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Metabolomic biomarkers as strong
correlates of Parkinson disease progression

ABSTRACT

Objective: To determine whether a Parkinson disease (PD)-specific biochemical signature might be
found in the total body metabolic milieu or in the CSF compartment, especially since this disorder
has systemic manifestations beyond the progressive loss of dopaminergic nigrostriatal neurons.

Methods: Our goal was to discover biomarkers of PD progression. Using ultra-high-performance
liquid chromatography linked to gas chromatography and tandem mass spectrometry, we mea-
sured concentrations of small-molecule (#1.5 kDa) constituents of plasma and CSF from 49
unmedicated, mildly affected patients with PD (mean age 61.4 years; mean duration of PD
11.4 months). Specimens were collected twice (baseline and final) at intervals up to 24 months.
During this time, mean Unified Parkinson’s Disease Rating Scale (UPDRS) parts 2 1 3 scores
increased 47% (from 28.8 to 42.2). Measured compounds underwent unbiased univariate and
multivariate analyses, including fitting data into multiple linear regression with variable selection
using least absolute shrinkage and selection operator (LASSO).

Results: Of 575 identified plasma and 383CSF biochemicals, LASSO led to selection of 15 base-
line plasma constituents with high positive correlation (0.87, p 5 2.2e216) to baseline-to-final
change in UPDRS parts 2 1 3 scores. Three of the compounds had xanthine structures, and 4
were either medium- or long-chain fatty acids. For the 15 LASSO-selected biomarkers, pathway
enrichment software found no overrepresentation among metabolic pathways. CSF concentra-
tions of the dopamine metabolite homovanillate showed little change between baseline and final
collections and minimal correlation with worsening UPDRS parts 21 3 scores (0.29, p5 0.041).

Conclusions:Metabolomic profiling of plasma yielded strong prediction of PD progression and offered
biomarkers that may provide new insights into PD pathogenesis. Neurology® 2017;88:862–869

GLOSSARY
CI 5 composite index; DATATOP 5 Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; LASSO 5 least abso-
lute shrinkage and selection operator; MS 5 mass spectrometry; PD 5 Parkinson disease; UPDRS 5 Unified Parkinson’s
Disease Rating Scale.

There has been a continuing challenge for improved methods to diagnose Parkinson disease
(PD) and to measure its progression. Despite extensive efforts to discover biochemical clues,
biomarkers with high specificity and sensitivity have been elusive1 (even in CSF, a compartment
contiguous with sites of neurodegeneration in the brain). This impasse applies also to measure-
ments of substances integral to PD pathophysiology such as a-synuclein and dopamine metabo-
lites, neither of which reliably differentiates individual cases of PD from controls.2

A fundamental challenge for biomarker discovery is to understand how broadly to seek the
imprint of PD. An earlier era regarded the pathology of PD as limited to dopaminergic neurons
in the substantia nigra, so focusing on diminished dopamine neurotransmission seemed reason-
able for defining and monitoring the disease. However, manifestations of the core proteinopathy
of PD (a-synuclein aggregates) are demonstrable throughout the body.3 Even the bacterial pop-
ulation in the colon is altered in PD.4 The subcellular influence of PD throughout the body also
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resides in mitochondria5 and the proteasome-
lysosomal system.6 Hence, taking the search for
PD biomarkers into the total biochemical envi-
ronment of the body seems warranted. This
approach, metabolomics, has become one of
the most productive technologies in recent bio-
marker research.7 With the latest methodolo-
gies, metabolomic analysis is capable of
measuring hundreds of low-molecular-weight
(,1.5 kDa) compounds in biospecimens,
characterizing a wide spectrum of the human
metabolic milieu.8–10 The unbiased analytic
methods for discerning biomarkers do not
depend on functional relationships between
biochemicals such as established metabolic
pathways. However, subsequent analysis can
investigate whether biomarker findings con-
form to known pathways11 and can search for
shared physicochemical properties (such as
evidence of oxidative stress).

