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ABSTRACT

Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as
pathogens. It serves as a protective response that involves leukocytes, blood vessels and molecular
mediators with the purpose to eliminate the initial cause of cell injury and to initiate tissue repair.
Inflammation is tightly regulated by the body and is associated with transient crossing of leukocytes
through the blood vessel wall, a process called transendothelial migration (TEM) or diapedesis. TEM
is a close collaboration between leukocytes on one hand and the endothelium on the other.
Limiting vascular leakage during TEM but also when the leukocyte has crossed the endothelium is
essential for maintaining vascular homeostasis. Although many details have been uncovered during
the recent years, the molecular mechanisms from the vascular part that drive TEM still shows
significant gaps in our understanding. This review will focus on the local signals that are induced in
the endothelium that regulate leukocyte TEM and simultaneous preservation of endothelial barrier
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function.

Introduction

The vascular system is a complex network formed by
numerous connected blood vessels that are embedded in
tissue throughout the human body. Removing all tissues
leaving only the vascular system intact fully outlines the
shape of the human body showing the high density of
blood vessels in our tissues and organs. Proper functions
of this high density network are essential for human
health, since it provides our body with nutrients, oxygen
and hormones and regulates body homeostasis such as
temperature and pH. In addition the vascular system
governs guidance to traveling immune cells and thereby
supports protective immune functions that keep our
body free of pathogens, cancer and foreign material."> In
case of inflammation or immune surveillance the cells
lining the luminal site of blood vessels, known as endo-
thelial cells (ECs), attract and direct traveling immune
cells to suitable exit sites in the vasculature allowing cells
to enter underlying tissue. ECs therefore fulfill an impor-
tant supportive role in guidance and directional migra-
tion of trafficking immune cells. During inflammation
ECs expose a variety of adhesion molecules at their sur-
face that slow down and arrest traveling immune cells in
the blood circulation. These adhesive molecules are
thought to provide guidance cues to immune cells where

to breech the blood vessel wall through a multi-step pro-
cess known as transendothelial migration (TEM) or dia-
pedesis.” Although many adhesion molecules have been
identified, the exact composition of adhesion molecules
that determine a suitable exit site for immune cell diape-
desis remains elusive. It is well appreciated that blood
vessels in inflamed tissues are more permissive for macro
molecules. This endothelial leakiness supports several
inflammatory functions such as activation of the comple-
ment system and recruitment of innate immune cells.
Paradoxically, recruitment of innate immune cells occurs
through transient openings in the endothelium without
plasma leakage.*® This indicates that vascular perme-
ability for small macromolecules and immune cells are
separately regulated. Which mechanisms protect the
endothelial barrier during leukocyte diapedesis is cur-
rently poorly understood.

In several diseases, such as thrombocytopenia, ischemia
and rheumatoid arthritis accumulation of immune cells
evoke serious tissue damage. In case of thrombocytopenia it
is known that the physical movement of immune cells
through the ECs barrier elicits organ hemorrhages.” This
bleeding disorder is partly caused due to the incapability of
ECs to maintain a tight barrier during the physical move-
ment of immune cells through the g¢ layer. In the past years
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lots of effort has made into the development of blocking
antibodies targeting leukocyte integrins or integrin ligands
that are exposed at the endothelial surface. Blocking
immune cell exit sites may prevent TEM and consequently
reduce patients symptoms. However, 2 clinical trials that
tried to interfere with adhesion molecules evoked serious
side effects and aggravated the patients conditions, since the
blocking antibodies used in the trial activated the immune
cells in contrast to their predicted blocking effect.® In order
to improve treatments for diseases that involve immune cell
traffic it is a necessity that we increase our understanding
about what processes occur during leukocyte TEM, both at
the cellular and molecular level. In this review, we focus on
how immune cells travels through the endothelial barrier
and discuss recent insights on how ECs protect their barrier
function during immune cell trafficking,

Transendothelial migration ‘hotspots’

The regulation of immune cell trafficking is complex and
goes far beyond our current understanding. Although
much is yet to discover, intensive research over the past
decade has revealed several fundamental principles that
regulate cell migration in a variety of immune cell related
responses such as hematopoiesis, immune surveillance
and innate and adaptive immunity. The current paradigm
of TEM is a refined version of the multi-step model that
was first proposed by Butcher and Springer.”'* The cur-
rent order in the multistep paradigm are; leukocyte rolling,
arrest, crawling, firm adhesion and transmigration. The
latter occurs either through the endothelial junctions (par-
acellular route)''* or through the endothelial cell body
(transcellular route).">"* Interestingly, leukocytes diapede-
sis gives the impression to occur at predefined places in
the endothelium lining. Some locations even favor the
migration of multiple immune cells that breech the endo-
thelial lining in rapid succession. In fact, when looking at
a transmigrating leukocyte, just prior to exiting, the leuko-
cyte changes its crawling morphology to a more round
appearance. This raises some important questions, such as
what factors determine these so called ‘hotspots for trans-
migration’, why do 2 routes exist and what defines the
usage of one over the other. Judging on the recordings of
transmigrating leukocytes, it appears that the leukocytes
search the endothelial monolayer to find an exit point,
indicating that they use the crawling step as a sort of
searching period. However, strong evidence on this latter
suggestion is missing and requires future investigations.
So far, several key principles have been established,
although it needs to be kept in mind that these principles
are based on in vitro studies and therefore can only serve
as a model that awaits confirmation in future in vivo stud-
ies. First of all, immune cells are attracted toward an

