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Abstract

Three-dimensional (3D) stem cell differentiation cultures recently
emerged as a novel model system for investigating human embry-
onic development and disease progression in vitro, complementing
existing animal and two-dimensional (2D) cell culture models.
Organoids, the 3D self-organizing structures derived from pluri-
potent or somatic stem cells, can recapitulate many aspects of
structural organization and functionality of their in vivo organ
counterparts, thus holding great promise for biomedical research
and translational applications. Importantly, faithful recapitulation
of disease and development processes relies on the ability to
modify the genomic contents in organoid cells. The revolutionary
genome engineering technologies, CRISPR/Cas9 in particular,
enable investigators to generate various reporter cell lines for
prompt validation of specific cell lineages as well as to introduce
disease-associated mutations for disease modeling. In this review,
we provide historical overviews, and discuss technical considera-
tions, and potential future applications of genome engineering in
3D organoid models.
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Introduction

Built upon knowledge accumulated through decades of research in

developmental biology, miniorgans can now be grown in petri

dishes from aggregates of stem cells by stepwise manipulation of

molecular signals, mimicking the innate signaling cues during

in vivo organ development. These stem cell-derived three-dimen-

sional (3D) structures, designated “organoids”, recapitulate many

aspects of bona fide organs in the body in terms of cell fate, cellular

organization, and function [1,2]. Over the past few years, a number

of organoid models have been established, resembling tissues from

the eye [3,4], brain [5–7], intestine [8–11], kidney [12–15], liver

[16–18], lung [19–21], and inner ear [22,23], among others. These

organoids can be derived from human pluripotent stem cells (PSCs)

and thus may serve as human model systems for disease modeling,

drug screening, and drug safety testing, as well as providing replace-

able tissues in regenerative therapeutics. However, success in these

applications would be limited without the ability to modify the

genomic contents. For example, although induced pluripotent stem

cells (iPSCs) established from patients’ fibroblasts can be used for

disease modeling, comparison of organoids derived from patient

and control iPS cell lines may not reveal disease-relevant pheno-

types, but rather may reflect the variation in the genetic back-

grounds and the reprogramming history of individual cell lines [24].

Genome editing, on the other hand, can be used to induce specific

changes in an otherwise identical genetic background to overcome

this limitation. Such an isogenic pair of disease-specific and control

cell lines can be generated through genome editing by either intro-

ducing mutations in wild-type (WT) cells or correcting mutations in

patient-derived cell lines.

Genomic editing with programmable nucleases, especially

CRISPR/Cas9 [25], has been one of the major technological break-

throughs of recent years in biomedical research. Although CRISPR-

mediated genome editing has generated much excitement, genome

editing without a nuclease was accomplished long before the devel-

opment of the CRISPR technology (Fig 1). In the 1980s, a series of

studies demonstrated that genomic sequences can be modified by

homologous recombination (HR) between genomic DNA and an

exogenous DNA template harboring homologous regions [26–30].

Through HR, modifications made on the template DNA via standard

molecular cloning techniques can be precisely introduced to the

genomes of mammalian cells including mouse embryonic stem cells

(ESCs). In fact, before the programmable nuclease era, HR-mediated

genome editing was a standard procedure in generating genomically

modified mouse ESC lines as well as generating transgenic mouse

strains via blastocyst injections of the genomically modified ESCs

[31]. A key disadvantage of HR-mediated genome editing, however,

is its discouragingly low efficiency, which is typically at 10�6

frequency. Because of this, co-integration of antibiotic selection

marker genes is usually required to enrich modified cells [32].

It was later discovered that the HR efficiency can be greatly

improved by introducing a DNA double-stranded break (DSB) at the

targeted locus [33,34]. While the elevated HR rate was limited to

only a few special cut sites due to the non-programmable nature of

the nucleases used in these studies, the discovery of programmable

nucleases led to the expansion of DSB-stimulated HR to the genome

level. Early programmable nucleases, including zinc finger nucle-

ases (ZFNs) and transcription activator-like effector nucleases
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(TALENs), require labor- and cost-intensive construction of new