Our goal was to learn whether metabolomic
profiling of CSF and plasma could help to pre-
dict the progression of PD. Specifically, we ques-
tioned how informative an initial biochemical
profile or its change in a later specimen collec-
tion might be for predicting disease progression.
We also investigated whether the CSF concen-
tration of homovanillate, the major metabolite
of dopamine,12 predicted worsening PD.

METHODS Participants. Participants with relatively mild

parkinsonism provided CSF and plasma samples in the

DATATOP (Deprenyl and Tocopherol Antioxidative Therapy

of Parkinsonism) clinical trial.13 During this trial, participants

underwent blinded assessments with the Unified Parkinson’s

Disease Rating Scale (UPDRS).14 In the current study, we mea-

sured change in parkinsonism over time with UPDRS questions

pertaining to activities of daily living (part 2) and motor exami-

nation (part 3). A composite index (CI) of parkinsonism was the

sum of scores from both parts (UPDRS2 1 3).

In the DATATOP study, participants could not receive

symptomatic treatment for PD.13 Our study used specimens from

49 randomly selected placebo-treated participants for whom the

enrolling investigator confirmed (retrospectively with$90% cer-

tainty) that the PD diagnostic impression was correct. Specimens

came from 33 men (67% of total group; mean age at enrollment

61.4 years, range 38–74 years) and 16 women (mean age 65.9

years, range 46–78 years). The total group mean 6 SD age was

62.9 6 7.7 years. Mean duration of parkinsonian symptoms

before initial (baseline) assessment was 11.46 4.7 months (range

3.0–22.3 months). At baseline, mean UPDRS part 2 score was

8.5 (range 3–15) and mean part 3 score was 20.3 (range 3–38.5).

At the second (final) specimen collection, mean part 2 score was

12.9 (range 4–22) and part 3 score was 29.3 (range 6–49).

Standard protocol approvals, registrations, and patient
consents. At each study site, the DATATOP trial received

approval from institutional ethics standards committees on

human experimentation. Written informed consent was obtained

from all patients participating in the study.

Collection procedures. Lumbar puncture CSF and venous

plasma specimens were collected by standardized methods at

study enrollment (baseline) and at trial completion (final)13,15

whenUPDRS assessments also were conducted.While DATATOP

study participation was up to 2 years, intervals between baseline

and final testing were shorter if participants met endpoint

criteria (defined as worsening of parkinsonism requiring start of

dopaminergic therapy13).

CSF and blood specimens were collected after overnight bed rest

(between 6 and 10 AM before breakfast). Lumbar CSF was removed

in sequential measured aliquots. We used the specimen pooled from

12 to 14 mL and without blood contamination. Specimens were

immediately chilled and stored at 2708C until assayed.15

Assay methods. Detailed methods for the metabolomic profiling

of the CSF and plasma specimens have been reported.8–10,16 In sum-

mary, samples were extracted and split into aliquots for analysis on 3

separate mass spectrometers (Thermo Scientific, Waltham, MA):

ultra-high-performance liquid chromatography–mass spectrometry

(MS) OrbiElite System for detecting positive and negative ions and

a Trace Ultra Gas Chromatograph-DSQ-MS system. For the 2 liquid

chromatography methods, chromatographic separation followed by

full-scan mass spectra was carried out to record retention time,

molecular weight (m/z), and tandem MS of all detectable ions. For

gas chromatography, the samples were derivatized with bistrimethyl-

silyl-triflouroacetamide. Retention time and m/z were measured.

Bioinformatics. Data extracted from the raw MS data files were

loaded into a relational database and evaluated without binary large-

object manipulation.10 Peaks were identified with proprietary peak

integration software,17 and components were stored in a specifically

designed complex data structure. Compounds were identified by

comparison of the ion features of each sample to reference library

entries of chemical standard entries (retention time, m/z, preferred
adducts, and in-source fragments) and their associated tandem MS

spectra.17 Several quality control and curation procedures were

conducted for a high-quality data set with accurate and consistent

identification of chemical entities and for removing system artifacts,

misassignments, and background noise.8,10

Statistical analysis. The 49 samples per group (baseline and

final) exceeded the group size of 20 to 25 generally required for ade-

quate statistical modeling of metabolomic data.18 Any compound

for which data had missing values (due to thresholding of MS data,

for example) was imputed by use of minimum detection level. Data

was log2 transformed. To detect biochemicals of interest, data

underwent a strategy of feature selection through univariate analysis

followed by multivariable modeling. False discovery rate–adjusted p
values were calculated for the univariate analysis.19

