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Abstract

Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by 

infiltrating immune cells and by cytokines released by these cells. This takes place in the context 

of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular 

signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-

transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/

exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein 

isoforms that expand the proteome diversity. Functionally related transcript populations are co-

ordinately spliced by master splicing factors, defining regulatory networks that allow cells to 

rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing 

interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In 

this review, we discuss recent findings suggesting that splicing events occurring in both immune 

and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in Tcells and in 

lymph node stromal cells are involved in the modulation of the immune response against β cells, 

while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that 

modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. 

Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D 

pathogenesis and may open new avenues for disease prevention and therapy.

Introduction

Pre-mRNA alternative splicing (AS) is a key post-transcriptional regulatory mechanism that 

affects gene expression, acting as a major generator of proteomic diversity. It regulates the 

incorporation of alternative sets of exons into mature mRNA molecules, allowing single 

genes to produce multiple, structurally distinct mRNA and protein isoforms that may have 

different biological properties (1). This tightly regulated process provides cells with the 

ability to rapidly adapt their transcriptome and proteome in response to intra and 

extracellular cues. Nearly 95% of human genes undergo AS, producing on average six 

alternative isoforms per gene, thus explaining the discrepancy between the predicted 22 000 

protein-coding genes of the human genome and the observed >200 000 protein isoforms (2, 

3). The prevalence and extent of AS correlates with organismal complexity, suggesting that 
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AS plays a key role for the development of complex phenotypic traits during evolution (4, 

5). AS regulation plays an important role in virtually all biological processes, including cell 

growth and death, development stage, pluripotency, differentiation, circadian rhythms, 

response to stimuli and disease (6, 7, 8).

Regulation of AS: the splicing code and the coupling with the transcription machinery

The splicing process involves the retention of exons and removal of introns from the pre-

mRNA. This is not a rigid process, showing instead a wide variation by the different usage 

of alternative exons and other components of the transcribed mRNA that are either included 

or excluded from the final mRNA isoform (Fig. 1A). This requires the recognition of exons 

through the identification of a complex code of cis-acting elements within the pre-mRNA 

molecule (Fig. 1B). The catalytic reactions that occur during the splicing process are 

mediated by the stepwise assembly of a large and dynamic ribonucleoprotein (RNP) 

complex called the spliceosome. The spliceo-some is composed by five small nuclear RNP 

particles (snRNP), U1, U2, U4/U6 and U5, and around 200 proteins (9). The snRNP 

spliceosomal particles recognize the core splicing signals (5′ splice site, branch site and 

polypyrimidine tract-3′ splice site) that are essential to carry out the splicing reaction. Core 

splicing signals are short and degenerate (i.e. not completely conserved) sequences that 

alone are insufficient to define intron–exon boundaries. Thus, they require the presence of 

additional cis-acting regulatory sequences to achieve fidelity in the splicing process. AS is 

accurately regulated by the interplay between these cis-acting regulatory elements and their 

cognate trans-acting splicing factors, the so-called ‘splicing code’, that either promotes or 

represses the recognition of core splicing signals (Fig. 1B). Regulatory sequences present in 

both exons and introns, termed splicing enhancers or silencers, work as binding sites for 

splicing factors that either enhance or repress splicing depending on their activity and 

binding position (2, 10). These splicing regulators are RNA-binding proteins (RBPs) of the 

serine/arginine (SR)-rich proteins and heterogeneous nuclear RNPs (hnRNP) families, as 

well as other cell-, stage- or tissue-specific proteins such as the NOVA, RBFOX, CELF or 

MBLN families. These families establish the splicing code and determine in a combinatorial 

fashion which splice site is selected in specific tissues (for instance, NOVA1 is only 

expressed in brain and pancreatic β cells) (11, 12, 13, 14). The regulation of AS is 

accomplished by the relative expression levels of the different RBPs, determining how 

efficiently different splice sites are used to generate specific mRNA isoforms in different 

cells and tissues. In addition to the splicing code, defined by RBPs, regulation of AS is also 

influenced by other mechanisms. For instance, cis-acting RNA–RNA base pairing and RNA 

secondary structures can control the splice site choice in some genes (15, 16, 17). Splicing 

occurs mainly co-transcriptionally and is integrated with other regulatory layers controlling 

gene expression (18). Mechanisms affecting the RNA polymerase transcription rate, such as 

chromatin structure, histone modifications or DNA methylation, influence the splicing 

pattern, and recent findings indicate that the splicing, transcription and chromatin 

organization machineries interact to ensure that AS is properly controlled in time and space 

