Skip to main content
. 2017 Feb 28;18:136. doi: 10.1186/s12859-017-1561-8

Table 1.

The AUC performance comparison between iDeep and other methods on 31 experiments

Protein iDeep iONMF NMF SNMF QNO Oli iDeep-kmer DeepBind
1 Ago/EIF 0.90 0.89 0.89 0.85 0.87 0.61 0.87 0.69
2 Ago2-MNase 0.73 0.71 0.69 0.66 0.69 0.51 0.67 0.53
3 Ago2-1 0.91 0.81 0.81 0.76 0.83 0.80 0.82 0.81
4 Ago2-2 0.91 0.84 0.82 0.79 0.82 0.80 0.83 0.81
5 Ago2 0.74 0.73 0.71 0.65 0.66 0.53 0.65 0.58
6 eIF4AIII-1 0.94 0.92 0.91 0.78 0.95 0.92 0.95 0.93
7 eIF4AIII-2 0.97 0.93 0.93 0.67 0.64 0.93 0.94 0.93
8 ELAVL1-1 0.96 0.91 0.89 0.71 0.80 0.89 0.95 0.90
9 ELAVL1-MNase 0.68 0.71 0.70 0.68 0.70 0.49 0.66 0.54
10 ELAVL1A 0.94 0.94 0.93 0.91 0.92 0.84 0.95 0.87
11 ELAVL1-2 0.97 0.95 0.94 0.90 0.95 0.88 0.97 0.91
12 ESWR1 0.95 0.87 0.85 0.80 0.85 0.81 0.92 0.88
13 FUS 0.92 0.81 0.73 0.55 0.65 0. 85 0.87 0.92
14 Mut FUS 0.97 0.96 0.95 0.91 0.94 0.82 0.97 0.91
15 IGFBP1-3 0.95 0.93 0.92 0.89 0.91 0.57 0.93 0.68
16 hnRNPC-1 0.93 0.95 0.93 0.45 0.63 0.88 0.92 0.95
17 hnRNPC-2 0.97 0.97 0.96 0.48 0.70 0.94 0.95 0.97
18 hnRNPL-1 0.82 0.74 0.73 0.70 0.77 0.39 0.79 0.76
19 hnRNPL-2 0.82 0.66 0.62 0.56 0.61 0.47 0.72 0.74
20 hnRNPL-like 0.79 0.69 0.67 0.63 0.68 0.56 0.70 0.70
21 MOV10 0.97 0.96 0.96 0.89 0.92 0.78 0.97 0.80
22 Nsun2 0.87 0.81 0.80 0.69 0.82 0.75 0.81 0.84
23 PUM2 0.98 0.93 0.92 0.86 0.89 0.94 0.98 0.93
24 QKI 0.95 0.84 0.77 0.52 0.62 0.92 0.92 0.95
25 SRSF1 0.92 0.85 0.85 0.73 0.86 0.84 0.85 0.85
26 TAF15 0.97 0.91 0.89 0.82 0.91 0.80 0.95 0.95
27 TDP-43 0.89 0.84 0.78 0.45 0.57 0.88 0.85 0.89
28 TIA1 0.94 0.93 0.92 0.86 0.90 0.84 0.96 0.90
29 TIAL1 0.92 0.87 0.86 0.73 0.85 0.83 0.90 0.87
30 U2AF2 0.95 0.82 0.74 0.61 0.70 0.86 0.91 0.95
31 U2AF2(KD) 0.92 0.80 0.74 0.60 0.74 0.84 0.88 0.91
Mean 0.90 ±0.08 0.85 ±0.08 0.83 ±0.10 0.71 ±0.14 0.79 ±0.12 0.77 ±0.16 0.87 ±0.09 0.83±0.12

The performance of iONMF, NMF, SNMF and QNO are taken from [5]. DeepBind, Oli and iDeep-kmer perform on the same data with iDeep, and iDeep-kmer used kmer to replace CNN sequence and motif modalities in iDeep

The boldface indicates this performance is the best among the compared methods