To investigate for biomarkers of PD progression, we took sev-

eral approaches. With baseline assay data, a univariate analysis

determined whether any of the biochemicals was associated with

PD progression, defined as change in parkinsonian severity (differ-

ence between UPDRS parts 2 1 3 scores at baseline and final

assessments [DUPDRS2 1 3]). This analysis involved calculation

of the Pearson correlation. Another investigation was for a possible

association between DUPDRS21 3 and the CSF concentration of

the dopamine metabolite homovanillate. A third analysis was to

develop a multimarker predictive model with the goal of determin-

ing a panel of compounds that might predict DUPDRS21 3. The

method chosen was multiple linear regression with variable selec-

tion using least absolute shrinkage and selection operator
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(LASSO).20 Ten-fold cross-validation was performed on LASSO to

yield an unbiased estimate of prediction error so that the best

number for the combination of markers could be selected.

Another data analysis approach was to determine which plasma

and CSF biochemicals had changed in concentration from baseline

to the final collection. Similar to the analytic methods described

above, a univariate analysis determined whether individual com-

pounds showing baseline-to-final change was associated with

DUPDRS2 1 3. Finally, we generated a multimarker model with

LASSO to explore for a panel of CSF and plasma compounds for

which a change in concentration could predict PD progression.

Metabolomic data also can be studied from known metabolic

relationships between assayed biochemicals with KEGG pathway

maps (www.genome.jp) and other sources of biochemical infor-

mation. For this investigation, results obtained from pathway

enrichment analysis were combined with a topology analysis

(Ingenuity Pathway Analysis, Ingenuity Systems, Mountain

View, CA) to discern where there was overrepresentation by

any of the detected biomarkers.

RESULTS Assay findings. The assays detected and
measured 575 structurally distinct plasma and 283

CSF biochemicals. Each compound was identified by
reference to entries in the Metabolon chemical library.17

Analysis of baseline metabolomic data. Pearson correla-
tion coefficients and corresponding p and q values were
calculated for concentrations of biochemicals measured
in CSF and plasma samples. Some of the data showed
up to a moderate correlation with DUPDRS2 1 3
(approximately 60.4, with corresponding values of
p ,0.01). However, none of these compounds main-
tained statistical significance in their correlations after
p value adjustment. Correlations found in plasma sam-
ples were, in general, consistent with the correlations
found in the CSF samples, although there was some
variability. Because none of the measured plasma or
CSF biochemicals achieved statistical significance after
adjustment, we created lists of the top 10 compounds
that, of all the measured compounds, showed the
greatest correlations to DUPDRS2 1 3 (table 1). For

Table 1 Univariate analysis of baseline assay data to determine those biochemicals associated with change in
parkinsonian severity (defined as the difference between Unified Parkinson’s Disease Rating Scale
parts 2 1 3 scores determined at baseline and final assessments)

