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Cell signaling as a cognitive process
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Abstract

Cellular identity as defined through morphology and function
emerges from intracellular signaling networks that communicate
between cells. Based on recursive interactions within and among
these intracellular networks, dynamical solutions in terms of
biochemical behavior are generated that can differ from those in
isolated cells. In this way, cellular heterogeneity in tissues can be
established, implying that cell identity is not intrinsically predeter-
mined by the genetic code but is rather dynamically maintained in
a cognitive manner. We address how to experimentally measure
the flow of information in intracellular biochemical networks and
demonstrate that even simple causality motifs can give rise to rich,
context-dependent dynamic behavior. The concept how intercellu-
lar communication can result in novel dynamical solutions is
applied to provide a contextual perspective on cell differentiation
and tumorigenesis.
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Introduction

Cells require encapsulation to spatially organize their chemical

constituents such that the time and place of molecular interactions

are a necessary determinant of their effect (Farnsworth et al,

2013). Under such confinement, they can control the flow of

matter and energy, thereby maintaining themselves in entropy-

dissipating non-equilibrium conditions (Schrödinger, 1944; Prigo-

gine & Nicolis, 1967). This enables information to be concentrated

in cells in a form of self-organizing chemical activity patterns (Tur-

ing, 1952; Grecco et al, 2011). The cells continuously adjust these

internal states to allow for robustness in identity under changing

external conditions, especially to unfamiliar changes for which no

regulatory program has been fixed in advance (Ibarra et al, 2002;

Fong & Palsson, 2004; Kashiwagi et al, 2006; Stolovicki et al,

2006). Such flexible dynamics therefore implies that genes serve as

repositories of dynamic control information regarding the combina-

tion of interacting proteins that define a stable phenotypic state.

Distinct biochemical manifestations of this information pool reflect

proteome plasticity: In multicellular organisms, all cells contain

nearly identical copies of the genome but exhibit drastically dif-

ferent phenotypes. This principle also accounts for efficient adapta-

tion on evolutionary as well as short timescales, and implicitly

incorporates the “tinkering” aspect of biological systems (Jacob,

1977). Cells thereby define a wider dynamical domain in which

they can interact with their environment to generate and maintain

their identity, a process reminiscent to cognition (Box 1; Maturana

& Varela, 1980). In a very general formulation, cognition can be

defined as a set of processes that are in a structural coupling with

the environment such that the system adapts to its environment or

transforms the environment to adapt it to the “needs” of the

system (Bourgine & Stewart, 2004). In terms of living systems,

cognition is realized via recursive chemical communication of

intracellular signaling networks between cells. Thus, processing

external chemical cues on the level of intracellular networks, and

at the same time emitting the information about their state to the

neighboring cells, allows cellular entities in tissues to establish a

collective behavior to maintain themselves. Depending on the

conditions, the behavior of this network of signaling networks

converges to one of multiple stable dynamical solutions that can

differ from those in isolated cells.

Cells therefore necessitate both autopoiesis and cognition

(Maturana & Varela, 1980) to generate and dynamically maintain

heterogeneous cellular identities in tissues. Autopoiesis is a neces-

sary characteristic of living systems to replicate the components and

reproduce the architectures of biochemical networks, thereby main-

taining themselves and the boundary conditions necessary for their

own existence (Bourgine & Stewart, 2004). Cognition on the other

hand is required to differentiate the replicated entities through the

dynamics of the network of networks that is established through

bidirectional intercellular communication (Fig 1). In this way,

cognition is a property that emerges from recursive interactions

between the signaling networks of cells.

Based on this framework, we discuss what determines the

dynamics of signaling networks and how this information can be

extracted experimentally. We start by considering undirected

protein interaction networks derived from proteomic approaches.

We argue that temporal behavior of the protein reactants is

necessary to deduce the causality of intracellular networks and

thereby their dynamical potential. From there, we describe how

intercellular communication endows the system with cognitive
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properties, generating new dynamical behavior different than the

one in the isolated cells. As an example, we elaborate on a

Turing-like principle that accounts for the emergence of diverse

identities in a clonal cell population. In this context, we also

discuss how the collective behavior in a normal tissue can be

affected by changes in the cognitive abilities of cells induced

upon oncogenic mutations. Thus, by considering cellular identity

to be dynamically maintained by recursive interactions, we

explore whether cells can learn to perceive their environment and

thereby change their identity.

What protein interactions tell us about cellular states

Current proteomic approaches allow quantitative detection of

protein abundances and protein reactions in terms of protein

complexes and post-translational modifications (PTMs) in ensemble

of cells (Cox & Mann, 2011; Larance & Lamond, 2015) (Box 2). The

protein abundances provide the composition of the proteome

reflecting the gene expression in a particular cell population that is

studied in a distinct experimental context. The detection of protein

complexes and/or PTMs on the other hand gives access to the basic

reactions—the currency of signal transduction—through which the

cells process extracellular information. A major advantage of all

proteomic approaches is that hundreds to thousands of protein

complexes or PTMs can be simultaneously and rapidly analyzed. In

case of protein interaction maps, the nodes of the obtained protein

interaction networks represent the proteins under study and the

links or the edges represent their physical interactions (Gavin et al,

2002; Völkel et al, 2010). These interactions can be both, direct or

indirect, since there is no clear separation criterion in the case when

several proteins are part of an isolated complex. However, even if

all possible PTMs/interactions could be obtained experimentally,

this single (static) proteomic snapshot does not provide sufficient

information to identify how processing of distinct signals determines

the cellular phenotype (Fig 2A). The temporal component is there-

fore a necessary experimental prerequisite to identify which proteins

alter their interactions in response to external stimuli because

signals propagate through changes in the reaction states of the

network components (Von Kriegsheim et al, 2009; D’Souza et al,

2014; Francavilla et al, 2014; Humphrey et al, 2015).