(18, 19, 20, 21). Depending on the pattern of exon inclusion/exclusion, AS events can be 

classified into six major types: cassette exons (an exon that is either retained or skipped), 

tandem cassette exons (two or more exons that are retained or skipped together), mutually 

exclusive exons (two exons, where the retention of one involves the skipping of the other 
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and vice versa), alternative 5′ or 3′ splice site (an alternative donor or acceptor site is used 

changing the exon–exon junction) and retained intron (the intron is not spliced out leading to 

its inclusion into the coding region) (Fig. 1A).

Impact of AS on protein function

Splicing changes in protein-coding mRNAs can have profound and diverse effects on protein 

function, producing splice variants with related, distinct or even opposite functions (1, 22). 

For instance, several genes of the BCL2 family of apoptotic regulators, such as Bcl2–l1, 

Mcl1 and BID, produce both pro- and anti-apoptotic isoforms through AS, and changes in 

the relative ratios of these splice variants may lead to cancer or neurodegenerative diseases 

by modulating cell death (23). AS can lead to changes on protein localisation, enzymatic 

activity and interaction with ligands (24). It can also modulate protein-binding properties, 

modifying interactions with other proteins, nucleic acids or membranes. In some cases, 

specific protein domains are regulated by AS, modifying protein structure and functions. For 

instance, AS changes in transcriptions factors can alter the transactivation or DNA-binding 

domains inducing negative or positive effects on transcription; changes on channel proteins 

can modify their electrophysiological properties; and gene function may change from 

dominant negative to constitutively active through AS (24). By regulating the inclusion/

exclusion of exons harbouring a stop codon or introducing a frameshift change, AS is often 

coupled with the nonsense-mediated mRNA decay (NMD), a quality control process that 

eliminates transcripts containing premature termination codons, indirectly regulating mRNA 

expression (mRNA expression results from the balance between mRNA transcription and 

degradation) (25, 26).

The key role of AS in the brain

AS has been extensively studied in the brain, revealing its pivotal role in neural development 

and the establishment and function of neuronal networks (27). AS is particularly widespread 

and more highly conserved in the brain than in any other tissue, suggesting that it has 

contributed to the functional complexity of the CNS during evolution (27). It is thus not 

surprising that splicing defects lead to neurologic and neuropsychiatric disorders. Mutations 

or polymorphisms affecting cis-regulatory elements have been identified in several brain-

related diseases, including frontotemporal dementia, schizophrenia, bipolar disorder and 

autism spectrum disorder, among others (28, 29). For instance, alterations on the 

developmental and tissue-specific AS pattern of the microtubule-associated protein tau 

(MAPT) give rise to frontotemporal dementia with Parkinsonism (30). Mutations that affect 

AS of exon 10, encoding a microtubule-binding motif, disturb the normal ratio between 

isoforms of low and high affinity, increasing microtubule assembly and leading to the 

formation of neurofibrillary tangles and consequent neurodegeneration (31). On the other 

hand, other neurological diseases arise from defects in splicing regulatory RBPs, leading to 

large mRNA splicing alterations (28, 32). For instance, mutations in RBFOX1 have been 

associated with autism, mental retardation and epilepsy (33). Microsatellite expansions (also 

called dynamic mutations) can induce aberrant nuclear sequestration of RBPs like MBNL1 
and CELF1, leading to neurodegenerative disorders such as myotonic dystrophy, 

spinocerebellar ataxia or Huntington’s disease (34).
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AS is coordinated into regulatory networks

Although AS may seem a chaotic process of independent events, recent evidence indicate 

that, on the contrary, cells typically coordinate splicing changes into regulatory networks. 

Splicing networks are regulatory hubs of functionally coherent transcript populations (also 

known as RNA regulons) co-regulated simultaneously by key splicing factor RBPs. These 

master splicing factors coordinate the splicing of alternative exons of functionally related 

genes to promote particular biological outcomes in response to specific signals (35, 36). To 

date, several splicing networks have been reported, including networks regulating neural 

development (27), T cell activation (37), stem cell pluripotency (38) (Fig. 2), cell cycle and 

apoptosis (39) or myogenic differentiation (40).