A

Plasma CSF

Correlation p q Correlation p

10-Nonadecenoate (19:1n9) 0.4149 0.0030 0.214184 ND ND

3-Hydroxydecanoate 0.4519 0.0011 0.214184 ND ND

5-Dodecenoate (12:1n7) 0.4190 0.0027 0.214184 ND ND

Docosadienoate (22:2n6) 0.4150 0.0030 0.214184 ND ND

Docosatrienoate (22:3n3) 0.4305 0.0020 0.214184 ND ND

Eicosenoate (20:1n9 or 11) 0.4442 0.0014 0.214184 ND ND

Mannitol 0.3854 0.0062 0.32128 0.3152 0.0274

Myristoleate (14:1n5) 0.4169 0.0029 0.214184 ND ND

Palmitoleate (16:1n7) 0.3996 0.0044 0.279114 ND ND

Serine 20.4537 0.0011 0.214184 20.1981 0.1723

B

CSF Plasma

Correlation p q Correlation p

2-Ethylhexanoic acid 20.3784 0.0073 0.775332 ND ND

Benzoate 20.4226 0.0025 0.683794 20.0798 0.5855

Dodecanedioate 0.2738 0.0569 0.984611 ND ND

Homovanillate 0.2924 0.0414 0.984611 ND ND

Indoleacetate 0.2923 0.0416 0.984611 0.0785 0.5917

Mannitol 0.3152 0.0274 0.984611 0.3854 0.0062

Methyl-b-glucopyranoside 20.2703 0.0603 0.984611 20.1720 0.2372

N-6-trimethyllysine 0.3697 0.0089 0.775332 0.0612 0.6760

Oxalate 0.2815 0.0501 0.984611 0.1638 0.2607

Tartrate 0.3591 0.0113 0.775332 0.0454 0.7566

Abbreviation: ND 5 not detected.
Listed are the top 10 compounds in plasma and CSF with concentrations that showed the highest Pearson correlations.
A. The top 10 compounds found in baseline plasma samples and the corresponding results in baseline CSF samples.
B. The top 10 compounds found in baseline CSF samples and the corresponding results in baseline plasma samples.
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example, analysis of the baseline plasma specimens
listed in table 1 found that serine concentration was
inversely correlated with DUPDRS21 3 (20.45, p5
0.0011). In CSF, serine was not as strongly inversely
correlated with DUPDRS2 1 3 (20.20, p 5 0.17).
For the top 10 compounds in CSF samples with cor-
relations to DUPDRS2 1 3 (table 1), the strongest
relationship was an inverse correlation with benzoate
(20.42, p 5 0.0025). Measurement of benzoate in
plasma samples did not correlate with DUPDRS21 3.

In a further analysis using LASSO (table 2), we
identified 15 compounds from profiling baseline
plasma specimens that, together as a group, best pre-
dicted DUPDRS2 1 3. From these data, we created a
CI based on a linear combination of these compounds
using the coefficients listed in table 2 (figure, A). This
analysis yielded a high correlation coefficient (0.87, p5
2.2e216) between the CI and DUPDRS2 1 3. A sim-
ilar analysis with LASSO was carried out for com-
pounds in the baseline CSF profiles, which identified
2 biochemicals, benzoate and N-6-trimethyllysine, that
best predictedDUPDRS21 3 (table 2). Using a similar
calculation for CI, we then fitted the coefficients for the
baseline CSF compounds in the linear regression

model. Figure, B shows that this CI was moderately
correlated (0.58, p 5 1.33e25) with DUPDRS2 1 3.

Analysis of metabolomic data that showed change from

baseline to final collections. Correlation coefficients and
corresponding p values were investigated for CSF and
plasma samples; they showed moderate (.60.4) corre-
lations between concentration changes and DUPDRS2
1 3. We created a list of the top 10 compounds with
changes from baseline to final that showed the greatest
correlation to DUPDRS2 1 3 (table 3). For example,
the change in plasma phenylcarnitine concentrations
was moderately correlated with DUPDRS2 1 3
(0.48, pz 0.0004). The concentration of phenylcarni-
tine in CSF was below the detection limit. In CSF, the
strongest correlation with DUPDRS2 1 3 was change
in benzoate concentration (0.48, p z 0.0005).

For plasma specimens, change in concentration
from baseline to final for a group of 3 compounds
(1,3-dimethylurate, aspartylphenylalanine, and phe-
nylcarnitine) best predicted DUPDRS2 1 3 (table
4). From these data, we created a CI based on the
coefficient for changes in each marker. This CI cor-
related with DUPDRS2 1 3 (0.67, p 5 1.54e216).
For similar analysis of CSF, benzoate was the only
compound selected by LASSO; hence, its result was
the same as that shown by univariate analysis (0.48,
p 5 0.00045). Between baseline and final, the mean
CSF concentration of the dopamine metabolite
homovanillate showed little change and only weakly
correlated with DUPDRS2 1 3 (0.29, p 5 0.041).