optimal concentration of chemokines (chemotaxis), den-
sity of adhesion molecules (haptotaxis) or cellular stiffness
(durotaxis). Secondly, migration into a tissue or organ is
believed to follow the path of least resistance (tenertaxis).
In addition, shear forces, vessel type and composition of
the glycocalyx play an important regulatory role in dictat-
ing suitable exit sites. Each principle will be briefly delin-
eated starting with chemotaxis.

Chemotaxis

Chemokines are of key importance for leukocyte TEM not
only because of their involvement in chemotaxis but also
because of their role in integrin activation inducing leuko-
cyte arrest (Fig. 1a). Chemokines are immobilized by hep-
aran sulfate (HS) proteoglycans that are part of a 50-
100 nm negatively charged network on the apical surface of
gc called the glycocalyx. Immobilized chemokines elicit
integrin-mediated adhesion.'® Recently, it has been shown
that perivascular macrophages located between the tissue
and blood vessels, secrete chemokines that cause local “hot-
spots” for neutrophil diapedesis in vivo.'” These chemokines
secreted in the extravascular space are bound to glycosami-
noglycans (GAGs) and are subsequently transcytosed to the
luminal side of the vasculature. There are some indications
that oligomeric chemokine-forms activate leukocyte-integ-
rins that direct leukocyte arrest and firm adhesion whereas
monomeric-forms activate integrin subsets on the leukocyte
that govern cell movement.'*"”

Haptotaxis

Similar ideas have been suggested for integrin ligands pre-
sented at the apical surface of ECs where the amount of leu-
kocyte-integrin ligands regulates leukocyte behavior. A
good example of haptotaxis is the amount of ICAM-1 mole-
cules present at the endothelial surface (Fig. 1b). Surface
density and distribution of endothelial ICAM-1 induced a
transition from paracellular to transcellular migration, while
intermediate levels favored the paracellular route**>*!
Related to the amount of surface ligands, neutrophil-gc
interactions during TEM does increase integrin expression
at the surface of neutrophils thereby affecting their activity
and behavior after transmigration.*

Durotaxis

Migrating cells sense environmental cues that give direc-
tion to their movement. Migrating cells are attracted to an
optimal surface stiffness also called stiffness sensing or
durotaxis (Fig. 1c). Leukocytes sense and respond to their
physical surroundings, for example in vitro neutrophils
migrate slower on soft (4 kPa) and very rigid (13 kPa)
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Figure 1. Model of factors that determine hotspots for leukocyte transendothelial migration. Several key principles are thought to gov-
ern leukocyte diapedesis at predefined places in the vasculature. In the first place leukocytes are attracted toward an optimal; (a) con-
centration of chemokines (chemotaxis), (b) density of adhesion molecules (haptotaxis) or (c) cellular stiffness (durotaxis). Oligomeric
chemokine-forms bound to glycosaminoglycans (GAGs) are thought to direct leukocyte firm adhesion and arrest whereas monomeric
chemokine-forms govern directional cell movement. (d) Secondly, migration into a tissue or organ is believed to follow the path of least
resistance, i.e. tenertaxis. Tenertaxis may affect the decision making to go trans or paracellular. Additional factors such as (e) shear forces
and (f) vessel type play an important regulatory role in dictating suitable exit sites. The major route of transmigration into lung, skin and
cremaster is believed to be the paracellular route whereas the transcellular route is recognized as the dominant route to enter the

lymph node, blood brain barrier (BBB) or the peritoneum.

fibronectin coated surfaces whereas optimal crawling
speeds were reached on 7 kPa. Interestingly fibronectin
density also affected the outcome of migration speed.
Using FN concentrations of 100 pg/ml the optimal stiff-
ness for migration is 4 kPa while on 10 pg/ml the optimal
rigidity for maximal migration is increased to 7 kPa.*
This suggests that leukocyte TEM in vivo depends on the
combination between matrix rigidity (i.e. durotaxis) and
the amount of available surface ligands (i.e., haptotaxis)
for leukocytes to interact with.