nucleases for each targeting site. The emergence of the CRISPR-asso-

ciated RNA-guided nuclease Cas9 has truly revolutionized genome

engineering. Rather than assembling various domain arrays into

new ZFN or TALEN nucleases to target a particular site, CRISPR/

Cas9 only needs the expression of a specific 20-bp guide RNA

(gRNA), which can easily be made with standard cloning tech-

niques. In addition to the advantages of simplicity and low cost,

CRISPR is highly efficient [35–39] and enables multiplex targeting

[36]. Recently engineered high-fidelity Cas9 variants have even

reduced off-target effects, once a big concern for CRISPR, down to

below detection levels of the most sensitive genome-wide methods

available [40,41]. After Cas9, the “new kid on the block”, even

newer programmable nucleases are being discovered, such as two

other CRISPR-associated nucleases Cpf1 [42] and C2c1 [43].

Programmable nucleases can be targeted to virtually anywhere

on the genome to create a site-specific DSB. Cells utilize one of

two types of pathways to repair the DSB, either homology-directed

repair (HDR) or non-homologous end-joining (NHEJ). In the pres-

ence of a donor template, the HDR pathway repairs the DNA break

via the above-mentioned HR mechanism. Precise modifications,

including specific base pair substitutions and insertions ranging

from a single base pair to large gene cassettes, can be introduced

into the genome through this pathway. The NHEJ pathway, on the

other hand, does not use a donor template and is error prone, lead-

ing to random-length insertion or deletion mutations (indels) that

can often disrupt a gene, especially with frameshift indels [44]

(Fig 1). When two DSBs are created on a chromosome, repairs

through the NHEJ pathway can result in large genomic deletions

(as large as 1,600 kb), inversions, and duplications [45].

Since the earliest HR studies [27,30], genomic editing has been

routinely performed on both embryonic and somatic stem cells. As

organoids are derived from aggregates of these stem cells and they

require genomic alteration for many applications, the marriage

between organoid and genome editing technologies is unsurprising.

However, the fact that the establishment of organoid models has

been built upon the basis of genomically engineered stem cells is

often overlooked. In this review, we will highlight how genomic

engineering techniques was used for the development and optimiza-

tion of the earlier organoid models. We will also discuss how

genome editing has been catered to model embryonic organ devel-

opment and disease progression in 3D culture. In addition, we will

discuss several technical considerations and provide insights into

future applications.

Development of 3D organoid models using genomically
engineered reporter cell lines

Traditionally, stem cell differentiation experiments are performed in

two-dimensional (2D) monolayer culture conditions. While rela-

tively homogenous populations of differentiated cells can be gener-

ated in 2D cultures, the 2D systems face the challenge of a lower

degree of physiological relevance. Through several landmark papers

published during the late 2000s and early 2010s, Yoshiki Sasai and

his colleagues were among the first to not only add one dimension

to the differentiation culture system, but also to take one step closer

to accurately modeling in vivo physiology of an organ [1]. By aggre-

gating dissociated ESCs into spheres and allowing them to differenti-

ate and self-organize in 3D floating culture, Sasai and colleagues

invented a new model system that recapitulated development of

various organs, representing the cortical tissues, the retina, and the

pituitary gland [3,4,46,47]. Though these organoid models were

created before genome editing technologies became vastly popular,

they relied extensively on genomically edited ESC lines while estab-

lishing these organoid models.

Glossary

2D two-dimensional
3D three-dimensional
APC adenomatosis polyposis coli
Atoh1 atonal bHLH transcription factor 1
Bf1 brain factor 1
C2c1 Class 2 candidate 1
Cas9 CRISPR-associated protein 9
Cas9n Cas9 nickase
CFTR cystic fibrosis transmembrane conductance

regulator
Cpf1 CRISPR from Prevotella and Francisella 1
CRISPR clustered regularly interspaced short palindromic

repeats
CRX cone-rod homeobox
dCas9 nuclease-deactivated Cas9
DKC1 dyskerin pseudouridine synthase 1
DMD Duchenne muscular dystrophy
DSB double-stranded break
ESC embryonic stem cell
FACS fluorescence-activated cell sorting
FOXG1 forkhead box G1
GFP green fluorescent protein
GRHL2 grainyhead-like transcription factor 2
gRNA guide RNA
h (e.g., in hESC) human
HA homology arm
HDR homology-directed repair
HR homologous recombination
indel insertion and/or deletion
iPSC induced pluripotent stem cell
Lgr5 leucine-rich repeat containing G protein coupled