DISCUSSION This study combined analysis of CSF
and plasma samples in an effort to discover PD state
(disease progression) markers. These observations
underscore the value of untargeted metabolomic
screening of clues for a disorder that is known to have
diverse systemic manifestations. Although our analysis
discerned a biochemical profile linked to PD progres-
sion, these findings do not clarify whether the observed
markers represent primary biochemical manifestations
of the disease process or “downstream” changes (or
even epiphenomena of PD). Regardless of their origins,
discovery of compounds with CIs that are highly pre-
dictive of DUPDRS2 1 3 may provide a useful sup-
plement to clinical monitoring of PD progression (and
might constitute a preclinical indicator). The informa-
tion from this metabolomic investigation might also
have a place in a meta-analysis for which other
biomarker candidates (such as a-synuclein, Ab1-42,
or fraktaline measurements21) might be incorporated
for enhancing correlations to PD progression.

In contrast to several earlier metabolomic method-
ologies used with PD biospecimens,22–26 our analytic
platform possesses greatly improved capabilities for
biochemical detection and identification. We also

Table 2 From baseline plasma and CSF assay results, the best combination of
compounds with concentrations selected by least absolute shrinkage
and selection operator20 and fitted in a linear regression

A Coefficient SE p

Intercept 12.66 1.21 0.0000

1-Arachidoylglycerophosphocholine (20:0) 20.51 0.72 0.4785

1-Methylxanthine 0.41 0.61 0.5061

3-Hydroxydecanoate 1.90 2.15 0.3822

5-Dodecenoate (12:1n7) 2.00 2.04 0.3334

5a-Androstan-3b-17a-diol-disulfate 20.87 0.60 0.1551

Docosadienoate (22:2n6) 1.29 3.04 0.6727

Docosatrienoate (22:3n3) 0.86 2.16 0.6913

Ethyl glucuronide 20.53 0.80 0.5124

Iminodiacetate 21.46 2.05 0.4832

Inosine 23.45 1.00 0.0015

Mannitol 1.95 0.96 0.0508

Picolinate 22.50 1.60 0.1279

Serine 24.30 2.44 0.0870

Taurine 21.77 1.58 0.2721

Theobromine 0.47 0.47 0.3202

B Coefficient SE p

Intercept 13.15543 0.990786 2.40e217

Benzoate 215.6165 4.218781 0.000571

N-6-trimethyllysine 9.374373 2.852311 0.001946

A. Multiple regression findings using the 15 selected markers from baseline plasma
samples.
B. Multiple regression findings using the 2 selected markers from the baseline CSF samples.
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avoided the potentially confounding effects of PD
drugs (such as levodopa27) by using samples only from
unmedicated participants. Earlier biomarker investi-
gations into PD progression have focused on meas-
ures of striatal dopaminergic neurotransmission.
While homovanillate is the predominant metabolite
and the end product of dopamine catabolism in hu-
mans,12 previous studies of CSF homovanillate con-
centration have yielded inconsistent results as to the
utility of this compound for cross-sectional analysis of
PD severity or for distinguishing patients with PD
from healthy controls.28 The current study confirms
that CSF homovanillate is not a useful biomarker of
PD progression.

CSF specimen findings.Of the 373 biochemicals iden-
tified in CSF, benzoate was the only one with
a change in concentration from baseline to final that
provided even moderate prediction of DUPDRS21 3
(0.48, p 5 0.00045). This compound, which is
derived from the catabolism of phenylalanine (a pre-
cursor of catecholamines), is also a common food
additive. Because CSF benzoate concentrations
exceed those in plasma, it likely originates from
endogenous metabolism rather than diet. In plasma
specimens, another metabolite derived from phenyl-
alanine, the dipeptide aspartylphenylalanine, also
changed substantially between the baseline and
final collections. The LASSO-selected combination
of aspartylphenylalanine, 1,3-dimethylurate, and
phenylcarnitine (table 4) provided a correlation
coefficient of 0.67 (p 5 1.54e216) with DUPDRS2 1 3.
Surprisingly, neither of these biochemicals was

among the 15 plasma constituents selected from
baseline data (table 2) that, as a group, provided
strong prediction of DUPDRS2 1 3.