Genome-wide methods to analyse AS

The development of different high-throughput technologies during the last decade has 

fostered a significant increase in the understanding of AS, its regulatory mechanisms, 

dynamics, evolution and organization into complex networks. The initial genome-wide 

studies of AS were performed using splicing-sensitive microarrays that typically used short 

oligonucleotides probes recognizing exon junctions (41). These platforms provided relative 

quantitation of splicing changes across different tissues, development stages or upon 

perturbation of specific splicing factors (42, 43, 44, 45, 46). More recently, next generation 

RNA sequencing (RNA-seq) has emerged as the method of choice to analyse AS at a 

genomic scale (2, 47). In RNA-seq, cDNA fragments derived from polyadenylated RNAs are 

amplified and massively sequenced to generate millions of short sequence reads. These reads 

are later aligned back to the reference transcriptome and analysed using extensive 

bioinformatics processing, allowing detection and quantification of virtually all RNA 

transcripts, including splice variants (48). RNA-seq presents several advantages when 

compared to microarrays, such as low background, increased sensitivity, high 

reproducibility, lack of cross-hybridization artefacts and unbiased detection of novel 

transcripts (49, 50, 51). On the other hand, RNA-seq data analysis is computationally 

intensive, and pipelines typically include several steps, including quality assessment, 

filtering, alignment, transcript assembly, normalisation, estimation of transcript abundance 

and statistical analysis to identify differentially expressed genes/transcripts (52, 53). The 

choice of software to analyse RNA-seq data is not trivial, and different tools can give 

slightly different results (54, 55, 56). A key issue when analysing AS by RNA-seq is the 

coverage depth, i.e. the average number of times a nucleotide is read during the sequencing 

process. Accurate quantification of splicing levels relies on the number of reads that 

specifically map to exon junctions, and it has been estimated that a depth of ~200 million 

reads is required to quantify the splicing levels of 80% of all genes (47). Complementary to 

the methods described above, several methods have been developed to obtain RNA–protein 

interaction maps on a genome-wide scale (57). Cross-linking and immunoprecipitation 

followed by high-throughput sequencing (HITS–CLIP) is a technique in which RNA 

transcripts bound to a given RBP are sequenced after specific purification of RNP complexes 

(58, 59, 60). These techniques, combined with RNA-seq, allow identification of direct, 

functional RNA targets and uncover splicing networks regulated by specific RBPs (61).
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β cell death in type 1 diabetes and the role of AS

Type 1 diabetes (T1D) is a chronic autoimmune disease where putative environmental 

factors (viral infections, dietary components, etc.) interact with predisposing genes to trigger 

an autoimmune assault against pancreatic β cells (62). The disease is characterized by 

pancreatic islet inflammation (insulitis) and progressive β cell loss by apoptosis (63, 64, 65). 

The incidence of T1D is increasing, and it is expected that new cases of T1D in European 

children will double between 2005 and 2020 (66). This, and the fact that there are presently 

no adequate approaches to prevent or cure the disease (67), makes T1D one of the great 

health challenges of the 21st century.

Pancreatic β cells and the immune system in T1D: dialogue and misunderstanding

Inflammation contributes to both the early induction and secondary amplification of the 

immune assault against the β cells. Inflammatory mediators contribute to β cell functional 

suppression and subsequent apoptosis, inhibit or stimulate β cell regeneration and may cause 

peripheral insulin resistance (63). These different roles of inflammation take place in the 

context of a ‘dialogue’ between invading immune cells and the target β cells. This dialogue 

is mediated by cytokines/chemokines released by β cells and immune cells and by putative 

immunogenic signals delivered by dying or modified β cells (63) and is modulated by 

candidate genes for the disease, acting at both the immune system and pancreatic β cell 

levels (11, 62, 68, 69). Progressive loss of β cell mass is a central feature of T1D, and 

immune cells contribute to β cell apoptosis by cell-to-cell interactions, via the Fas–FasL and 

perforin–granzyme systems, and by releasing pro-inflammatory cytokines such as 

interleukin 1β (IL1β), tumor necrosis factor α (TNFα), interferon γ (IFNγ) and IL17 (63, 

70, 71). Cytokine-induced β cell apoptosis depends on the activation of complex gene 

networks regulated by transcription factors such as NFκB (72, 73) and STAT-1 (74). 