receptor 5
m (e.g., in mESC) mouse
MARCKS myristoylated alanine-rich protein kinase C

substrate
MIXL1 Mix1 homeobox-like 1
NES nuclear export signal
NHEJ non-homologous end-joining
NLS nuclear localization signal
PAX6 paired box 6
PSC pluripotent stem cell
RFP red fluorescent protein
RNF43 ring finger protein 43
ROCK Rho-associated coiled-coil containing protein

kinase
Rx retinal homeobox
SMAD4 SMAD family member 4
SSC somatic stem cell
ssDNA single-stranded DNA
TALEN transcription activator-like effector nuclease
Tbx19 T-box 19
TP53 tumor protein p53
WT wild type
ZFN zinc finger nuclease
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For example, a genomically engineered reporter ESC line was

essential for deriving retinal organoids from aggregates of mouse

ESCs [3]. Previously, Sasai’s laboratory established a protocol to

promote retinal differentiation from mouse ESCs, but the differenti-

ated cells lacked spatial patterning and did not morphologically

resemble retinal epithelial structures [48]. While they wisely used

the transcription factor Rx as a marker for neural retinal precursors

in their culture, the lack of a readily identifiable fluorescence

reporter compromised their efforts in identifying optimal culture

conditions to promote the formation of self-organized retinal tissues.

In their subsequent study, a mouse Rx-GFP reporter ESC line was

generated to overcome this hurdle. Using conventional HR, the

investigators inserted GFP after the start codon of one of the two

alleles of the Rx gene, so that cells would be GFP+ upon their differ-

entiation into retinal lineages [49]. This fluorescence reporter cell

line not only allowed for prompt identification of retinal precursor

cells arising in culture, but also enabled easy tracking of the

morphological changes of their residing tissues. Indeed, with the

help of the Rx-GFP cell line, a stepwise differentiation method for

3D retinal organoids was developed. The derived organoids

contained GFP+ cells that bore retinal marker gene signatures.

Moreover, these cells self-patterned into neural retina and retinal

pigment epithelium domains. Remarkably, the self-patterned retinal

cells morphologically self-organized into an optic cup structure that

is strikingly similar to an optic cup developed in vivo [3]. A number

of assays in this study, including fluorescence-activated cell sorting

(FACS), multiphoton long-term 3D live imaging, 3D reconstruction

of tissue and cell morphology, and cell migration tracking, were

made possible due to the Rx-GFP fluorescent cell line.

Spurred by the success of optic cup organoid generation from

mouse ESCs, human optic cup organoids were generated using

genomically engineered fluorescent reporter cell lines as well (RX-

Venus and CRX-Venus human ESC lines) [4]. It should be noted that

for these two optic cup organoid studies, conventional HR without a

programmable nuclease was used to establish the mouse ESC line

[49], while the programmable nuclease ZFNs were utilized for the

genomic modifications to the human ESC lines [4]. This is likely

because conventional HR approaches, while considered standard in

mouse ESCs before the era of the programmable nucleases, have

been proven to be very difficult in human ESCs [24].

Besides the optic cup organoids, Sasai and his colleagues also

took advantage of early genome editing technologies to establish a

number of other reporter ESC lines to aid in the identification of

other stem cell-derived organs and tissues. Examples include Bf1-

Venus mouse ESC lines generated via conventional HR for the cere-

bral cortex organoids [47], Lim3-Venus mouse ESC lines generated

via ZFN for the pituitary organoids [46], and FOXG1-Venus and

PAX6-Venus human ESC lines generated via ZFN for the human

neocortex organoids [7].

In addition to these ES cell-derived organoids, pioneering work

on generating organoids from tissue-resident somatic stem cells also

used fluorescently labeled reporter cells. Hans Clevers and his

colleagues built intestinal organoids with FACS-sorted single Lgr5-

GFP somatic stem cells [8]. The Lgr5-GFP cells were isolated from

transgenic mice created via HR-mediated genomic editing in mouse

ESCs followed by a blastocyst injection and transplantation into

foster mice [50]. Besides the mouse intestinal organoids, genomi-

cally engineered human ESC and iPSC lines, with LGR5-GFP repor-

ters built with ZFNs, have been used to generate human intestinal

organoids [51].

