Skip to main content
. 2017 Feb 15;2017:2512536. doi: 10.1155/2017/2512536

Table 2.

Univariate logistic regression analyses of predictors for predicting prostate cancer.

Variables OR (95% CI); P AUC (95% CI)
Age 1.089 (1.0227, 1.160); 0.004 0.668 (0.577, 0.750)
PSA 0.945 (0.747, 1.197); 0.640 0.525 (0.408, 0.642)
Prostate volume 0.975 (0.954, 0.996); 0.020 0.657 (0.566, 0.741)
% fPSA 0.0003 (0, 0.241); 0.018 0.617 (0.524, 0.703)
DRE 1.725 (0.717, 4.152); 0.224 0.554 (0.437, 0.672)
PCA3 1.006 (1.002, 1.010); 0.001 0.734 (0.641, 0.828)
PGSR 1.002 (1.000, 1.004); 0.026 0.666 (0.575, 0.749)
PSMA 0.999 (0.995, 1.003); 0.621 0.516 (0.398, 0.634)
MALAT-1 1.003 (1.001, 1.005); 0.002 0.727 (0.625, 0.829)

PSA: prostate-specific antigen; % fPSA: percent free PSA; DRE: positive digital rectal examination results; PCA3: prostate cancer antigen 3; PSGR: prostate-specific G protein coupled receptor; PSMA: prostate-specific membrane antigen; MALAT-1: metastasis-associated lung adenocarcinoma transcript 1.