However, the mechanisms by which autoimmunity is triggered and aggravated and the 

nature of the intracellular signals that decide the β cell fate between survival and death 

remain to be clarified.

Destruction of β cells in T1D is mediated by CD8+T cells that recognise target epitopes 

presented by HLA Class I molecules (75). However, most dominant epitopes are not 

recognised in many patients, suggesting that more universal immunodominant epitopes, 

critical for amplifying the autoimmune assault and amenable to biomarker and therapeutic 

development, remain to be identified. The emergence of selected antigen sequences in 

pancreatic β cells as T cell targets might be favoured by defects in central and/or peripheral 

tolerance. Several β cell-restricted antigens are expressed by medullary thymic epithelial 

cells (mTECs) and presented to developing T cells (76) during a quality control process that 

deletes most autoreactive T cells. Not all self-antigens, however, are expressed in mTECs, 

and some are expressed as incomplete isoforms that lack key epitopes (77). Thus, the 

‘immune self-image’ presented in the thymus is incomplete, and inflammation-induced 

modifications in pancreatic β cell AS (11) may lead to generation of neoantigens that 

contribute to amplify and accelerate β cell destruction.
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The emerging role of AS in T1D and other autoimmune diseases

Our understanding of the importance of AS in the development of autoimmune diseases is 

just emerging. Triggering of autoimmune diseases depends on a complex interaction 

between multiple genetic and environmental factors interconnected thought regulatory 

mechanisms that intervene at different stages of disease evolution. AS alterations caused by 

defects in both cis-acting regulatory elements (i.e. mutations or single nucleotide 

polymorphisms affecting splicing enhancers or silencers) and transacting factors (i.e. defects 

in splicing factors) have been suggested to play a role in the development of auto-immune 

diseases, such as multiple sclerosis, myasthenia gravis and systemic lupus erythematosus 

(78, 79, 80, 81). For instance, a polymorphism associated with high risk of multiple sclerosis 

alters the splicing of the interleukin-7 receptor (IL7R) in T cells, decreasing the ratio of 

transmembrane to soluble isoforms and causing immune dysfunction (78).

In the context of T1D, recent data suggest that AS alterations acting at both immune and 

pancreatic β cells, and in some cases affecting disease susceptibility genes, may contribute 

to the pathogenesis of the disease. AS switches have been reported to modulate the immune 

response against β cells and contribute to the progression of T1D. CTLA-4 is a T 

lymphocyte regulatory gene associated with risk of T1D and other autoimmune diseases (82, 

83). CTLA-4 regulates the ‘choice’ of T cells between proliferative responsiveness and 

tolerance. Studies in NOD mice and other models have shown that differential expression of 

CTLA-4 splice variants impacts on T cell function and the overall immune response. Thus, 

while splice variants lacking the transmembrane domain exacerbate the autoimmune 

pathology, variants lacking the ligand-binding domain are protective (83, 84, 85). 

Importantly, AS is more frequent in the critical MHC region (a region that accumulates more 

than 40% of the genetic risk associated with T1D (86)) than it is genome wide (87).

AS defects in pancreatic lymph nodes may underlie the breakdown in peripheral self-

tolerance that contributes to insulitis (88). Deformed epidermal autoregulatory factor 1 

(Deaf1) is a transcriptional regulator that controls the expression of peripheral tissue 

antigens in lymph node stromal cells; these peripheral tissue antigens are important to 

‘educate’ T regulatory cells (Tregs) and maintain tolerance (89). Deaf1 is spliced into a 

dominant negative variant (Deaf1–Var1) in pancreatic lymph nodes of T1D patients (89), 

and Deaf1–Var1 expression is reduced in the pancreatic lymph nodes of diabetes-prone 

NOD mice that escape diabetes development (90). Inflammation and hyperglycaemia drive 

Deaf1 splicing independently through activation of two different splicing factors, Srsf10 and 

Ptbp2 respectively (90). These data suggest a complementary role for AS in the regulation of 

auto-immunity: since deletional tolerance and induction of Tregs is at least in part mediated 

by expression of peripheral tissue antigens, Deaf1 splicing and consequent decrease in 

function may allow the persistence of an increased number of autoreactive T cells, thus 

aggravating the autoimmune attack against β cells (90).