Tenertaxis

Another phenomenon that is often observed in vitro
when the endothelial barrier is very tight, is the

predominant use of the transcellular route, whereas
weak endothelial junctional integrity shows high associa-
tion with paracellular diapedesis (Fig. 1d).** To find
these spots of low resistance, lymphocytes dynamically
probe the underlying endothelium by extending invado-
some-like protrusions into its surface that deform the
plasma membrane, depolymerize F-actin filaments at the
membrane cortex and ultimately breach the barrier.”**’
The authors suggest that leukocyte transmigration is
guided by a common principle namely ‘the path of least
resistance’.?* However, determining where the path of
least resistance is present in vivo is very difficult, if not
impossible. The observations of tenertaxis for TEM are
so far only performed in in vitro studies. Another point
is the seemingly contradictory effects of durotaxis and
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tenertaxis. According to tenertaxis, leukocytes would
prefer a site of low endothelial cytoskeletal density, while
according to durotaxis leukocytes need an optimum
cytoskeletal stiffness to cross the vessel wall.>* This
opposing arguments for determining the transendothe-
lial migration ‘hotspot’ indicate that the mechanism that
determines the TEM hotspot is likely an interdependent
combination of the TEM factors chemo-, hapto-, duro-
and tenertaxis, where, dependent on specific (patho)
physiological conditions, one factor may play a more
dominant role over the other in determining the site for
leukocytes to cross.

Shear forces

The impact of shear forces on leukocyte behavior has
been established by several research groups. Transmigra-
tion kinetics of neutrophils was significantly faster under
shear stress than under static conditions (Fig. le).*® Leu-
kocyte extravasation primarily takes place in the postca-
pillary venules of the inflamed tissue where the flow
velocity is between 1-10 dyn/cm.>”’ Cinamon and co-
workers showed that specifically for lymphocytes TEM
was promoted by a continuous physiological flow
between 0.75 and 5 dyn/cm.>*® From these data it was
concluded that flow-induced mechanical signals are cou-
pled to Gi protein signaling at the luminal endothelial
cell surface, resulting in further enhancing lymphocyte
TEM.* Additional work from the same group convinc-
ingly showed that shear stress promotes extensive filopo-
dia formation by T-lymphocytes." Filopodia are small
membrane “finger-like” protrusions that leukocytes use
to probe the luminal endothelial surface before and dur-
ing TEM. This process of lymphocyte probing the endo-
thelial surface was underscored by a report by Carman
and colleagues, who referred to these structures as invad-
ing podosomes.”

Although the majority of leukocyte extravasation occurs
under low shear conditions in postcapillary venules, during
some pathological conditions such as atherosclerosis, mono-
cytes adhere and transmigrate through the endothelial lining
of the artery wall where shear stress is much higher. It was
been shown that leukocytes tethered to and rolled on plate-
let-decorated ultra-large Von Willebrand factor (ULVWEF)
string-like structures presented on the luminal side of the
endothelium.”" Leukocytes scanned for activated platelets to
interact via P-selectin glycoprotein ligand-1 (PSGL-1)
resulting in clustering and activation of the 2 integrin Mac-
1 that mediates neutrophil TEM.>>** This simultaneous
interaction with activated platelets and the endothelium
results in rapid neutrophil exit and the onset of inflamma-
tion.** Using platelets as intermediate substrates, monocytes
are able to transmigrate under high shear stress varying

between 20 and 40 dyn/cm.>*' Thus, also matrices gener-
ated on the luminal surface of the endothelium can drive
leukocyte TEM under high shear conditions.

Vascular beds

Leukocyte diapedesis through the blood brain barrier, into
the peritoneum or lungs has been shown to be differen-
tially regulated (Fig. 1f). For instance, neutrophil diapede-
sis in ICAM-1/P-selectin knock-out mice is normal in the
lungs but totally abrogated in the peritoneum.” Recently,
it has been shown that locking the endothelial junctions
prevented leukocyte diapedesis, but not in all tissues. Dia-
pedesis into lung, skin and cremaster was severely
reduced, establishing the paracellular route as the domi-
nant route in these tissues. However, the migration of
naive lymphocytes into lymph nodes and transmigration
of neutrophils into the peritoneum was not affected by
junctional locking.”® Moreover, during inflammation in
the respiratory tract of rats, plasma proteins leakage is pre-
dominantly observed in the post-capillary venules whereas
capillaries and arterioles did not leak. Under these inflam-
matory conditions most leukocytes, in particular neutro-
phils, transmigrate in the collecting venules downstream
of the leaky post-capillary venules.* This landmark paper
reveals that plasma protein leakage and leukocyte recruit-
ment are 2 separable events that can occur side by side,
but this leakage is not necessarily caused by the transmi-
gration of immune cells through the ECs.