What is relevant to note here is that after killing the cells to

extract protein complexes, the derived interaction maps reflect the

state of the cell in equilibrium conditions. Even if the fixation of

the cells would be so rapid that the proteome cannot relax to equi-

librium, the obtained snapshots of the temporal evolution of the

reaction states in the proteome represent only one of many

Box 1: Cellular cognition

In the 1980 book “Autopoiesis and Cognition—the realization of the
living”, H. Maturana and F. Varela defined living systems as “. . . units
of interactions, they exist in ambience. From a purely biological point of
view, they can not be understood independently of the part of the
ambience with which they interact: the niche; nor can the niche be
defined independently of the living system that specifies it” (Maturana
& Varela, 1980). On the basis of this concept, Maturana then defined
cognition as a process driven by structural, bidirectional causal organ-
ism–environment relations that are necessary to understand coding
and information transmission in living systems. In 1993, J. Stewart
related the concept of cellular cognition to the characteristics of the
immune system within a living organism in order to encompass its
properties of recognition, learning, memory, and self/non-self discrimi-
nation into one theoretical framework (Stewart, 1993). He discussed
these properties in relation to neuronal systems and higher-order
cognition. Later on, Bourgine and Stewart proposed that living
systems must be both autopoietic and cognitive, providing more
refined definitions for these concepts. In their view, an autopoietic
system is “a network of processes that produces the components that
reproduce the network, and also regulates the boundary conditions
necessary for its ongoing existence as a network”. Moreover, “A system
is cognitive if and only if sensory inputs serve to trigger actions in a
specific way, so as to satisfy a viability constraint” (Bourgine & Stewart,
2004).
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Figure 1. Differentiating cellular identities in a multicellular population.
Schematic representation of the core Notch signaling architecture where identical cells adopt two different fates due to intercellular communication. The Notch protein
(N) is a transmembrane receptor that binds to its ligands Delta (D) that are anchored on the membrane of neighboring cells. (A) On a single-cell level, Notch activity
inhibits Delta expression. (B) When cells interact via the Delta–Notch system, it becomes one network with an effective double-negative feedback topology that generates
bistability. Starting from a homogeneous population in terms of Delta expression, the lateral inhibition mode will drive the system to a new dynamical state where
neighboring cells will adopt opposite fates of high and low Delta expression. (C) Due to this inhibitory bidirectional communication, a salt-and-pepper pattern is
generated on the population level. The red intensity is related to the amount of ligand, whereas cells without a ligand are white.
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possible dynamical solutions of the network. Therefore, no knowl-

edge can be gained how information flows in the network to real-

ize these states. To obtain this level of information, it is necessary

to deduce the causal relationships between protein reactions in the

proteome.

Causality determines the dynamics of
biochemical networks

Causality in biochemical systems is generated when protein reaction

states or complexes can affect the interaction or reaction of other

proteins. In this manner, directional activatory or inhibitory effects

on each other’s chemical conversions are established (Fig 2B)

(Sachs et al, 2005; Zamir & Bastiaens, 2008). The directionality of

the interaction determines how the information flows through the

system, processing and translating external cues into specific cellu-

lar behavior. This type of representation is referred to as “network

topology”, where each node represents a chemical intermediate of a

reaction and the directed edges the positive or negative influence of

one node on another (Fig 2C).

To illuminate how the topology of molecular networks determi-

nes their dynamical behavior (Brandman et al, 2005; Santos et al,

2007; Ryu et al, 2015), we start with the autocatalytic phosphoryla-

tion cycle as it typically occurs in receptor tyrosine kinases

(Lemmon & Schlessinger, 2010). This reaction cycle has only one

stable dynamical solution, which is the phosphorylation steady state

of all receptors. This state is dynamically maintained since a

constant ATP input is required to sustain the phosphorylation at a

certain level, when phosphatase-mediated hydrolysis removes the

phosphates from the tyrosine residues (Fig 3A) (Ostman & Bohmer,

2001). Things become more interesting if the activity of the phos-

phatase (PTP) is coupled to that of the RTK via Rac-induced NOX

complex activation, which in turn generates reactive oxygen species

Box 2: Proteomic approaches to derive protein interactions

Three main proteomics-based approaches allow for systematic, large-
scale identification of protein–protein interactions (Larance & Lamond,
2015): (i) methods based on affinity pull-down where the protein of
interest and its interacting partners are specifically isolated. The protein
complexes are then eluted for subsequent analysis by digestion and
liquid chromatography followed by tandem mass spectrometry (LC-MS/
MS). (ii) Proximity labeling methods in which cell lines are constructed
that ectopically express a protein of interest fused to either a promiscu-
ous biotin ligase or a peroxidase enzyme that can further covalently
transfer biotin labels to potential interacting proteins in close proximity.
LC-MS/MS methods are further used to identify the corresponding
protein interaction map. (iii) Protein interactions can also be identified
by protein correlation profiling with chromatography and density gradi-
ent centrifugation, for example, to separate endogenous protein
complexes according to size, density, charge, or hydrophobicity, assum-
ing that interacting proteins will co-elute.