AS changes regulate β cell responses to immune-induced stress

Modifications of AS within pancreatic β cells may contribute to β cell dysfunction and death 

through modulation of the expression of pro-apoptotic proteins, generation of neoantigens 

that lead to presentation of novel β cell epitopes and subsequent amplification of the 
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autoimmune response (see above), modification of the surface location of antigens and/or 

introduction of changes in the post-translational configuration of proteins (78, 91, 92, 93). 

Several apoptotic regulators, including members of the BCL2 family, undergo AS (94), 

leading to the generation of different protein isoforms with distinct functions, locations 

and/or pro-apoptotic activity (95). Thus, caspase 2 (96), caspase 9 (97), BCLX (98, 99), 

MCL1 (99, 100) and the pro-apoptotic BH3-only protein Bim (101, 102) undergo AS in 

other cell types. These proteins play an important role in the regulation of cytokine-induced 

pancreatic β cell apoptosis (103, 104), with a central role for the pro-apoptotic BH3-only 

protein Bim (104, 105, 106, 107).

Our group was the first to show that inflammation induces extensive changes in β cell AS 

(46). Using microarray analysis of rat primary β cells exposed to pro-inflammatory 

cytokines (IL1β plus IFNγ or TNFα plus IFNγ), we found that cytokines modify the 

expression of nearly 50 splicing factors and other RBPs involved in the splicing machinery. 

Cytokines were also found to modify the splicing of nearly 20% of all genes expressed in β 
cells. Pathway enrichment analysis indicated that these splicing changes affect many genes 

involved in cell death signalling (46). Of particular relevance, in a subsequent study we 

observed that GLIS3, a candidate gene for diabetes, contributes to β cell death by indirectly 

regulating the AS of the pro-apoptotic gene BIM (105). GLIS3 is a transcription factor that 

plays a critical role in pancreatic development and in the maintenance of the β cell 

differentiated phenotype, and severe inactivating mutations in GLIS3 cause neonatal 

diabetes (108). Genome-wide association study indicates that GLIS3 is one of the rare genes 

showing association with both T1D and T2D (109, 110, 111). We found that decreased 

expression of GLIS3, besides having a negative impact on β cell function and phenotype, 

increases β cell apoptosis both basally and after cytokine exposure (105). The observed 

increase of apoptosis was due to modulation of AS of the pro-apoptotic BH3-only protein 

Bim, favouring the expression of the most pro-apoptotic isoform, Bim Small (Bim S). The 

activity of Bim is controlled by AS, generating three main isoforms, namely Bim extra large 

(EL), Bim large (L) and Bim S (101). Bim EL and Bim L contain exon 4, encoding a dynein 

light chain 1 (DLC1) binding site. This domain maintains these isoforms in a relatively 

inactive form through their binding to the dynein motor complex and consequent 

sequestration to the cytoskeleton (112). On the other side, Bim S is not subject to post-

translational regulation, remaining free to exert its potent pro-apoptotic activity (101). We 

found that decreased levels of GLIS3 reduces the expression of the splicing factor SRp55, 

which in turn regulates the inclusion of Bim exon 4, leading to an increase of Bim S 

expression and consequent higher β cell apoptosis (105) (Fig. 3).

As mentioned above, RNA-seq allows a robust analysis of AS events at a genomic scale. 

Transcriptome analysis of human islets using this technique provided further insights into 

the β cell transcriptome and its modulation by pro-inflammatory cytokines (11). We found 

that many splicing factors are significantly enriched in human islets when compared with 

other tissues, and that, surprisingly, several so-called ‘neuron-specific’ splicing factors such 

as NOVA, RBFOX or CELF RBPs are also expressed in human β cells. In line with the 

previous microarray data (46), we found that pro-inflammatory cytokines modify the 

expression of >30 splicing-regulating RBPs and induce AS changes in >3000 genes. 