Leukocyte extravasation and vascular
permeability

Inflammation is characterized by increased vasodilation,
leakage and leukocyte
Whether the physical movement of leukocytes directly
causes increased microvascular permeability has been
debated for decades. Some studies propose leukocyte
adhesion and transmigration to be acute events leading
to tissue damage and organ failure during inflammation
and ischemia-reperfusion.”””® A strong argument that
supports this hypothesis are the neutrophil depletion or
CD11/CD18 blocking experiments that have been shown
to attenuate vascular injury under inflammatory and
ischemia-reperfusion conditions.”®*' However, when
microvascular permeability was measured simulta-
neously with leukocyte-endothelial interactions, local
plasma leakage sites were distinct from those of leuko-
cyte adhesion or transmigration.*>*>*> Moreover, sev-
eral studies have shown that the timing of leukocyte
adhesion and transmigration are not well correlated with
the evoked permeability change during acute inflamma-
tion.****  Recently, molecular evidence for the

microvascular recruitment.



uncoupling between leukocyte TEM and vascular perme-
ability has been presented by Wessel and colleagues.
They mechanistically uncoupled leukocyte extravasation
and vascular permeability by showing that opening of
endothelial junctions in those distinct processes are con-
trolled by different tyrosine residues of VE-cadherin in
vivo.%>° However, how the endothelium maintains a
tight barrier during leukocyte TEM is still unknown.

Paracellular and transcellular migration

Paracellular migration is the main route taken by neutrophils
to enter lung, skin or cremasteric tissue.!>° Currently, 2
hypothesizes to open gc junctions dominate the field of leu-
kocyte diapedesis. The first is based on research conducted
on GPCR signaling in ECs, such as thrombin induced junc-
tional opening”' and postulates that leukocytes induce acto-
myosin contraction in ECs triggering junctional opening,>*
>* The second hypothesis anticipates that ¢ junctions are
locally destabilized to allow migrating cells to squeeze
through the transient opening in the junction. Recent evi-
dence supporting the latter hypothesis shows that leukocytes
trigger rapid dephosphorylation of Tyr731 on VE-cadherin
via the tyrosine phosphatase SHP-2, which allows the adap-
tin AP-2 to bind and initiates endocytosis of VE-cadherin
(Fig. 2a). This destabilizes VE-cadherin-based junctions,
allowing junctional opening and consequent paracellular
migration of leukocytes.® Interestingly, the same group
showed that VEGF and histamine, ie. Go signaling,
increased the phosphorylation of Tyr685 on VE-cadherin,
resulting in opening of cell-cell junctions. As described above
for Tyr731 to be dephosphorylated, SHP2 is crucial and for
Tyr685 to become phosphorylated, it is required that VE-
PTP moves out of the way. However, both phosphorylation
events have been shown to depend on Src-kinase.>>*° Also,
both SHP2 and Go signaling can result in RhoA activa-
tion.””*® How then can these events occur specifically at one
Tyr residue of the same protein with an almost opposite out-
come? Although more detailed research should be per-
formed to fully clarify this point, but we speculate that the
signals require more proteins within one complex that can
act in a very local and transient manner. So, for the above
described events, RhoA may be activated in both signaling
pathways, however, the presence of specific other triggering
GTPase molecules like guanine-nucleotide exchange factors
(GEFs) and/or GTPase activating proteins (GAPs) are likely
to make the difference in the final outcome, resulting in local
signals. We will discuss the contribution of these GEFs and
GAPS in a separate sub-section below.

Transcellular migration is the major transmigration route
used by neutrophils to enter the peritoneum and for lympho-
cytes to enter lymph nodes.*® Several studies show that trans-
cellular migration is ICAM-1-dependent.”**"*>*** The
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initiation of a transcellular passageway is thought to occur
through fusion of ICAM-1 containing endocytic vesicles
forcing a transcellular pore.” Lymphocytes induce transient
ICAM-1 clustering and in areas with a high density of caveo-
lin and actin stress fibers ICAM-1 could associate with, and
induce fusion of, caveolae resulting in the formation of a
transcellular pore.” Moreover, local depolarization of F-actin
at the endothelial cell cortex results in making the endothelial
softer in a confined region underneath the adherent leuko-
cyte.”” In combination with a local reduction in actomyosin-
based contraction of the cell cortex, a transcellular pore can
be formed.*® Chemotaxis during transcellular migration of
lymphocytes is mediated by intra-endothelial vesicles con-
taining chemokines rather than by extracellular released che-
mokines (Fig. 2b).”” Endocytic vesicle fusion thereby
supports a simultaneous release of chemokines and initiation
of a transcellular passageway.