The obtained interactions using proteomic approaches can repre-
sent both, direct and indirect connections, since it is not always clear
whether an identified multiprotein complex is one complex or the
summation of different sub-complexes that contain the same building
blocks. By extracting protein complexes from cell lysates, spatial
constrains imposed by supramolecular assemblies (like membranes or
cytoskeletal structures) on protein complexes are also obliterated. This
might result in the loss of complexes that are dependent on the
integrity of supramolecular structures as well as generate non-
physiological interactions due to mixing of all components. In addi-
tion, information on cell-to-cell variability in proteome composition
and molecular reactions is lost.
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Figure 2. Different perceptions of protein interaction networks.
(A) Schematic representation of a subset of the epidermal growth factor receptor (EGFR) interaction network as obtained from proteomics approaches (adapted from
Kiel et al, 2013). In this case, the edges represent any form of interaction and the nodes represent the proteins. This type of representation provides information, which proteins
work together to generate cellular functionality, but do not allow to extract information on this functionality. (B) One interaction between EGFR and a protein tyrosine
phosphatase PTPN11 (SHP2) is highlighted for which the complete details of the chemical conversions (horizontal arrows) and the causalities between the communicating
chemical intermediates (vertical arrows) are depicted. (C) The causality alone is sufficient to identify all possible dynamical solutions of the two component network
module and describe its functionality.
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(ROS), thus inactivating the PTPs (Denu & Tanner, 1998; Finkel,

1998; Meng et al, 2002). This reaction scheme generates a toggle

switch—or double-negative feedback loop—that together with the

autocatalytic RTK activity can give rise to bistable behavior

(Reynolds et al, 2003) (Fig 3B). In this system, there are three solu-

tions: two dynamically maintained low and high RTK phosphoryla-

tion states, both of which are stable and can coexist in a given

parameter interval, and an unstable solution that acts as a threshold

in the system. In which stable solution the system will end up is

directly related to the initial conditions, that is, the initial phospho-

rylation level of the receptor. In a cellular context, this might be

dependent on the history of the cell in terms of prior growth factor-

induced signaling states. When these simple networks interact in a

recursive bidirectional way between cells, novel dynamical states

can be generated and maintained, different than those of isolated

cells. This principle that resembles a cognitive process is further
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Figure 3. Dynamical properties of biochemical networks are determined by their underlying causality.
(A) Autocatalytic RTKs that are inactivated by protein tyrosine phosphatases have only one dynamically maintained steady-state solution that is determined by the PTP
activity. (B) If the activity of the phosphatase is coupled to that of the RTK in a double-negative feedback manner, the RTK–PTP system can exhibit a rich behavior that
depends on the PTP–RTK expression ratio. The bifurcation diagram (middle) shows the three possible solutions as a function of this ratio: two stable steady states (solid black
lines) and an unstable steady state (dashed line). The parameter interval between the two bifurcation points (LP) denotes the bistability region. The activation dynamics of the
receptor upon growth factor stimulus will be determined by the positioning of the system in parameter space (PTP–RTK ratio). At high PTP–RTK ratios, the system responds in
an analog manner to growth factor stimulation. In the intermediate (bistability) interval, the system generates an all-or-none response with a threshold to growth factor.
Upon RTK overexpression, the system is already switched on and responds in a shallow analog manner to growth factors. (C) A negative feedback RTK–PTP interaction results
in a single dynamical solution that results in an adaptive response to growth factor.
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elaborated in the section “Recursive communication between cells

leads to cognition”.

On the other hand, if the interaction between the RTK and the

PTP is defined by a negative feedback, the system will have a

unique dynamical solution that maintains low levels of phosphory-

lation of the receptor (Fig 3C). Typical examples of phosphatases

that could work in this way are the cytosolic phosphatases Shp1/2

that are activated by binding to phosphotyrosine residues via an

SH2 domain (Barford & Neel, 1998; Keilhack et al, 1998).

The response of both systems (toggle switch and the negative

feedback) to growth factor stimuli is thus uniquely determined by

their respective topology. In case of the toggle switch coupled to an

autocatalytic RTK activation, a small amount of the ligand will initi-

ally activate a small amount of receptors. This activated fraction

however will suffice to push the system over the threshold and fully

activate all other receptors (Reynolds et al, 2003). An irreversible

situation is thereby generated in which all receptors remain active

(Fig 3B). In the case of the negative feedback however, the system

will tend to relax back to the original low phosphorylation state

after stimulation and therefore lead to a pulse of receptor activity—

an adaptive response (Fig 3C) (Tyson et al, 2003). Signal duration

is therefore commonly regulated via negative feedback motifs.

The above examples show how intracellular network topology

gives rise to differential dynamics in single cells, and even plasticity

in signaling responses to growth factors. This description does not

require the full details of the reactions that generate the communi-

cating chemical intermediates, but only the directionality and type

of interactions (Fig 2B and C). The relation between dynamics and

causality (and vice versa) is however not a one-to-one mapping

(Box 3). A given dynamical behavior can result from several dif-

ferent network topologies (Kirshna et al, 2009), but also a single

network can display multiple stable dynamical solutions (Koseska

et al, 2007). In the formulation of dynamical systems theory, these

solutions are called attractors (Box 4) (Strogatz, 2001). Each attrac-

tor represents a distinct state of the system in phase space (Strogatz,

2001) that is stable within a given parameter range. This basin of

stability reflects the robustness of the dynamical solution to external

perturbations or stochastic fluctuations (Menck et al, 2013). Charac-

teristic network topologies that display a rich phase space combine

activatory and inhibitory interactions (Kirshna et al, 2009; Kaluza &

Meyer-Ortmanns, 2010). In particular, the ratio between the two

types of causal interactions suggests whether the system can have

multiple dynamical solutions (Kaluza & Meyer-Ortmanns, 2010;

Hong & Strogatz, 2011; Levnaji�c, 2012). Thus, cells use simple

network motifs as building blocks to generate multiple attractors

that enable flexibility in the responsiveness of the system. This

implies that even genetically identical cells can respond differently

to input signals because they are in different attractors, as depen-

dent on initial conditions. For example, two completely identical

cells that contain the RTK–PTP toggle switch discussed above can

have two opposed states of the RTK: fully on or off (Fig 3B). Which

of the two states is attained depends on the history of the cell as

conditioned by previous stimuli. The same two states can be also

observed in a population of genetically identical cells with different

RTK–PTP expression levels due to the naturally occurring variance

in protein abundances that results from gene expression noise.