Genome editing technologies used in organoid studies

As discussed above, organoid models were established with reporter

PSC lines created by genomic engineering. Genome engineering was

Conventional HR-mediated genome editing

Genomic locus

Donor template

Edited genome

LOW EFFICIENCY

Insertion
or modification

Antibiotic
cassette

Indel

NHEJHDR

DSB

HR

HA HA

Antibiotic selection
cassette optional

Programmable nuclease
(e.g. Cas9, ZFN, and TALEN)

HIGH EFFICIENCY

Programmable nuclease-mediated genome editing

Figure 1. Genome editing mediated by conventional HR or programmable nucleases.
Genome editing has been traditionally achieved to low efficiency without the use of a programmable nuclease. Programmable nuclease-mediated DNA double-stranded
breaks dramatically increased the efficiency of genomic editing.
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also applied to these newly established organoid systems for indu-

cing or correcting mutations in order to elucidate pathological condi-

tions (Table 1). Many of the above-mentioned reporter cell lines

were created by inserting GFP or Venus after the start codon of one

of the two alleles of a gene of interest [4,7,46,47,49]. This labeling

strategy resulted in disruption of the inserted allele, making the cells

heterozygous mutants for the targeted gene. The same labeling strat-

egy can be used to create homozygous mutant cells, simply by

screening for cell lines in which both alleles have been inserted with

a fluorescence protein [52]. In the pituitary organoid study [46], a

mouse ESC line knocked out for the transcription factor gene Tbx19

was created. The knockout was achieved by selecting for ZFN-

mediated biallelic insertion of Venus at the start codon of Tbx19.

During in vivo pituitary development, Tbx19 drives the differentia-

tion of the cell lineage that produces the adrenocorticotropic

hormone. To test whether the in vitro derived pituitary organoids

recapitulate in vivo development, Tbx19Venus/Venus knockout ESCs

were guided toward pituitary development in 3D culture. As

expected, the expression level of the adrenocorticotropic hormone

was significantly reduced, confirming the same cell lineage specifi-

cation requirements between 3D culture and in vivo pituitary devel-

opment.

The discovery of CRISPR/Cas9 was a major milestone in genome

engineering. Just a few months after the first studies of CRISPR-

mediated editing of mammalian genomes were published [36,37],

Clevers and colleagues successfully applied this technology to

intestinal organoids for mutation correction [53]. A mutation on the

anion channel gene CFTR (F508del) is known to cause cystic

fibrosis, a disease affecting multiple organs including lung and intes-

tine. The function of CFTR can be assessed in a forskolin-induced

swelling assay [54], in which healthy intestinal organoids respond

by rapid swelling due to fluid secretion through the forskolin-

activated CFTR channels, while organoids derived from patients

with the CFTR mutation do not expand their surface area.

The investigators used CRISPR to correct the CFTR mutation via co-

transfection of a repair template vector. The genetically corrected

intestinal organoids demonstrated a functional repair, as they

rapidly expanded the organoid surface area upon forskolin treat-

ment [53]. Together with previous successes of intestinal organoid

transplantation in mice [55], this study provided a potential

CRISPR/organoid-based therapeutic strategy for intestine symptoms

of cystic fibrosis. In addition to this study, functional correction of

disease genes has also been performed in intestinal organoids on

the CFTR gene using ZFN [56] and on a telomere maintenance

dysfunction-related gene DKC1 using CRISPR [57].

Before performing the CFTR gene correction, Clevers and collea-

gues first optimized the CRISPR system in intestinal organoid

cultures by targeting the APC gene [53]. As APC is a negative regula-

tor of the Wnt pathway, APC null mutant organoids can grow in the

absence of the normally essential ingredients Wnt and Wnt agonist

R-spondin. This system provided an excellent opportunity to

perform functional selection on the CRISPR edited organoids, as

only mutant intestinal organoids devoid of APC function can survive

and expand in the culture medium lacking Wnt and R-spondin. This

elegantly designed study serves as a prime example of how targeted

clones can be selected promptly and unequivocally based on the

target gene function in the organoid culture.