Plasma specimen findings. As illustrated in the figure,
the best prediction of PD progression arose from a panel
of compounds measured in plasma specimens,
with a remarkably high correlation coefficient of 0.87
(p 5 2.2e216). Furthermore, the best predictor for
DUPDRS2 1 3 was in baseline specimen data rather
than the change in concentrations from baseline to final.

Purine metabolism findings. For the 15 plasma bio-
chemicals selected by LASSO for fitting in linear
regression analysis (table 2), a search with pathway
enrichment software found no overrepresentation
among metabolic pathways. However, we found some
classes of biochemicals (including several purine com-
pounds) that were predictive of worsening parkinsonism.
A previous metabolomic study also found several
purines with concentrations that differentiated PD
plasma samples from controls.24 Our prior metabolo-
mic analysis of postmortem CSF (which compared PD
to control samples) also reported that the purine inosine
was among 19 compounds found to offer the best
differentiation.16 The current data for baseline plasma
inosine (table 2) reveal that this compound has a mod-
erate inverse correlation with DUPDRS21 3 (23.53,
p5 0.013). Four metabolites of the purine compound
caffeine were among the biochemicals found to be bio-
markers of PD progression: theobromine, theophylline,
paraxanthine, and 1-methylxanthine. Between the
baseline and final specimen collections, the mean

Figure Correlations between composite indexes and baseline-to-final changes in UPDRS parts 2 1 3 scores

(A) Composite index for baseline plasma specimens (correlation coefficient 5 0.87, p 5 2.2e216). (B) Composite index for
baseline CSF specimens (correlation coefficient 5 0.58, p 5 1.33e25). UPDRS 5 Unified Parkinson’s Disease Rating Scale.
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plasma concentration of one of them, theobromine,
decreased by z8%. While this change could be
attributed to diminished dietary intake of caffeine at
the time when final specimens were collected,
another explanation might be a progressive change for
overall purine metabolism (as reflected in the
metabolism of both endogenous and dietary xanthine
compounds). The latter hypothesis has support from
our findings with inosine, the mean plasma
concentration of which at the final collection was
decreased by almost one-third from baseline.

Evidence from other sources also implicates
altered purine metabolism in PD. One study found
that several purine-metabolism genes in the PD brain
were either upregulated or downregulated compared
to controls.29 Epidemiologic research has also high-
lighted relationships between PD and purine com-
pounds. For example, habitual dietary intake of

caffeine imparts a strong inverse association in the
risk for developing PD.30 Other inverse correlates of
risk for either the acquisition or progression of PD are
reported with both plasma and CSF concentrations of
urate (2,6,8-trioxypurine).31 The depletion of striatal
dopamine in the PD brain might also influence
purine metabolism.32

Fatty acids and lipid metabolism findings. In the baseline
plasma specimens, we found another category of
biochemicals among the 15 compounds predictive of
PD progression (table 2): 4 medium- and long-chain
fatty acids (5-dodecanoate, 3-hydroxydecanoate,
docosadienoate, and docosatrienoate) and the lysolipid
1-arachidoylglycerophosphocholine. Although these
and related compounds have not been implicated
previously in the neurodegenerative process of PD,
experimental evidence from toxin-induced rodent

Table 3 Univariate analysis of compoundswith concentrations that changed from baseline to final collections,
correlated with change in parkinsonian severity (defined as the difference between Unified
Parkinson’s Disease Rating Scale parts 2 1 3 scores determined at baseline and final assessments)