For both transmigratory routes the trigger that ini-
tiates endothelial pore opening at the start of transmigra-
tion is heavily debated. The role of ICAM-1 as a potential
trigger has been controversial for many years. An attrac-
tive hypothesis involves the combination of ICAM-1
clustering and mechanical forces of probing leukocytes."?
In case of transcellular migration ICAM-1 may soften
the gc body by vesicle fusion events. But in paracellular
migration ICAM-1 clustering may direct weakening of
the junctions through recruitment of the tyrosine phos-
phatase SHP-2.°"*> For both transmigration routes,
endothelial pore opening is in part mediated by mechan-
ical forces that are generated by migrating leukocytes.
Actin polymerization in the leukocyte elicits pulling and
pushing forces that support the movement through the
confined endothelial pore.®***

The docking structure

A widely observed phenomenon associated with leuko-
cyte TEM is the formation of endothelial membrane pro-
trusions rich in Filamentous (F)-actin that surround
transmigrating leukocytes. These endothelial structures
were first described by Barreiro and colleagues who
defined them as docking structures.°® Other researchers
found similar endothelial structures but proposed differ-
ent names, e.g. transmigratory cups, apical cups, dome
structures, ICAM-1-enriched contact areas, or actin
dynamic structures."**””! The names were based on the
hypothesized function or morphology of these struc-
tures. Work of Carman and coworkers showed that these
structures, that formed both during para- and transcellu-
lar diapedesis (Fig. 2), were more frequently associated
with leukocytes in the process of transmigration than
with firm adherent leukocytes prior to diapedesis.'*
Many of these F-actin structures comprise vertical
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Figure 2. Leukocyte diapedesis through or between endothelial cells. (a) The initiation of paracellular and transcellular transmigration is
believed to involve distinct molecular mechanisms that allow transient endothelial permeability to leukocytes. Destabilization of VE-cad-
herin based cell-cell contacts is recognized as the major mechanisms that initiates the opening of the paracellular pathway. It is thought
that leukocytes trigger rapid dephosphorylation of Tyr731 via the tyrosine phosphatase SHP-2 allowing the adaptin AP-2 to bind and ini-
tiate endocytosis of VE-cadherin and thereby destabilize VE-cadherin based junctions. (b) The initiation of a transcellular passageway is
thought to occur through fusion of ICAM-1 bearing endocytic vesicles forcing a transcellular pore allowing transcellular migration to
occur. For both transmigration routes, endothelial pore opening is in part mediated by mechanical forces that are generated by migrat-
ing leukocytes. Polarized actin polymerization in the leukocyte elicits pulling and pushing forces that supports their movement through

the confined endothelial pore.

microvilli-like protrusions. These protrusions have been
suggested to anchor endothelial adhesion receptors, such
as ICAM-1 and VCAM-1. As such they may serve as
migration-supporting platforms or adhesion substrates
to assist leukocyte transmigration.’*”>” These platforms
are controlled by tetraspannins, transmembrane proteins
that keep the platforms together and organize it into
small microdomains.”>’® It has been shown that assem-
bly of F-actin, the major component and driving force to
induce such apical protrusions, requires the activation
small GTPases RhoG and Racl.””””” Currently, the major
function of the docking structure is thought to provide
guidance for transmigrating leukocytes.”®

The regulation of the endothelial F-actin
cytoskeleton

Regulation of leukocyte TEM and vascular integrity both
depend on the ability to dynamically remodel the F-actin

cytoskeleton in ECs. Failure to do so leads to disruption
of junctional integrity and ineffective TEM.

Perhaps the best known example of F-actin remodel-
ing is the formation of the lamellipodia structure at the
leading edge of migrating cells. Lamellipodia contain an
extensively branched network of polarized actin fila-
ments with the plus ends directed toward the plasma
membrane. The growing of actin monomers into a
branched filamentous network produces mechanical
force that drives the forward extension of the lamellipo-
dia. Numerous actin-based responses are triggered by
extracellular signals as gain or loss of cell-cell contact,
contact inhibition, gain or loss of cell-matrix interaction,
growth factor receptor mediated signaling, chemotaxis in
response to attractive and repulsive guidance cues and so
forth. These input signals are subsequently converted
into an intracellular response. Three well known proteins
that fulfill this task of signal conversion are the small
Rho-GTPases Racl, RhoA and Cdc42. These small Rho-



GTPases act as molecular switches between receptor-
mediated signaling and the actin polymerization
machinery. Actin polymerization does not occur sponta-
neously, or if so at a very slow rate. To accelerate the
polymerization, it requires a set of proteins forming the
actin polymerization machinery, including nucleating
promoting factors (NPFs) such as WAVE and N-WASP
that activate actin nucleators like Arp2/3, mDia and Ena/
VASP proteins. These processes as described above are
reviewed extensively by Pollard and colleagues.””