Thus, the multiple attractors that can arise from a fixed network

configuration provide plasticity to the system.

An additional level of plasticity is realized when causal connec-

tions are conditioned by other ones. The conditioning can be stimu-

lus dependent, enabling diverse signals to be processed through the

same cascade. An example is the mitogen-activated protein kinase

(MAPK) cascade of Raf, Mek, and Erk (Marshall, 1995; Lewis et al,

1998), where the phosphorylated active forms of the kinases repre-

sent the communicating intermediates of the nodes (Kholodenko

et al, 2002). The positive feedback between Erk and Raf in this case

is conditioned on nerve growth factor (NGF)-dependent protein

kinase C (PKCd) phosphorylation of Raf kinase inhibitor protein

(RKIP) that removes it from Raf (Santos et al, 2007). In network

formalism, this directed link is not between the two nodes RKIP and

RAF, but rather the interaction between PKCd and RKIP enables the

causal interaction between Erk and Raf to take place (Fig 4). This

results in a sustained Erk activity profile. On the other hand, epider-

mal growth factor (EGF) stimulation does not lead to PKCd activa-

tion and only the negative feedback between Erk and Raf manifests.

This now results in a transient Erk activity profile. This NGF/EGF

stimulus-dependent conditioning of the causal interactions thus

leads to different MAPK dynamics that cause cellular differentiation

and proliferation, respectively. Recently, it has been postulated that

this negative feedback is also conditioned on the activity of the

epidermal growth factor receptor, which might further discriminate

the two input signals by the MAPK module (Ryu et al, 2015).

Understanding how a given dynamical behavior arises necessi-

tates network reconstruction to identify the underlying topology of

the network. This information then allows to investigate the poten-

tial of cells in terms of dynamical solutions and thereby their plastic-

ity in responses.

Deriving causality from dynamics

It is exactly the dynamical behavior of the system’s components,

that is, the active states of signaling molecules as a function of time,

that is the subject of experimental observation (Santos et al, 2007;

Ryu et al, 2015). Importantly, the observed dynamical responses of

the nodes do not reflect the kinetic properties of the molecules in

isolation, but rather the dynamics of the network in which they are

embedded. A given measurement reveals only one dynamical solu-

tion that the protein interaction network can exhibit, which is

dependent on the initial conditions of the nodes. To reconstruct a

causal network from this dynamics of its constituents, it is necessary

to exploit the property that coupled events have temporal order.

One possibility is to impose a causal relation of a “driver compo-

nent” and a “response component” on the nodes.

This is accomplished by combining experimental perturbations

with observations of the chemical intermediates. The perturbations

need to be small, to maintain the system in the same dynamical solu-

tion. Quantification of the corresponding changes in the nodes in

terms of global response coefficients allows reconstructing the

underlying causal relationships by computing the local response

coefficients using Modular Response Analysis (MRA, Box 5A)

(Bruggeman et al, 2002; Santos et al, 2007; Klinger et al, 2013). In

reality, the dynamics of only a limited set of nodes is observed within

the context of the complete proteome. MRA allows uncovering the

causal interactions between the measured nodes, as conditioned by

the unobserved components of the proteome. It is therefore
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Box 3: Network topology and dynamics

The possible dynamical solutions of a given network are determined by the underlying topology (directed activatory or inhibitory links) and the dynami-
cal behavior of the chemical intermediates that represent the nodes of the network. Let us consider a simple case of two interacting components: Protein
X stimulates its own production (positive feedback) and that of protein Y, whereas Y inhibits X by transcriptional or translation regulation, or degrada-
tion. The positive feedback from X to itself generates bistable behavior that can be observed for different maximum rate production (Angeli et al, 2004;
Mitrophanov & Groisman, 2008). Generating the negative feedback loop between X and Y on the other hand establishes the necessary preconditions for
oscillations. For a particular dynamics of the nodes, for example, when the half-life of the protein Y is smaller than that of X, oscillatory behavior will be
observed (Kirshna et al, 2009).

Figure for Box 3. Relationship between network topology and dynamics.
(A, B) Two distinct negative feedback network topologies give rise to the same dynamical behavior: oscillations. (C) Subset of three-component network
modules that give rise to the same limit cycle representation in phase space.

How does the dynamics of this system evolve? In the absence of the negative feedback loop, namely Y is held fixed and the system is bistable for a
certain range of Y values. Thus, depending on the initial conditions, the system will be either in high- or low-activity states of protein X (dark blue lines).
When the regulation from X to Y is established, the system displays oscillatory behavior: When the underlying bistability pushes X toward the high
activity state, more Y is produced leading to a decrease in X, and vice versa for the low state, enabling the oscillations to continue (light blue lines).

Different causal relations however can give rise to the same dynamical behavior like bistability and oscillations as shown in (B). The degeneracy of
the problem further increases with increased number of nodes in the network (C).

X

Y

X

Y

X

Y Z

X

Y Z

X

Y Z

X

Y Z

Low-X
state

Low-X
state

High-X
state

High-X
state

0.01

0

0
0 100 200 300 400 500 600

1

1

1

1

0.5

0.5

0.5
0

0
0

2

3

4

1

2

3

4

5

5

6

0

0.2

0.4

0.6

0.8

1

0.1 1

0.01 0.1 1

X

X

X

Y

Y

Y

Z

P
ro

te
in

 c
o

nc
en

tr
at

io
n 

(a
.u

.)
Time (a.u.)

