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KRas, ROS and the initiation of pancreatic cancer
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ABSTRACT
Oncogenic mutations of KRAS are the most frequent driver mutations in pancreatic cancer.
Expression of an oncogenic allele of KRAS leads to metabolic changes and altered cellular signaling
that both can increase the production of intracellular reactive oxygen species (ROS). Increases in
ROS have been shown to drive the formation and progression of pancreatic precancerous lesions by
upregulating survival and growth factor signaling. A key issue for precancerous and cancer cells is
to keep ROS at levels where they are beneficial for tumor development and progression, but below
the threshold that leads to induction of senescence or cell death. In KRas-driven neoplasia
aberrantly increased ROS levels are therefore balanced by an upregulation of antioxidant genes.
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Epidemiological and animal studies suggest that supple-
mentation of dietary antioxidants decreases cancer risk,
which implies that increased ROS may play a role in carci-
nogenesis.1 Approximately 95% of all pancreatic ductal ade-
nocarcinoma (PDA) show acquisition of activating KRAS
mutations,2 which, due to oncogene-mediated alterations in
the cell’s metabolism, goes along with increased cellular oxi-
dative stress levels.3-6 In mouse models for development of
PDA, KRas-caused formation of ROS already is induced in
acinar cells and gradually increased during ADM and
PanIN formation and progression5 (Fig. 1).

In pancreatic cancer, oncogenic KRas induces the
generation of ROS through multiple mechanisms. Typi-
cal metabolic changes initiated by tumor cells are, for
example, an increase in aerobic glycolysis (Warburg
effect) to support growth under hypoxic conditions7 or
altered mitochondrial metabolic activity.5,6,8-10 Onco-
genic KRas can modulate mitochondrial metabolism and
ROS generation by regulating hypoxia-inducible factors
(HIFs) HIF-1a and HIF-2a,8 or through regulation of
the transferrin receptor (TfR1), which is highly expressed
in pancreatic cancers.11 In addition, KRas can induce
suppression of respiratory chain complex I and III to
cause mitochondrial dysfunction.6,12 Decreased mito-
chondrial efficiency then results in an increased produc-
tion of ROS.5 A possible cause is the ROS-mediated
occurrence of 4-hydroxy-2-nonenal (4HNE) and 4HNE-
adduct formation with macromolecules, which can lead
to inhibition of mitochondrial proteins or damage of
mtDNA.5

KRas-induced increases in intracellular ROS levels
can also occur via altered NADPH oxidase activities,1 i.e.
due to activation of Rac1-NOX4 signaling.13 For exam-
ple, Rac1 in KrasG12D-expressing PanIN1B/PanIN2 is
increasingly active when the tumor protein p53-induced
nuclear protein 1 (TP53INP1) is knocked out or decreas-
ingly expressed.14 Other mechanisms by which increases
in intracellular ROS can be achieved include enhanced
growth factor signaling,15,16 KRasG12D-induced induction
of autophagy-specific genes 5 and 7 (ATG5, ATG7),17

repression of SESN3, which controls the regeneration of
peroxiredoxins,18 or expression of micro RNAs such as
miR-155.19

In vivo in KC mice the depletion of ROS using NAC
or the mitochondrially-targeted antioxidant mitoQ leads
to a dramatic decrease in formation and progression of
precancerous lesions.5,14 KRasG12D-induced mitochon-
drial ROS (mROS) engages key-signaling pathways that
previously have been linked to development and progres-
sion of pancreatic cancer. These include activation of the
ERK1/2 signaling pathway,6 upregulation of epidermal
growth factor receptor (EGF-R) signaling,5 as well as
induction of canonical and alternative activation path-
ways for nuclear factor k-B (NF-kB),5 which both have
been implicated in the progression of PDA.20,21

The serine/threonine kinase Protein Kinase D1
(PKD1) is a major mediator of KRas-mROS signaling,5,22

however, its activation by mROS most likely is indirect.
Previously, it was shown that in response to mROS
PKD1 can be activated via Src-mediated phosphorylation
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events.23-25 Src is a redox-regulated kinase and its activa-
tion involves the oxidation of cysteine residues which
then results in intramolecular disulfide bond formation
and increased kinase activity.26 This can be further
potentiated by ROS-mediated oxidation and inactivation
of regulatory phosphotyrosine phosphatases.27 Although
it remains to be tested, arguments for an involvement of
Src in the KRas-mROS-PKD1 signaling cascade are
recent findings showing cooperation of Src and onco-
genic KRas in driving pancreatic neoplasia,28 metastatic
growth and therapy resistance in pancreatic cancer.29

PKD1 can activate NF-kB downstream of ROS,24,25

and during development of PDA, KRas-mROS-PKD1-
NF-kB signaling upregulates the expression of EGF-R, its
ligands TGFa and EGF as well as their sheddase
ADAM17.5 Overexpression of EGFR and its ligands
occurs frequently in the early development process of
PDA.15 It is required to elevate overall KRas activity
(oncogenic and wildtype KRas) to pathological levels by
additionally activating the wildtype allele.30-32 An emerg-
ing key-role of PKD1 for the initiation of pancreatic can-
cer is indicated by its additional involvement in the
activation of Notch signaling downstream of mutant and
wildtype KRas.22,33 Notch and NF-kB signaling pathways
can co-operate to mediate formation of pre-neoplastic
lesions.34 Thus PKD1 brings together 2 important path-
ways that drive the formation of precancerous lesions.