GEFs and GAPs

Guanine-nucleotide exchange factors (GEFs) and
GTPase activating proteins (GAPs) are the master
regulators of Rho-family GTPases and therefore regu-
late numerous cellular responses. Endothelial cells
express over 22 Rho-GTPases and more than 69
GEFs and an equal number of GAPs.* GEF and
GAP function is required to regulate the rate, location
and timing of GTPase activity. This is probably why
cells express a higher variety of GEFs and GAPs com-
pared to the number of GTPases, to fine-tune com-
plex cellular processes such as maintenance of stable
endothelial cell-cell junctions or directional migration.
Rho proteins cycle between GDP- and GTP-bound
states. GEFs exchange the transition between the
GDP (inactive) to the GTP (active) loaded state.
Whereas GAPs enhance the relative slow intrinsic
GTPase activity of Rho proteins. Another set of regu-
latory proteins are the GDI proteins, known as gua-
nine nucleotide-dissociation inhibitors that keep
GTPases in the inactive state in the cytosol. GEFs
contain a DH domain, which catalyzes the exchange
of GDP for GTP to activate Rho-GTPases. Another
domain found in many GEFs is the PH domain
which has been reported to target the GEF to the
plasma membrane®’ or to facilitate binding to the
GTPase. For instance, the leukemia associated Rho-
GEF (LARG) binds directly to RhoA through its PH
domain.* Interestingly, the PH domain does not only
bind to phospholipids or GTPases but also binds to
other proteins. For example, the first PH-DH domain
of Trio directly interacts with the actin cross linker
filamin. There is always an exception to the rule:
some GEFs like Tiaml and Vavl use other protein
domains to determine their subcellular distribution
and do not require their PH domain for membrane
binding.*’ In addition to this exception, some GEFs
(e.g, ARNO/DOCK family) completely lack a PH
domain and use a BAR domain to interact with
curved membrane.** Nonetheless, PH domains in
many GEFs are responsible for their subcellular
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localization and are required for proper GTPase acti-
vation. Binding of the PH domain to phospholipids
orientates the associated DH domain correctly for
proper GTPase activation. In addition to that, plasma
membrane binding could lead to a conformational
change between the PH and DH domain that enhan-
ces GEF activity. Some GEFs like Vavl contain auto-
inhibitory sequences at the N-terminus.*” In case of
Vavl phosphorylation terminates the auto-inhibition
and as a result the DH domain becomes accessible
and able to activate GTPases.*

Importantly, depending on their subcellular locali-
zation Rho-GEFs can globally and locally change the
equilibrium of the Rho-GTP bound state. For
instance, the GEF Netl resides inactive in the nucleus
but after translocation to the plasma membrane it
activates RhoA.*” Similarly, Ect2 is normally localized
in the nucleus during interphase but comes out of the
nucleus during cell division to activate RhoA to regu-
late the cleavage furrow that separates the 2 cells dur-
ing cell division.*® Another example is GEF-H1 that
directly interacts with microtubules, inhibiting its
exchange potential toward RhoA. Tubulin depolymer-
ization disrupts this interaction resulting in local
RhoA activation.*” Finally, GEFs can also function as
scaffolding proteins supporting larger proteins com-
plexes up- or downstream of Rho-GTPases. This scaf-
folding function does not require GEF activity. For
instance a-Pix acts as a scaffold to integrate signals
that arise from GPCRs with the activation of Cdc42
to drive chemotaxis.”® In a related example p-Pix
tethers NADPH oxidase-1 to Racl for activation,” a
pathway that regulates production of reactive oxygen
species that is important to kill pathogenic bacteria.

Dysregulation of Rho-GTPases can have numerous
causes such as altered GTPase gene expression,
deregulated function or gene expression of regulatory
GAPs, GEFs or GDIs, including Rho-GTPase effectors
such as WAVE. Cancer is often associated with
altered GTPase regulation. For example, LARG has
been identified in acute myelogenous leukemia. A
missense mutation in Tiaml has been recognized in
inducing transforming activities of the cell. Develop-
mental and neurological disorders such as ALS
(amyotrophic lateral sclerosis) are caused by loss of
function mutations in the GEF ALS2. And for viral
and bacterial pathogenesis: some Rho-GEFs are
hijacked to facilitate the pathogenic invasion of host
cells.”? Current studies aim to unravel the spatiotem-
poral activation of GTPases using functional FRET-
based biosensors to study local GEF and GAP activ-
ity. We recently reported that the GEFs LARG and
Ect2 play an important role in maintaining vascular
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leakage during leukocyte diapedesis.”> The next sec-
tion will elaborate on this.

Actin regulation during leukocyte TEM

Molecular evidence for the uncoupling between leuko-
cyte TEM and vascular permeability has been presented®
and we recently reported that local RhoA-mediated F-
actin rings contribute to endothelial pore confinement in
order to maintain the endothelial barrier integrity during
leukocyte diapedesis.”> Using a FRET-based DORA
RhoA biosensor, we show that RhoA is transiently and
locally activated during leukocyte diapedesis and not
during the adhesion and crawling phase by inducing F-
actin-rich rings around the spot where the leukocyte
crosses. These rings show asymmetrical phosphorylation
of myosin light chain, indicating that these contractile F-
actin rings serve as elastic straps to limit leakage. A well-
studied downstream signaling route of RhoA is through
activation of Rho Kinase (ROCK).”* ROCK promotes
the phosphorylation of the myosin-II regulatory light
chains by Myosin Light Chain Kinase (MLCK). Myosin-
IT is a motor protein that moves along actin filaments
toward the plus end. The movement of 2 opposing myo-
sin-II complexes generates force on actin filaments caus-
ing antiparallel sliding of adjacent actin filaments relative
to one another and contraction of the actin filaments.”
This may underlie the induction of the contractile ring
and prevention of vascular leakage during TEM. Our
recent data further support this signaling pathway being
involved: a GEF screen indicates a role for the RhoA-
GEFs LARG and Ect2 in this process, activating RhoA
that in turn induces myosin-based contraction via
ROCK2b and MLCK activation.”