Using the same functional selection strategies to isolate success-

fully edited organoids, researchers from two laboratories indepen-

dently modeled colorectal cancer in intestinal organoids via CRISPR

[58,59]. These groups demonstrated that by sequentially mutating

tumor suppressor genes and oncogenes including APC, SMAD4,

TP53, and KRAS with CRISPR, the mutant intestinal organoids grew

independently of niche factors (e.g., Wnt) and formed tumors in

hostile niche environments. When coupled with chromosome insta-

bility, the mutated intestinal organoids showed invasive and meta-

static growth upon transplantation into mice. In another colorectal

cancer-related study, researchers induced mutations in a distal hot

Table 1. Published studies of genome engineering in organoids.

Main purpose of genome editing Type of modification Organoid type Cell of origin
Genome editing
method

Reference
number

Generating new
type of organoids

Fluorescence gene knockin Retinal organoids mESC Conventional HR [3,49]

hESC ZFN [4]

Cerebral cortex
organoids

mESC Conventional HR [47]

Kidney organoids hESC Conventional HR [15,95]

Pituitary organoids mESC ZFN [46]

Neocortex organoids hESC ZFN [7]

Intestinal organoids hESC and hiPSC ZFN [51]

Modeling of
development

Gene disruption via biallelic
knockin of a fluorescence gene

Pituitary organoids mESC ZFN [46]

Epiblast organoids mESC CRISPR (WT Cas9) [52]

Modeling of disease NHEJ-mediated gene disruption
and/or HDR-mediated
gene modification

Intestinal organoids m/hSSC CRISPR (WT Cas9) [53,58–60]

hSSC ZFN [56]

hiPSC CRISPR (Cas9n) [57]

Kidney organoids hESC CRISPR (WT Cas9) [13]

Small scale screen NHEJ-mediated gene disruption Lung organoids hSSC CRISPR (WT Cas9) [61]
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spot region of another negative Wnt regulator gene Rnf43 with

CRISPR, and used the mutant intestinal organoids to study the

importance of the Rnf43 distal hot spot region in colorectal cancer

progression [60].

In addition to intestinal organoids, CRISPR genome editing techno-

logy has been used in kidney organoids for disease modeling [13],

and gene function testing in lung organoids [61]. In the latter example,

the simplicity and effectiveness of CRISPR allowed investigators to

rapidly mutate and screen the function of multiple genes. These genes

were a subset of a previously identified pool of putative target genes

of the master regulator of lung development, GRHL2. Using CRISPR-

enabled small scale screening in lung organoid cultures, the investiga-

tors discovered two new downstream effector genes of GRHL2 that

play important roles in ciliogenesis and barrier function in the airway

epithelium [61].

Technical considerations

CRISPR-based genome editing technology, based on its versatility

and broad application potential, is rapidly evolving, and many tech-

nical improvements are being made to make genome editing more

specific and efficient.

WT Cas9 used in the first-generation CRISPR platform, while

highly efficient, is also prone to off-target cleavages [62,63]. Most of

the CRISPR-organoid studies discussed above used WT Cas9

(Table 1), and off-target indels were indeed found [53]. Several

Cas9 variants have been created with greatly reduced off-target

effects while retaining on-target activities comparable to WT Cas9.

These next-generation Cas9s include the Cas9 nickase variants [64],

and the two recently developed high-fidelity Cas9 variants, eSpCas9

(1.1) [41] and SpCas9-HF1 [40]. More recently, another CRISPR-

associated endonuclease Cpf1 [42], in its WT form, is reported to be

highly specific [65], at levels approaching that of the high-fidelity

variants of Cas9 [66].

The CRISPR components can be transfected into cells in the form

of DNA vectors encoding Cas9 and gRNA, or as Cas9 mRNA or

protein with in vitro transcribed gRNA. To deliver these CRISPR

components and donor templates into cells of interest, nucleofection

is a highly efficient method, especially for hard-to-transfect cells

such as human PSCs [67–69]. Other delivery methods, such as lipo-

fectamine, conventional electroporation, and lentiviral infection,

have also been successfully used to transfect embryonic or somatic

stem cells [53,69–71]. In addition to transfecting dissociated stem

cells followed by aggregation and differentiation into organoids, it is

also possible to directly deliver constructs into organoids. For

instance, adenoviruses have been shown to mediate efficient gene

transfer into intestinal organoids [72], and retroviruses have been

used to infect fragments of intestinal organoids [73].