Y
X

A

B

C

ª 2017 The Authors The EMBO Journal Vol 36 | No 5 | 2017

Aneta Koseska & Philippe IH Bastiaens Cognition by recursive molecule interactions The EMBO Journal

573



necessary to consider whether chronic genetic perturbations alter the

context of the hidden network by affecting gene expression. Genetic

perturbation should be thus ideally complemented by acute pertur-

bations using, for example, small molecule inhibitors, pharmaco- or

optogenetic perturbations that maintain the same proteome context

(Zamir & Bastiaens, 2008; Toettcher et al, 2013; Kim et al, 2014).

Applying MRA to reconstruct large-scale networks is however

experimentally challenging, since the number of combinations

between perturbations and node observations scales quadratic with

the number of nodes (Box 5A). Therefore, other methods that

uncover the asymmetry of causal interactions without necessarily

using perturbations are required to deduce topology. This can be

achieved by applying asymmetric measures to time-resolved

biochemical reaction data. In these approaches, the similarity

between the activity profiles is quantified, while implicitly or explic-

itly accounting for time delays in the responses of the nodes

(Box 5B). Similarly to the reconstruction of gene regulatory networks

(Wang et al, 2008; Hempel et al, 2011a,b; Ma et al, 2014), it is possi-

ble to apply these methods to time-resolved proteomics data to iden-

tify the flow of information in the system. Currently, all of the time

series analysis methods have a limited accuracy in the number of

identified links (~80/30% true/false positives). This strongly

depends on the size of the network and the temporal resolution of

the measured profiles (Hempel et al, 2011b). To compensate for the

limited information contained in sparsely sampled time series, the

activity states of several proteins have been simultaneously

measured in single cells (Sachs et al, 2005; Kirshnaswamy et al,

2014). By having hundred individual cells, each providing a point of

multidimensional data, cell-to-cell variability has been used to infer

and quantify (non)linear relationships between proteins using dif-

ferent statistical approaches. For example, Bayesian analysis

(Box 5C) has been applied to reconstruct protein interaction

networks from primary human immune system single-cell data

Box 4: Concepts from dynamical systems theory

Consider a cellular state that is specified in terms of the concentrations
of the active protein states. For example, if upon a given stimulus, k
signaling proteins are activated, the cellular response, and thereby its
state is described by the concentrations of those proteins (x(t), y(t),
z(t), . . .) over time. One state of the system, that is, one combination of
these proteins represents a point in vector space that is called phase
space. The dynamics of the system is then described by the dynamics of
the corresponding phase space points in terms of their trajectories. With
time, the phase variables reach a stable range of values. This bounded
region of phase space is called attractor and represents dynamical solu-
tion of the system that is invariant with time. The attractors can be
fixed points representing stationary states, limit cycles (periodic oscilla-
tions), and strange attractors (chaotic behavior). Different dynamical
solutions that a system can reach depending on the initial values of the
variables are represented as different attractors in phase space. Staring
from a given set of initial values, the system will tend to evolve toward
a particular attractor. The regions of such initial values, called basins of
attraction or basins of stability, partition the phase space around the
stable attractors. The system can therefore jump between different
attractors if large enough perturbations are applied.

Figure for Box 4. Dynamical systems.
The dynamics of a cellular state that is specified in terms of concen-
tration of three proteins (x, y, z) can be fully described through the
evolution of the trajectories in phase space. Different stable dynamical
solutions (attractors) are separated by their corresponding basins of
attraction.
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Box 5: Principles of network reconstruction

Figure for Box 5. Methods for network reconstruction.
(A) Schematic representation of MRA (adapted from Zamir & Bastiaens, 2008). The upper left graphs depict a network of three proteins (p1, p2, p3) for which
network reconstruction is applied to uncover the strength and sign of the six possible causal connections. Perturbing (Pi) each of the nodes and measuring
the corresponding response of all nodes in the network allows to obtain the nine global response coefficients from which the local response coefficients are
computed. These indicate the causal connectivity strength in both directions between p1, p2, and p3 (right graph). (B) Schematic representation of time series
measurements as obtained from a transcriptomics experiments (left chart). To reconstruct the gene regulatory network, the pairwise similarity between the
time series is calculated. This allows generating an association matrix (right table) from where the links between the nodes can be deduced. 1 corresponds
to a link between gene 1 and gene 2, and 0 corresponds to an absence of an edge between the two nodes. (C) Simplified representation of how Bayesian
network operates on a hypothetical network of four proteins, X, Y, Z, and W, as adapted from Sachs et al (2005). Each dot represents the amount of two
phosphorylated proteins (X and Y) in a single cell. X and Y are correlated under no manipulation (blue dots). Inhibition of X affects Y (yellow dots), whereas
the opposite is not true (magenta dots). This reveals the directionality of the interaction from X to Y.