However, how these F-actin-rich endothelial straps are
initiated is not clear. We hypothesize that it all starts with a
signaling receptor expressed on the surface of the endothe-
lium that transmits the presence of a transmigrating leuko-
cyte, finally resulting in local RhoA activation. Candidate
receptors are the inflammatory adhesion molecule ICAM-
1 and the junctional protein PECAM-1, both present at the
site of pore formation during neutrophil transmigration,
either paracellular or transcellular. Interestingly, upon
mechanical tension both proteins have been reported to
induce RhoA activity.”>” In support of a prominent role
for ICAM-1, our data show that depletion of ICAM-1 in
TNF-a-stimulated endothelial cells resulted in an increase
of neutrophil-induced dextran leakage compared to con-
trol endothelial cells, although the levels did not reach the
levels when RhoA was silenced.”> PECAM-1 however
appeared not to be involved in maintenance of barrier
function, as depletion in ECs had no effect on neutrophil-
induced dextran leakage and neutrophil transmigration

numbers.”> Homophilic PECAM-1 interactions between
ECs and leukocytes are described repeatedly to be impor-
tant for leukocytes TEM guidance.”®*” But the fact that we
observed no effect of PECAM-1 depletion on both neutro-
phil TEM efficiency and endothelial barrier function can
be explained by the stimulus-dependent role of PECAM-1
in leukocyte diapedesis. Where PECAM-1 plays an impor-
tant role in guiding leukocyte TEM elicited by IL-1p, dia-
pedesis responses to TNF-ox or fMLP were shown to be
PECAM-1 independent.”® This elucidates the observed
TNEF-a-induced effects we found, and proposes PECAM-1
as in interesting target for endothelial barrier preservation
during IL-18-induced leukocytes diapedesis.

Junctional protein candidates

ICAM-1-deficient ECs compromised the barrier function
leading to dextran leakage during neutrophil TEM, but
to lesser extent when compared to RhoA or its down-
stream effector ROCK2 depletion in ECs.”® This discrep-
ancy in the difference in leakage implicates that ICAM-1
is involved in activating RhoA but is not the only signal
transducer necessary to induce formation of the actin
ring and prevent leakage. The involvement of other pro-
teins at cell-cell junctions such as junctional adhesion
molecules (JAMs) or CD99 in RhoA activation and pres-
ervation of endothelial barrier function during leuko-
cytes diapedesis are unknown and therefore of interest
for future research. In vivo blockade of JAM-A activity
or expression results in a decrease of both neutrophil
and monocyte diapedesis®® caused by its involvement in
directing leukocyte TEM via homophilic interactions
between endothelial and leukocyte JAM-A molecules.'®
Moreover, a recent report shows that tension imposed
on JAM-A induces RhoA activation resulting in endo-
thelial cell stiffening.'®" Therefore, it is tempting to spec-
ulate that JAM-A may, in concert with ICAM-1, be
involved as the initial signaling receptors that lead to
local RhoA activation and ring formation. However,
based on our work, the GEFs implicated in tension-
induced RhoA activation through JAM-A, p115rhoGEF
and GEF-H1, do not support F-actin-rich rings during
leukocyte diapedesis.” In addition, JAM-A is not essen-
tial as knockout mice are viable and show no major
defects in vascular development or permeability indicat-
ing redundancy with the other family members JAM-B
and JAM-C or other junctional proteins as PECAM-1.”
Indeed, JAM-C is found to interact with Mac-1 integrin
on leukocytes.'” Therefore it might be necessary to
deplete more than only one JAM family members,
possibly in combination with PECAM-1 silencing to
study the involvement of JAM proteins in the local
induction of RhoA activation, and thereby formation of
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the F-actin-rich ring surrounding transmigrating leuko-  interact in a homophilic manner with its neighbor on
cytes to retain vascular barrier function. the adjacent endothelial cells. Interestingly, endothelial