During development of PDA, the excess of ROS
caused by oncogenic KRas needs to be counterbalanced

by an increased expression of antioxidant molecules
(Fig. 1) in order to generate the pathophysiological con-
ditions under which ROS can mediate cell proliferation35

and down-regulate tumor suppressors such as INK4/p16
and SMAD4.9 Otherwise ROS can increase to levels
where they induce senescence or cell death.36 Fine tuning
to mitigate the damaging effects of ROS in KRas-driven
tumors occurs by upregulation of ROS detoxifying
enzymes. This can be mediated via activation of nuclear
respiratory factor 2 (Nrf2), a transcription factor that
regulates a panel of antioxidant genes. KrasG12D muta-
tions increase the transcription of Nrf2 in vivo in KC
mice and PDA.37 Induction of Nrf2 expression is a
response to mitochondrial ROS (mROS), since its
expression is lost in pancreata of KC mice that were
treated with a mitochondrial antioxidant.5 Acquisition of
Nrf2 expression results in low, but pro-tumorigenic lev-
els of ROS in pre-neoplastic pancreatic cells and cancer
cells.14 A similar relationship between ROS and Nrf2 sig-
naling has been described for development and progres-
sion of other cancers.38 Nrf2 activity also can be further
increased in pancreatic neoplasia due to somatic muta-
tions that disrupt the interaction with its inhibitor
Keap1.39

Besides Nrf2, Pim kinases also contribute to
KRasG12V-driven modulation of cellular ROS levels by
regulating levels of glutathione peroxidase 4 and peroxir-
edoxin 3 or expression of manganese superoxide dismu-
tase (MnSOD), which is encoded by the SOD2 gene.40
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Figure 1. KRas-driven ROS homeostasis and its role in the development of pancreatic cancer. Acquisition of an oncogenic KRas mutation
in pancreatic acinar cells leads to their transdifferentiation to duct-like cells. This process named acinar-to-ductal metaplasia (ADM)
forms the precursor to PanIN lesions. KRas-induced formation of ROS, due to changes in the cell’s metabolic programs, is involved in
both ADM and growth and progression of PanIN lesions. A key issue for precancerous and cancer cells is to keep ROS at levels where
they are beneficial for tumor development or progression, but below the threshold that leads to induction of senescence or cell death.
In KRas-driven neoplasia aberrantly increased ROS levels are therefore accompanied by an upregulation of antioxidant genes.
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If Pims are absent, c-Myc can compensate by regulating
expression of the SOD2 gene.40 Similarly, upregulation
of SOD2 expression is mediated in response to mROS
via PKD1-NF-kB signaling.24 The product of MnSOD
activity is an increase in hydrogen peroxide, a bona fide
signaling molecule that is important for tumor cell
proliferation.16 It should be noted that besides upregula-
tion of antioxidant systems, in pancreatic cancer, KRas
activates multiple other mechanisms that contribute
to prevent cell death and senescence. These include
upregulation of the transcription factor Twist41 and
signaling that bypasses retinoblastoma (Rb) protein.42

In summary, during the development and progression
of PDA, oncogenic KRas causes metabolic changes that
lead to increased generation of mitochondrial reactive
oxygen species. Oncogenic KRas also upregulates antiox-
idant systems to balance ROS to levels at which they
drive major signaling pathways that contribute to onco-
genic transformation and tumor progression.5,30,32 A key
question now is if the knowledge can be applied for
developing novel therapeutic approaches. One possibility
is to inhibit expression or activity of Nrf2, with the over-
all goal to reduce induction of antioxidant systems and
to drive KRas-generated ROS to levels where they induce
senescence or cell death. Such an approach may be most
effective in combination with chemotherapeutic drugs
that additionally increase cellular ROS production.
Another possibility is to administer mitochondrially-tar-
geted antioxidants such as mitoQ, with the overall goal
to suppress KRas-induced mROS formation to target
development and progression of PDA. While approaches
aiming on increasing ROS levels may be more efficient
in targeting progressed PDA, approaches aiming on
decreasing ROS levels may be more efficient as a cancer
prevention strategy.
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