1 corresponds to a link between two nodes

0 corresponds to an absence of a link 
 between two nodes

Protein

Perturbation

X and Y are correlated under no manipulation

Inhibition of X affects Y

Inhibition of Y does not affect X

P1

Px

p
1

p
2

p
3

p
1

P2

p
2

p
3

p
1

P3

p
2

p
3

p
1

p
2

p
3

X

Y

Z W

p
1

p
2

p
3

P1

R1,1

R2,1

R3,1

P3P2

M
ea

su
re

d
 m

o
d

ul
e

Perturbed module

p
1

p
2

p
3

P1

R1,2

R2,2

R3,2

P3P2

M
ea

su
re

d
 m

o
d

ul
e

Perturbed module

p
1

p
2

p
3

P1

R1,3

R2,3

R3,3

P3P2

M
ea

su
re

d
 m

o
d

ul
e

Perturbed module

p
1

p
2

p
3

P1

–1

3

0

0

–1

2

–4

0

–1

P3P2

A
ff

ec
te

d
 m

o
d

ul
e

Affecting module

Global response matrix, R Local response matrix, r

Gen
e 

1

Gen
e 

2

Gen
e 

3

Gen
e 

X

1

0

1

0

0

0

0

0

0

0 0 0

Gene 1

Gene 2

Gene 3

Gene X

Gene 1

Gene 2

Gene 3

Gene X

Time

p
x

A

B

C

X

Y

ª 2017 The Authors The EMBO Journal Vol 36 | No 5 | 2017

Aneta Koseska & Philippe IH Bastiaens Cognition by recursive molecule interactions The EMBO Journal

575



obtained by flow cytometry (Sachs et al, 2005). The cell-to-cell vari-

ability in the measured activity state of multiple phosphorylated

proteins and phospholipid components as obtained by node pertur-

bations has been incorporated in a Bayesian model to derive proba-

bilistic dependences among multiple components. In another study,

conditional density-based analysis of single-cell mass cytometry data

has been developed to identify and quantify the functional dependen-

cies between proteins that participate in antigen recognition in cells

of the immune system (Kirshnaswamy et al, 2014). The next chal-

lenge will be to combine the associations between multiple network

components obtained at distinct time points in a single measure. This

would provide a theoretical framework that combines the informa-

tion contained in the cell-to-cell variance with the information that

the temporal profiles encode, resulting most likely in more efficient

methods for reconstruction of causal protein interaction networks.

Recursive communication between cells leads to cognition

In the previous examples of signaling network reconstruction, exter-

nal growth factors were imposed, thereby enforcing a unidirectional

information flow from the environment to the inside of the cell.

However, the collective behavior of cells that leads to coordinated

dynamical behavior, such as the behavior of cells in an organ or a

tissue (Perbal, 2003; Harper et al, 2010), requires constant adjust-

ment of the internal state by not only signal reception, but also

emission of information about the internal state to neighboring cells.

This iterative exchange of information that occurs via cell-cell

communication can therefore give rise to cooperative cellular

behavior even under noisy conditions (Koseska et al, 2009; Box 6).

For example, most physiological events in mammals are subjected

to well-controlled daily oscillations that are generated by an internal

self-sustained circadian oscillator located in individual neurons in

the hypothalamic suprachiasmatic nucleus (SCN) (Welsh et al,

1995; Moore, 1997). In this case, a coherent and synchronous

circadian output is produced as a result of intercellular recursive

communication via neurotransmitters (Yamaguchi et al, 2003).

Even more, intercellular recursive communication can give rise

to new attractors different than those of the isolated cells (Koseska

et al, 2007; Ullner et al, 2008a,b), thereby displaying cognitive

behavior. Analogous are the observations that individual

hematopoietic stem cells acquire tissue-like properties as a result of

microenvironmental cues from the liver (Jang et al, 2004). Interest-

ingly, specific communication-induced dynamical solutions allow

for heterogeneity to be established and maintained in a population

(Koseska et al, 2010), resembling differentiated cellular entities in

tissues. Theoretical studies have suggested that novel dynamical

solutions can be generated in systems characterized with bidirec-

tional inhibitory intercellular communication, rendering cognition a

generic property of such multicellular systems (Koseska et al, 2007;

Ullner et al, 2008a,b).

To demonstrate this idea, let us consider again the RTK–PTP

toggle switch example described above. This network can exhibit

one of two possible stable steady states in isolated cells, dependent

on prior exposure to growth factor. This is a result of bistability that

is generated due to the RTK-induced PTP inhibition via ROS

(Fig 5A). However, when ROS diffuses across the membrane, the

short-range bidirectional coupling between the networks in neigh-

boring cells can theoretically generate a novel dynamical solution—

an inhomogeneous steady state (IHSS, Fig 5B). This solution occurs

due to symmetry breaking of the steady state via a pitchfork bifurca-

tion and is characterized with two stable branches. Thus, even when

the two communicating networks of the neighboring cells start from

identical initial conditions, one of them must adopt the high branch,

whereas the other cell must adopt the low branch. This will result in

one cell having high and the other a low level of phosphorylated

RTK. This IHSS solution coexists in parameter space with the bista-

bility region (Fig 5B), but is a distinct dynamical solution of the

coupled networks. Moreover, the IHSS (Koseska et al, 2007) is a

generalized Turing instability (Turing, 1952; Challenger et al, 2015)