When making precise genome modifications, small molecule

inhibitors of the NHEJ pathway can be used to promote the effi-

ciency of HDR [74–76], including the NHEJ inhibitor Scr7, which is

reported to increase the HDR efficiency by up to 19-fold [77].

Recently, an impressive 60% HDR efficiency has been achieved

using an asymmetric single-stranded DNA (ssDNA) donor with opti-

mal homology arm lengths [78]. Chemically modified ssDNA donors

with phosphorothioate linkages also enhance HDR efficiency [79].

In addition, restricting Cas9 or Cas9 variants to specific cell cycle

stages favors the HDR pathway over the NHEJ pathway, thus

increasing the HDR rate nearly twofold [80–82]. Combined use of

these approaches may further improve the efficiency of HDR.

When making mutant organoids, it is important to note that

not the entire targeted cell population contains indels, even after

puromycin selection or FACS sorting when a Cas9-puromycin/GFP

co-expressing vector is used. In addition, in-frame indels may not

disrupt gene function, as the alteration of a small number of

amino acids may not affect the protein function. Even a frame-

shift indel, which disrupts the reading frame of a gene, may not

be a complete gene knockout if it does not occur at the beginning

of the gene. Therefore, to generate monoallelic/biallelic mutant

Genome engineering

Random indels

Precise base pair 
changes

Large deletions,
inversions or 
duplications

Gene activation
or repression

Integration of
gene cassettes

Genomically engineered organoids

Regenerative
therapeutics

Genome-wide
screens

Drug testing

Modeling of 
disease and 
development 

ESCs/iPSCs or somatic stem cells

Effector

ct gc

dCas9

GFP

2A

Figure 2. Workflow of genomic engineering in organoids.
Before in vitro differentiation into organoids, pluripotent stem cells (ESCs and iPSCs) or multipotent somatic stem cells can be genomically modified in various ways. The
resulting genomically edited organoids play critical roles in applications such as disease modeling and drug testing.

ª 2017 The Authors EMBO reports Vol 18 | No 3 | 2017

Jing Nie & Eri Hashino Organoids and genome editing EMBO reports

371



organoids, it is essential to design gRNAs to target the beginning

of the gene for all its splicing variants, establish cell lines from

single cells, perform thorough genotyping and sequencing analysis,

and use cell lines with frameshift indels. With regard to establish-

ing clonal cell lines, single-cell survival rate has been a hurdle for

clonal cell line generation in human PSCs. This challenge has been

largely overcome by the discovery that ROCK kinase inhibitors can

dramatically increase the survival rate of single human PSCs [83].

However, care should be taken as small clusters of cells due to

incomplete single-cell dissociation may survive better than single

cells [84], giving rise to “clonal cell lines” with mixed genotypes.

To create a reporter cell line, a fluorescence gene (e.g., GFP) is

integrated at a marker gene locus (e.g., Rx) whose expression

coincides with the emergence of the cell type of interest. The

marker genes often play essential roles for the differentiation or

the function of the cell type of interest, and therefore, reduced

expression levels of the marker genes may decrease the target cell

type generation efficiency or may affect the function of these cells.

Up to now, most of the reporter cell lines in the organoid field

were created at the expense of disrupting one of the two alleles of

a marker gene, by inserting a fluorescence-antibiotic gene cassette

right after the start codon of the marker gene. We recommend a

non-destructive labeling design for optimal differentiation effi-

ciency and normal functioning of the organoids. For example, GFP

can be fused in-frame with the marker gene, or alternatively, a

“self-cleavage” 2A sequence [85] can be placed between the

marker gene and GFP (Figs 2 and 3) so that GFP will be co-

expressed during transcription but later separated from the marker

Genome
engineering

GFP

RFP

GFP

Mature
organoids

RFP

Precursor
organoids

Various Various in vitroin vitro
differentiationdifferentiation

conditionsconditions

Various Various in vitroin vitro
differentiationdifferentiation

conditionsconditions

Various in vitro
differentiation

conditions

Various in vitro
differentiation

conditions

senil llec retropeRsllec metS

Figure 3. Generating new organoid models with reporter cell lines.
Development and optimization of new organoid generation methods can be greatly accelerated by genomically engineered fluorescence reporter stem cells. In this example,
a red fluorescent protein (RFP) gene is integrated at a gene that is expressed in precursor cells. The successfully derived precursor cell-containing organoids will exhibit
red fluorescence, allowing quick identification of optimal deriving conditions. Similarly, via multiplex genome editing in the same stem cell line, a green fluorescence
protein (GFP) gene integrated at a gene that is expressed in the mature target cell type will assist protocol development for generating mature organoids. A short 2A
“self-cleaving” peptide sequence (shown in blue) can be placed between the target gene and the fluorescence protein for non-destructive labeling.
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gene during translation. The 2A-GFP labeling approach has been

