S)-1-car-

boxy-3-phenylpropyl]-L-lysyl-L-proline} or the AT1R

antagonist candesartan (3-{[20-(2 H -tetrazol-5-yl)biphe-

nyl-4-yl]methyl}-2-ethoxy-3 H -benzo[d]imidazole-4-car-

boxylic acid) resulted in suppression of Th1 and Th17

cytokine release and up-regulation of immunosuppressive

cytokines, such as IL-10 and transforming growth factor-b
(TGF-b) [141]. Probable impact of high sodium diet on

immune functions in MS patients was presented in Fig. 2.

Hucke et al. revealed a multidirectional activity of

sodium chloride-rich diet in both humans and mice.

Sodium chloride-rich diet promotes CNS autoimmunity,

increases macrophage responses, skews the balance

towards a pro-inflammatory M1 phenotype in macro-

phages, alters MAPK signaling in macrophages, and

induces a pro-inflammatory phenotype in human mono-

cytes [142]. In addition, Yi et al. demonstrated that high-

salt intake promotes an increase in human serum mono-

cytes, which play a pivotal role in the development of

various immunological diseases [143]. Furthermore, Jörg

et al. showed that a high-salt diet in the early phase of

neuroinflammation mainly acts on Th17 cells and is inde-

pendent of myeloid cells. This finding can help elucidate

the impact of a high-salt diet on the emergence and course

of autoimmune diseases [144]. Krementsov et al. demon-

strated an increase in blood–brain barrier permeability and

brain pathology in mice as a consequence of a high-salt

diet, but did not demonstrate augmentation of Th17 or Th1

responses. Moreover, this study showed that the effects of

dietary sodium on autoimmune neuroinflammation are sex-

specific, genetically dependent, and CNS-mediated [145].

Furthermore, Zhou et al. demonstrated that a short-term

increase in dietary salt intake could induce the expansion of

CD14??CD16? monocytes, as well as an increase in

monocyte platelet aggregates (MPAs), which might be the

cellular basis of high-salt-induced end organ inflammation

and potential thromboembolic risk, independent of changes

in blood pressure [146]. In addition, Hernandez et al.

reported that excess dietary sodium intake lowers

immunosuppressive actions of human and murine Foxp3?

Tregs in vitro and in vivo and is associated with increased

Treg IFNc secretion in vivo [147]. Data concerning the

immunological effects of sodium chloride intake are shown

in Table 2.

Fig. 2 Probable impact of high sodium diet on immune functions in

multiple sclerosis patients (CNS central nervous system, RAAS renin–

angiotensin–aldosterone system)
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In conclusion, recent reports have demonstrated a

potential pro-inflammatory role of excess sodium chloride

intake in the pathogenesis of autoimmune and neurode-

generative diseases, both in vitro and in vivo, although the

outcomes of these studies are not unanimous. Nevertheless,

the current knowledge suggests that a low-salt diet

(\5 g/day) might be beneficial in the prevention and

treatment of autoimmune diseases, including MS.
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