A. To reconstruct a causal network from the dynamics of its constituents, the property that coupled events have temporal order is exploited. Modular
Response Analysis (MRA) uses this principle by imposing causality on the system via sequential node perturbations (Bruggeman et al, 2002). The corre-
sponding changes in the remaining components of the system are thereby quantified as a means to infer directional relationships between the nodes in
the network. One can thus measure the response of protein pi to the perturbation in protein pj (P), as mediated by the entire network after reaching a
steady state. From this global response coefficients (Rij = @pi/@Ρ) matrix, the local response coefficients rij = @pi/@pj indicating the causal connectivity
between pi and pj can be derived according to ∑rikRkj = 0. rij > 0 indicates activatory links, rij < 0 inhibitory links, and rij = 0 no direct links between the
nodes pi and pj.
B. Stepwise network inference from time-resolved data can be also accomplished using association measures. At a distinct time point after stimulus, the
extent of modification of some property of the nodes, that is, gene expression or protein phosphorylation, is measured for all nodes simultaneously. Experi-
mental acquisition of this information at n (non)uniformly distributed time points thereby reflects the dynamics of each of the nodes in the network. Since
the temporal profiles of two nodes that regulate each other are similar, the regulatory links can be derived by thresholding the pairwise similarities in the
association matrix. Measures operating on vectors, such as classical distance measures and dynamic time warping, random variables (correlations, permuta-
tion-based and information-theoretic measures), model-based measures (Granger causality) and measures operating on symbolic dynamics can be used to
derive the association matrix (Hempel et al, 2011a). Applying additionally partial variants of the measures to account for indirect regulations and scoring
rules for the pairwise weighting of the interactions, the number of falsely identified links can be reduced (summary on the methods and scoring schemes is
presented in Hempel et al, 2011a). Since the majority of these methods and scoring schemes are symmetric, it is necessary to apply time shifting or symmetry
breaking schemes to infer the causality of the identified links.
C. Bayesian networks, a form of graphical models, have been also used to reconstruct causal signaling networks from multivariate datasets, for example, the
phosphorylation state of multiple proteins in a same cell. They explicitly make use of the naturally occurring cell-to-cell variance, since Bayesian networks
can represent probabilistic non-linear dependence relationships among multiple interacting components. The analysis algorithm therefore approximates the
network topology that closely predicts the made observations by traversing the space of possibilities via single-link changes that improve the score of the
model (Sachs et al, 2005). Although the obtained relationships are statistical in nature, causality of the interactions could be obtained when experimental
perturbations are additionally applied.

Box 5: (continued)
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that occurs via a communication-induced Turing-type bifurcation

(Koseska et al, 2013). This solution has been theoretically linked to

emergence of heterogeneous dynamical behavior in a homogeneous

multicellular population as a way to establish asymmetric cell dif-

ferentiation (Koseska et al, 2010). The IHSS solution has also been

related to striped pattern formation that results from Delta–Notch

signaling (Fig 1). In this case, the IHSS is driven by a primary signal-

ing source and the addition of cis-interactions (Formosa-Jordan &

Ibanes, 2014). Expanding the size of the population can further

increase the number of dynamical solutions and thereby the differen-

tiation potential in the system by means of clustering distinct

manifestations of the same dynamical solution (Koseska et al, 2010).

The described principles are not specific for the RTK–PTP inter-

action network considered here, but is rather an inherent property

of coupled systems, since it relies on the dynamics of the underlying

networks as determined by their topology. For example, single cells
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Figure 5. Intercellular communication between RTK–PTP networks establishes cognitive behavior.
(A) A simple, ROS-mediated double-negative RTK–PTP interaction network generates a bistable system. The bistability region is denoted on the bifurcation diagram with
the two bifurcations (LP1, LP2). (B) ROS-induced communication between the networks of two neighboring cells generates a novel dynamical solution, an
inhomogeneous steady state (IHSS) that coexists with the bistability region. This occurs through symmetry breaking of the homogeneous steady state via a pitchfork
bifurcation (PB1, PB2). When the system is entrained in the IHSS, both cells must populate the two opposite stable branches (solid blue lines) characterized by low and
high levels of RTK phosphorylation. The dashed blue lines denote unstable IHSS. (C) The corresponding time series of the three stable regimes, the high and the low
homogeneous steady states, and the inhomogeneous steady state are shown. The mathematical model and the parameters used are shown in the Appendix.
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that contain a three-component genetic repressilator network motif

(Elowitz & Leibler, 2000) can exhibit a single dynamical solution—

autonomous oscillations with a defined period (Fig 6). Coupling

these networks via a small signaling molecule however generates

not only an IHSS, but also an inhomogeneous limit cycle solution,

IHLC (Fig 6, Ullner et al, 2008b). This IHLC mimics the cellular

potential to both proliferate and differentiate, and has been there-

fore related to asymmetric stem cell differentiation with self-renewal

(Suzuki et al, 2011).

Thus, paracrine intercellular communication can generally result

in collective dynamic behavior that is different from that of isolated

cells, which might account for tissue-specific cell functionalities.

The above-described hypotheses therefore state that cell identity is

not purely determined by the manifestation of the genome but

rather defined by recursive intercellular communication. The inher-

ent multistability of multicellular systems defines the range in which

cells can respond and adapt, while still maintaining their identity. In

this description, stable attractors are associated with specific func-

tional outputs, giving a mathematical formalism to cellular informa-

tion processing. A further extension of the idea is the possibility for

cells to modulate their dynamics on the proteome level and thereby

acquire new functions. Making the parallel to neural networks and

the concept of reservoir computing (Box 7), it is theoretically possi-

ble for recurrent networks that employ dynamic processes on dif-

ferent timescales to process information using transiently stable

attractors (Maass et al, 2002). This significantly increases the

network capabilities for information processing, especially of time-

varying inputs that can be further translated to novel cellular func-

tions. If it can be realized on the level of the proteome, this could

imply that the identity of cells can be altered by “teaching” them

how to perceive the environment.

What determines the identity of cancer cells?

The collective behavior of cells on the level of tissues is generally

stable against mutations that occur in single cells, allowing them to

retain their identity (Bissel & Hines, 2011). The question therefore is

how the cancer phenotype is stabilized under these conditions.

When an oncogenic “gain-of-function” mutation occurs in single

cells, it constitutively activates a certain protein. In terms of the

intracellular signaling network, the continuous activity of this node

“pushes” the complete network to a particular dynamical state. If

we assume that the topology is not affected by the oncogene expres-

sion, then the number of attractors in these cells is reduced.