Comparison of RNA-seq datasets of human islets exposed to cytokines or to palmitate, a 
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saturated fatty acid that contributes to β cell failure in models of T2D, indicate that 

inflammation induces a specific AS signature that is different from that induced by the 

metabolic stressor (Fig. 4) (11, 113) (unpublished data), suggesting that different β cell 

stressors induce different and stress-specific ‘splicing signatures’. Enrichment analysis using 

IPA, DAVID or GO databases suggest that cytokine-induced AS changes affect key 

functions/pathways in β cells, such as cell death and apoptosis, cellular growth and 

proliferation, antigen presentation, mitochondria dysfunction, unfolded protein response and 

several immune cell-related pathways, among others. Taken together, these data support the 

idea that early islet inflammation, through modulation of the expression of key RBPs in β 
cells, leads to the activation of specific AS regulatory networks that modulate β cell viability 

and/or susceptibility to immune-induced stress. Some of these networks may regulate the 

cross-talk between β cells and immune cells during insulitis, giving rise to the generation of 

neoepitopes recognized by CD8+T cells and consequent amplification of the immune 

assault. Other networks may contribute to β cell death by modifying apoptosis-related 

proteins or key pathways for β cell survival.

NOVA1, a ‘neuron-specific’ splicing factor, controls β cell function and survival

To further investigate the role of individual splicing factors in the regulation of β cell 

function and survival, we studied the ‘neuron-specific’ RBP NOVA1 using siRNA silencing 

coupled with RNA-seq (12) (Fig. 5). NOVA1 silencing modified the splicing of nearly 5000 

transcripts (11% of the total isoforms) in fluorescence-activated cell sorting (FACS)-purified 

primary rat β cells. Pathway analysis indicated that many of these genes are involved in 

exocytosis, apoptosis, insulin receptor signalling, splicing and transcription. In line with 

these findings, NOVA1 silencing-impaired insulin release by inducing splicing changes in 

genes regulating exocytosis, such as Snap25 and PLCβ1, and decreased voltage-dependent 

Ca2+ currents by modifying splicing of voltage-gated ion channels (12). Interestingly, pro-

inflammatory cytokines down-regulate NOVA1 expression, and silencing NOVA1 using 

specific siRNAs increases apoptosis basally and after cytokine treatment in rodent and 

human β cells, indicating a key role for NOVA1 in the maintenance of β cell viability. 

Apoptosis induced by NOVA1 silencing is mediated by the intrinsic pathway of apoptosis 

due to up-regulation of the transcription factor FoxO3A and consequent increase of Bim 

expression (12).

Estimating the disease progression in T1D – an unmet need

Destruction of β cells in T1D is mediated by autoreactive T cells and macrophages as a 

result of a loss of immune tolerance (63, 64, 65). However, we do not know whether β cell 

loss in T1D is slow and progressive, relapsing and remitting, or late and rapid. The limited 

success of drugs that block autoimmunity suggests that therapies should be introduced early, 

prior to clinical diagnosis of T1D (67, 114, 115). In order to decide on the best therapy, and 

to detect eventual protective effects on β cell survival and mass once treatment starts, it is 

crucial to identify novel biomarkers that reflect the state of β cell health and the activation of 

the immune system.

As discussed above, transcriptome analysis suggest that stressed β cells of pre-diabetic 

individuals exhibit unique gene expression signatures, including AS of specific mRNA 
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species and consequent production of new proteins. Thus, differentially expressed and 

alternatively spliced transcripts have potential as specific serum/plasma biomarkers of β cell 

stress and as biomarkers for β cell imaging (116). Bioinformatics comparison of the β cell 

transcriptome under control and pro-inflammatory conditions, or from β cells isolated from 

T1D patients, is thus a rational approach to discover β cell neoantigens that contribute for T 

cell activation. Potential neoantigens can be selected from a pool of splice variants that are β 
cell-specific, up-regulated by inflammation and not expressed in the thymus and other 

tissues. The identification of key epitopes of T cell activation against pancreatic β cells can 

be then used as biomarkers to monitor disease progression. Furthermore, immunodominant 

epitopes are potential therapeutic targets that can be used for tolerogenic vaccination in 

prevention strategies or be modulated in T1D patients to reduce the autoimmune assault 

against β cells.