At endothelial cell-cell junctions is among several ~ CD99 can also interact with the monocytic CD99 and
junctional proteins CD99 found, a heavily O-glycosy-  thereby facilitates monocyte transmigration.'’> Later in

lated 32-kp type I transmembrane protein that can  vitro and in vivo involvement of CD99 in directing
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Figure 3. Leukocyte diapedesis and vascular permeability are uncoupled events. Vascular injury in the skin is resolved by various
sequential processes that initiate tissue repair and the clearance of pathogens and dirt to restore vascular homeostasis. (a) In the first
step of the cascade, platelets adhere to exposed collagen forming a haemostatic plug of fibrin that arrests blood leakage (a-c). Activated
platelets produce thrombin, a compound that activates the coagulation cascade to produce the haemostatic plug. Thrombin released by
activated platelets and histamine released by tissue basophils and mast cells are thought to initiate endothelial activation, a transient
increase in endothelial permeability provoked by RhoA-mediated actomyosin contractility, and local enhancement of blood flow. This
results in chemokine and cytokine release by various cell types followed by inflammation close to the site of injury. (b) Downstream of
vascular injury endothelial cells get activated and in turn expose a variety of adhesion molecules at their surface. Upstream the transient
permeability increase is counterbalanced by Trio-Rac1-mediated JAILs that stabilize endothelial junctions. (c) Leukocyte recruitment
downstream of vascular leakage and vascular damage is believed to follow the multistep paradigm of TEM. Vascular leakage during leu-
kocyte diapedesis is prevented by RhoA-mediated endothelial pore confinement. (d) Infiltrating leukocytes scan and clear pathogens
and dirt from the site of infection. Rac1-mediated wound healing and angiogenesis repair damaged tissue and vessels. (e) Finally, tissue
macrophages secrete chemokines that resolve inflammation arresting leukocyte recruitment to restore vascular homeostasis.
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diapedesis of monocytes, neutrophils and T-cells was
established'**'%> making this junctional protein of inter-
est in the context of unraveling the initial receptor
involved in formatting of a confined actin pore during
leukocyte TEM. Intracellular CD99 signaling regulating
leukocyte TEM has recently been described to involve
soluble adenylyl cyclase (sAC) that activates protein
kinase A (PKA). This activation occurs at the lysine-rich
intracellular tail of CD99 using the A-kinase anchoring
protein (AKAP) ezrin as a scaffold.' Involvement of
ezrin in this signaling complex could connect homo-
philic CD99 interaction to formation of the F-actin rich
pore, because ezrin belongs to the ERM family (ezrin/
radixin/moesin) of proteins that link actin filaments to
the plasma membrane. Moreover, CD99 functions at a
later stage during the diapedesis step, i.e., when the leu-
kocyte has worked its way into the junction already.'®
For our model, we noticed that the RhoA activity also
occurs during these stages of diapedesis, the so-called
mid-to-late diapedesis steps.”” Therefore it is interesting
to test if CD99 depletion in ECs would impair the barrier
function of the endothelium during leukocyte TEM.

De novo actin ring formation

Although RhoA GDP/GTP cycling is necessary to
induce de novo actin polymerization and thereby con-
traction and confinement of the pore during neutro-
phil diapedesis, it is not proven that RhoA is also
involved in de novo actin polymerization to form the
diapedesis ring. As we showed that F-actin-positive
rings surround the endothelial pore during all steps
of diapedesis, including the very early initiation of
pore formation,”” the question is if the initial ring
formation is mediated by de novo actin polymeriza-
tion, or that existing stress fibers are remodeled into
a ring like structure. In the latter assumption, RhoA-
induced actin fibers would be involved in contraction
only. However, depletion of endothelial RhoA reduced
the accumulation of lifeact-GFP around the pore,
implicating that the F-actin-rich endothelial pores are
formed on existing fibers that are supported and
strengthened with de novo actin polymerization.”

Conclusion

Together, the phenomenon how the endothelium regu-
lates its barrier function during leukocyte extravasation
appears to be a local affair. Although the mechanism
responsible for this action is not yet fully elucidated, we
can conclude that it involves the local contractile
machinery of the endothelium. In an attempt to summa-
rize the current knowledge on how local vascular signals

differentially control permeability and leukocyte TEM,
we compiled a figure starting with local vascular injury
in the capillaries (Fig. 3a). Inflammatory signals active
the vasculature more downstream, ie. in the post-
capillaries, to mediate leukocyte TEM (Fig. 3b-c). In
order to restore vascular homeostasis, transmigrated leu-
kocytes crawl through the underlying tissue toward the
injured site to remove damaged tissue (Fig. 3d). This
then results in a full resolution of the inflammation and
restored vascular homeostasis (Fig. 3e).

Despite the current lack of the true initiation signals,
we hypothesize that the leukocyte itself triggers the endo-
thelium to start the local machinery that induce forma-
tion of the contractile rings to limit vascular leakage
during TEM. However, the question remains if the
mechanism to prevent leakage is the same during para-
and transcellular migration modes. This is also true for
the TEM events that occur in vivo in different tissues
under specific conditions such as acute lung injury and
ischemic reperfusion injury. Nevertheless, despite these
remaining uncertainties it is clear that permeability and
leukocyte TEM are regulated independently and can be
seen as 2 separate events, in vivo occurring at different
location, i.e., the capillaries and post-capillaries, but yet
interconnected events that need each other to resolve the
inflammation (Fig. 3).
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