However, comparative bioinformatics analysis of microarray data-

sets from multiple tumors and the non-malignant tissues they were

derived from has identified significantly increased number of inter-

actions and multi-edge node pairs in the regulatory networks of

tumor cells (Schramm et al, 2010; Rahman et al, 2013). The forma-

tion of these new connections likely results from changes in gene

expression that lead to an altered proteome composition (Schramm

et al, 2010). Another possibility is that oncogene overexpression

leads to new interactions with effectors by a simple mass action

effect (Jones et al, 2006). Thus, a significant rewiring of the signal-

ing networks in cells where oncogenic mutations occur will effec-

tively modulate their dynamical possibilities by increasing the

number of attractors. This would lead to an increased plasticity of

cancer cells as compared to the tissue cells they are derived from.

That this might be the case is evident from the fact that some cancer

cells reversibly transit among states that differ in their competence,

Box 6: Stabilizing cellular responses by intercellular communi-
cation

Cooperative cellular responses are generally subject to fluctuations in
intercellular signals that are themselves processed by biochemical
networks in which the level of the components is also subject to
stochasticity. In addition to the observations that transcriptional noise
can be filtered out by cell-intrinsic factors, that is, given topology of
gene regulatory networks (Thattai & van Oudenaarden, 2000;
Hooshangi et al, 2004), it has been also hypothesized that intercellu-
lar communication can enhance the reliability of cellular responses in
noisy conditions (Koseska et al, 2009). In particular, it has been shown
that cells reach a particular fate only when a specific size of the
population is reached.

Figure for Box 6. Intercellular communication reduces noise
and stabilizes cellular fate.
Population growth leads to effective reduction in the amplitude of the
noise that decreases as the square root of the number of cells. The
protein concentration in each cell is represented in color code. For
low cell densities, cells display stochastic fluctuations in protein
concentration (time series depicted in the lower left plot). Increasing
the density of cells after four division cycles and thereby the commu-
nication between them effectively decreases the noise, and distinct
cells commit to one of two different cell states (lower right plot).

A theoretical basis for this has been established in general non-
linear stochastic models, where noise is known to be tunable through
the size of the system such that the amplitude of the noise is inver-
sely proportional to the square root of number of cells (Pikovsky et al,
2002).
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as a means to explore possibilities to contribute to tumor growth

(Mani et al, 2008; Gupta et al, 2011).

This also allows cells to “jump” to a new “selfish” attractor that is

intrinsically stabilized in single cells (Kaneko, 2011). Due to the

acquired changes in dynamics, these cells loosen their collective

behavior in the tissue and start to behave more as single entities. Since

they represent an aberrant cell type, they are functionally unnecessary

for the organism and therefore have not achieved robustness against

noise and mutation during evolution (Kaneko, 2011). This leaves the

dynamical state of these cells more changeable to somatic mutations,

allowing them to continuously transit between different attractors

(Capp, 2005). Selection pressure would eventually drive them in a

state with a larger basin of attraction, giving rise to a stable cancer cell

characterized by increased signaling entropy (Teschendorff et al,

2014; Box 8). The incidence of intercellular communication between

cancer cells is now higher than that to the normal tissue, thereby

stabilizing the tumor identity (Hamada et al, 1988). To which extent

the dynamics of communicating signaling networks can be trained by

environmental cues to maintain a specific behavior in a tissue context

can be thus applied both, to understand how cancer cells acquire

metastatic behavior, but also whether cancer cells can be “retrained”

by the surrounding tissue to adapt their behavior. It has been demon-

strated, for example, that transplantation of cancer cells into other

tissues in which their interaction with other cells is modified, led to

“reprogramming” of their oncogenic behavior (Mintz & Illmensee,

1975; Hochedlinger et al, 2004; Kasemeier-Kulesa et al, 2008).

Conclusion

Signaling cannot be perceived as a unidirectional process from the

outside to the inside of the cell that is executed by hardwired
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Figure 6. New dynamical solutions emerging from network of intracellular networks differentiate cellular identities.
Schematic representation of paradigmatic gene regulatory networks that communicate among cells by small signaling molecules (SM). The network in isolated cells can
exhibit only one dynamical solution: oscillations. Intercellular communication among identical cells generates novel dynamical solutions. The bifurcation diagram identifies
the coupling strength for which different dynamical solutions can be observed. Solid lines denote stable and dashed/dotted lines unstable dynamical solutions. The
corresponding time series of a homogeneous steady-state (HSS), inhomogeneous steady-state (IHSS), limit cycle (LC), and inhomogeneous limit cycle (IHLC) solutions are also
depicted. The IHSS (also IHLC) is generated when the symmetry of the system is broken due to the intercellular communication (particular coupling strength). In this way,
heterogeneity in a homogeneous cellular population is established and maintained: One of the cells exhibits high (dark orange line), whereas the other one exhibits low
concentration (black line) of the protein A.
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cellular machinery. It is rather a dynamical manifestation of a

highly adaptive network that is determined by the recursive inter-

actions between the protein reaction states within the network as

well as with the networks of other cells with which it communi-

cates by extracellular chemical means. In this way, the processing

of information becomes dependent on historical and extracellular

context. We therefore like to think about signaling in cellular

ensembles as a process reminiscent to cognition. In order to under-

stand how this cognitive process works, inferring the topology of

the network of signaling networks is a prerequisite to relate the

observed biochemical behavior to the general principles of infor-

mation processing between cells, and the thereby established cellu-

lar function. It is thus important to consider that new dynamical

solutions can arise from intercellular communication and that

cognition is not a property of single cells per se. This in turn opens

the possibilities to manipulate cellular identity by changing its

interaction with the environment: the multicellular context in

which it is embedded.

Expanded View for this article is available online.
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