Conclusions and future perspectives

Accumulating evidence indicates that splicing networks and master splicing factors have a 

key role in maintaining cell identity and phenotype, as well as in regulating cell adaptation 

to extracellular cues (117, 118). Indeed, splicing networks enable the precise coordination 

and cross-talk between different signalling pathways. A major challenge in the RNA splicing 

field is to determine the combinations of cis-elements that discriminate splice sites and 

govern splicing patterns, known as the ‘splicing code’. This knowledge would allow us to 

predict RBP splice targets and infer splicing regulatory networks. Although this code is not 

yet completely understood, significant advances have been made in recent years with the 

development of computational tools that integrate features on the pre-mRNA sequence 

(RBP-binding motifs) with RNA-seq transcriptomic data and HITS–CLIP RNA–protein 

interaction maps (119, 120, 121). Furthermore, important progress has been made in the 

development of methods to manipulate splicing for therapy (122). Different molecular tools 

allow modulation of splicing patterns, enabling to increase or decrease specific isoforms 

through targeting of its regulatory cis-elements (123). These tools include antisense 

oligonucleotides (AON), modified small nuclear RNAs, trans-splicing and small molecule 

compounds.

As described above, an emerging picture in the context of T1D suggests that AS events in 

both immune and pancreatic β cells regulate autoimmunity and the β cell responses to 

immune-induced stress (Fig. 6). Thus, identifying critical AS switches, master splicing 

factors and key splicing networks regulating β cell phenotype, survival and susceptibility to 

stress will shed light on the mechanisms underlying T1D pathogenesis and may open novel 

strategies for disease prevention or treatment. The identification of splice variants acting as β 
cell autoantigens, modulators of immune response or β cell survival, may lead to the 

development of novel therapeutic strategies for T1D based on splicing modulation. In line 

with this possibility, the use of an AON-targeted splice-switching approach against the 

CTLA-4 gene, which modulates T cell activation and proliferation, reduced the incidence of 

insulitis and diabetes in diabetes-prone NOD mice (84). Another potential therapeutic target 

to enhance β cell survival is the short isoform of the pro-apoptotic BH3-protein Bim (Bim 

S). AON targeting against splicing motifs regulating the inclusion of the exon encoding the 
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dynein-binding site could allow decreasing the expression of Bim S, thus reducing immune-

induced β cell apoptosis (Fig. 3).

Future systems biology approaches that combine transcriptomics, bioinformatics and 

biochemical analyses should elucidate the critical role of AS in β cell demise and help to 

develop novel therapies to protect β cells in early T1D, a major unmet need.
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Figure 1. 
Regulation of alternative splicing (AS). (A) Major types of AS events. Exons are represented 

by boxes and introns by solid lines; constitutive exons are shown in yellow while alternative 

exons are shown in red or blue; dashed lines represent different splicing events. (B) 

Schematic representation of snRNP spliceo-somal particles bound to splicing signals (5′ 
splice site, branch point, polypyrimidine tract-3′ splice site) in the pre-mRNA molecule. 

Additional cis-acting regulatory sequences that regulate splice site selection in exons and 

introns are also shown. ESE, exonic splicing enhancer; ESS, exonic splicing silencer; ISE, 

intronic splicing enhancer; ISS, intronic splicing silencer. Adapted from reference (124).
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Figure 2. 
Example of a splicing regulatory network controlling pluripotency in human embryonic 

stem cells (hESC). The spliceosome-associated factor SON regulates the splicing of a 

network of genes in hESC that are essential to maintain the pluripotency phenotype. Using 

RNA sequencing, Lu and colleagues (38) showed that SON acts mainly as an intron splicing 

activator; depletion of SON leads to an increased intron inclusion in genes regulating cell 

cycle and hESC identity. Transcripts with retained introns are potentially targeted for 

degradation by the NMD pathway, leading to differentiation, decreased cell survival and loss 

of hESC phenotype. In addition, SON regulates the inclusion/exclusion of alternative exons 

in several pluripotency regulatory genes. Adapted from references (38, 125).
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Figure 3. 
The T1D and T2D candidate gene GLIS3 regulates splicing of the pro-apoptotic BH3-

protein Bim through modulating expression of the splicing factor SRp55. Insulin-producing 

INS-1E cells were transfected with control or GLIS3 siRNA. After 48 h, cells were 

incubated with cytokines and collected at different time points for real-time PCR analyses. 