A

Plasma CSF

Correlation p q p Correlation

Phenylcarnitine 0.482961 0.00044 0.249078 ND ND

Aspartylphenylalanine 20.42394 0.002401 0.675916 ND ND

Theophylline 20.39724 0.00471 0.675916 20.25068 0.082327

1,3-Dimethylurate 20.38828 0.005836 0.675916 ND ND

Pyruvate 20.37469 0.007989 0.675916 20.01141 0.937975

Cyclo(leu-pro) 20.37169 0.008549 0.675916 20.25464 0.077451

3-Methyl-2-oxobutyrate 20.37084 0.008713 0.675916 20.09716 0.506612

Fumarate 0.364885 0.009943 0.675916 ND ND

a-Ketobutyrate 20.35569 0.012136 0.675916 20.26236 0.068586

Paraxanthine 20.34864 0.014087 0.675916 20.2247 0.120614

B

CSF Plasma

Correlation p q p Correlation

2-Ethylhexanoic acid 0.428031 0.002155 0.253906 ND ND

2-Methylbutyroylcarnitine 20.38392 0.006463 0.253906 ND ND

Benzoate 0.481587 0.000459 0.126341 0.171142 0.239689

Carnitine 20.35228 0.013047 0.354153 20.24322 0.092184

Cytidine 20.36488 0.009944 0.303846 0.074131 0.612705

Isobutyrylcarnitine 20.40623 0.003776 0.253906 ND ND

Isovalerylcarnitine 20.38973 0.005639 0.253906 ND ND

Propionylcarnitine 20.39852 0.004566 0.253906 ND ND

Quinate 0.370407 0.008797 0.30241 0.070293 0.631266

Xylose 0.391176 0.005449 0.253906 ND ND

Abbreviation: ND 5 not detected.
Listed are the top 10 compounds in plasma and CSF with changes in concentration that showed the highest Pearson
correlations.
A. The top 10 compounds found in plasma samples and the corresponding results in CSF samples.
B. The top 10 compounds found in CSF samples and the corresponding results in plasma samples.
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models of parkinsonism offers some insights. In
one study, exposure to the mitochondrial toxin
rotenone led to marked changes in brain and systemic
fatty acid metabolism.33 Another investigation of 6-
hydroxydopamine-treated rats found that the substantia
nigra underwent marked alterations of lipid metabolism,
including either downregulation or upregulation for
the synthesis of several phosphatidylcholine and
lysophosphotidylcholine lipid species.34

To date, no other biospecimen marker studies
have offered correlations as strong as that found for
the prediction of change in the clinical measures of
PD progression used in this study, which, in our par-
ticipants, increased by z47% over a mean of 11
months. Our untargeted approach resulted in the dis-
covery of some biomarkers not previously recognized
as involved in PD neurodegeneration. For example, ser-
ine, which was inversely correlated with DUPDRS2 1

3 (20.45, p 5 0.0011), provided the strongest associ-
ation between biochemicals in baseline plasma concen-
trations and PD progression (table 2). Serine has
neurochemical properties that may be pertinent to
PD, including interactions with NMDA-induced
neurodegeneration.35 Additionally, serine is involved
in a key step of synthesis for the CNS antioxidant
glutathione,36 which is diminished in PD.16

Although a powerful tool for unbiased biomarker
discovery, metabolomic analysis is an evolving technol-
ogy and subject to certain limitations. Measurements
for some constituents of biospecimens are made close
to instrument limits of detection. Assay conditions are
not necessarily optimized for all of the chemical species
measured. Furthermore, the metabolomic platform we
used separates only electrochemically charged com-
pounds. Various factors such as instrument assay
drift can influence the precision of measurements. In
general, given the assay methodology, metabolomic
data are best regarded as relational rather than as
precise concentration determinations. Interpretation of

metabolomic findings needs to recognize that, beyond
profiling biochemicals involved in endogenous metabo-
lism, the measured compounds also can originate from
diet, other ingested substances, and gut flora. Standard-
ized biospecimen collection methods and participant
groups of adequate size18 are critical for reducing some
of the potential artifacts in metabolomic studies.

Our findings offer biomarkers for studying PD
progression and, with them, several new directions
for investigation of PD pathogenesis. We intend to
replicate these findings using other sample sets and
hope to determine whether the compounds found
to predict PD progression might also serve to differ-
entiate those with PD from healthy controls or from
those with other neurodegenerative disorders.
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