successfully used in human ESCs, demonstrating higher fluores-

cence intensity (indicating better protein stability) compared to the

direct GFP fusion approach [86]. Since the fluorescence protein is

separated from the marker gene protein during translation, it will

have a pan-cellular localization pattern. If another cellular localiza-

tion pattern is desired, short localization sequences can be added

to the fluorescence gene. For instance, the nuclear localization

signal (NLS) or nuclear export signal (NES) can be linked with

GFP for localization inside or outside the nucleus, respectively,

and a short sequence from the MARCKS gene can be added to GFP

for plasma membrane localization, which can facilitate visualiza-

tion of fine cellular morphologies [87].

Future perspectives

The past several years have seen a surge in new organoid models,

aided by fluorescent reporter stem cell lines which allow prompt

identification and confirmation of lineage-specific cell types arising

in 3D culture, thereby greatly facilitating optimization of differentia-

tion protocols. Now with the highly robust means to make genomic

modifications at hand, we expect to see a significant increase in dif-

ferent organoid models being created with CRISPR-based reporter

cell lines (Fig 3). Aside from developing methods to generate new

types of organoids, reporter cell lines can be used to isolate specific

cell types for biochemical or genomic assays (e.g., RNA-seq). More-

over, reporter cell lines are a must-have tool to identify rare cell

populations in organoids for functional assays. For example, Atoh1-

GFP (created by random genomic insertion of an Atoh1-GFP

construct in mouse ESCs [88]) was used to identify sensory hair

cells in mouse ESC-derived inner ear organoids, and mechano-

electrical transduction currents as well as voltage-gated currents

were successful recorded from these GFP-positive cells [89].

For research purposes, ex vivo CRISPR-mediated mutant gene

correction can be easily achieved by genotyping and selecting for

corrected cell lines. For example, a 3-bp deletion (CFTR F508 del)

and a 1-bp point mutation (DKC1 A386T) have been corrected with

HDR in patient-derived stem cells, and the correct clones were

selected for further studies in intestinal organoids [53,57]. However,

due to the low efficiency of the HDR pathway, precise gene

corrections in vivo for therapeutic purposes are technically challeng-

ing. Recently, several groups discovered that deleting a mutant exon

entirely through NHEJ, in lieu of correcting disease-associated muta-

tions via HDR, greatly improved muscle function in mouse models

with Duchenne muscular dystrophy (DMD) [90–92]. This exon

deletion approach holds great therapeutic promise as NHEJ is more

efficient than HDR. Also, patient iPSC-derived organoids could serve

as a beta-test platform prior to clinical trials to validate the thera-

peutic potential of this approach for various diseases.

In addition to making changes to the DNA sequences, the CRISPR

technology can also be repurposed to regulate gene expression. The

nuclease-deactivated mutant form of Cas9 (dCas9) can be fused with

various effector domains. Bringing these effectors to specific genomic

loci results in activation or repression of the genes, depending on the

type of effectors [93]. Coupled with commercially available gRNA

libraries, genome-wide CRISPR-based gene activation/repression

screening should be readily applicable to organoid tissues (Fig 2).

For example, gRNA-coding sequences integrated into the host

genomes can be detected by deep-sequencing [94]. By comparing

the abundance of gRNA-coding sequences that lead to activation

or repression of their corresponding genes, it is possible to iden-

tify a set of genes essential for the specification of certain cell

types.

In conclusion, 3D organoid technology is a new and fast-evolving

field in stem cell biology. When combined with powerful program-

mable nuclease-based genome engineering, this technology provides

exciting opportunities for a wide range of biomedical research, from

uncovering mechanisms of human organ development to exploiting

future clinical applications.
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