(A) mRNA expression of Bim S after GLIS3 KD. Results are means±S.E.M. (n-4). *P<0.05, 

**P<0.01 and vs siCTL. Paired t test. (B) Representative blot of two independent 

experiments showing SRp55 protein expression after GLIS3 silencing. (C) Schematic 

representation of BIM isoforms and its regulation by SRp55. The BIM gene contains 11 

exons that are alternatively spliced to produce isoforms with different pro-apoptotic 

properties. Bim EL and Bim L, but not Bim S, contain exon 4 coding for a DLC1 binding 

site that allows sequestration to the cytoskeleton and consequent decrease in pro-apoptotic 

effect. In addition, Bim EL contains exon 3, which encodes for three serine residues (shown 

with S) that are subject to phosphorylation, thus targeting the isoform for proteosomal 

degradation. Bim S is not subject to any known post-translational regulation, being the most 

potent apoptosis inducer among the three isoforms. SRp55 promotes the inclusion of exon 4 
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through binding to a predicted ISE located in intron 4 (126). Thus, decreased expression of 

SRp55 leads to increased Bim S expression and consequent augmented apoptosis. Data 

adapted from reference (105).
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Figure 4. 
Alternative splicing signature in human islets exposed to pro-inflammatory cytokines. Heat 

maps representing the expression of differentially expressed mRNA isoforms (DEIs) in 

human islet samples exposed to: (A) control (ctrl) vs cytokines (cyt; IL1β+IFNγ); (B) 

control (ctrl) vs the free fatty acid palmitate (pal); and (C) cytokines vs palmitate. DEIs were 

obtained from analysis of previous RNA-seq datasets generated by our group (11, 113) 

(unpublished data), filtered according to their log2 fold change ratio (only DEIs with values 

higher than four are represented) and hierarchically clustered using GenePattern modules 

(reads per kilobase of transcript per million values log transformed, not centred and not 

normal normalised). Green colour indicates low expressed isoforms while red colour 

indicates high expressed isoforms.
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Figure 5. 
Impact of NOVA1 silencing on the rat pancreatic β cell transcriptome. FACS-purified rat β 
cells were transfected with control or NOVA1 siRNA and then RNA-seq to detect changes in 

gene and transcript expression, as well as in splicing patterns. Enrichment pathway analysis 

using IPA software indicates that NOVA1-mediated splicing regulates several key gene 

networks essential for β cell function and survival. Adapted from reference (12).
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Figure 6. 
Proposed role for alternative splicing (AS) in the dialogue between pancreatic β cells and the 

immune system in early T1D. In the early stages of insulitis, β cells are exposed to the 

locally produced cytokines IL1β, IFNγ, TNFα and IL17 and/or to ‘danger signals’ provided 

by viruses or endogenous ligands of IFIH1/MDA5 and other innate immune response 

sensors such as RIG-I and TLR3. These signals activate transcription factors such as STAT-1 

and NFκB (46, 63, 71). The T1D candidate gene PTPN2 provides negative feedback for 

both STAT-1 and mitochondrial pro-apoptotic signals (106, 127), while the candidate gene 

GLIS3 modulates Bim splicing via inhibition of the splicing factor SRp55 (105) (see also 

Fig. 3). The splicing factor NOVA1 has a major role in the regulation of AS in β cells, being 

involved in insulin secretion and apoptosis (12) (see also Fig. 5). Downstream of these and 

other factors there is modification of AS and up-regulation of the machinery for antigen 

presentation. This may generate presentation of neoantigens that trigger or augment β cell 

recognition by the immune system. Additional signals provided by β cells to the immune 

system include the release of chemokines and cytokines and cell death. AS may both 

modulate mitochondrial apoptotic signals and the actions of chemokines. Activated immune 

cells, attracted by the local production of chemokines, will produce more cytokines and 

chemokines, perpetuating the local inflammatory response and consequent changes in AS. 

Inflammation is probably modulated by T1D candidate genes (shown in blue circles) such as 

MDA5, PTPN2 and GLIS3 (11, 63, 105, 106, 127). If this process is not interrupted, 

genetically predisposed individuals will eventually evolve to clinical diabetes.
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