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Targeting oncogenic protein kinase Ci for treatment of mutant KRAS LADC
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ABSTRACT
Lung cancer is the leading cause of cancer death in the US with »124,000 new cases annually, and a
5 y survival rate of »16%. Mutant KRAS-driven lung adenocarcinoma (KRAS LADC) is a particularly
prevalent and deadly form of lung cancer. Protein kinase Ci (PKCi) is an oncogenic effector of KRAS
that activates multiple signaling pathways that stimulate transformed growth and invasion, and
maintain a KRAS LADC tumor-initiating cell (TIC) phenotype. PKCi inhibitors used alone and in
strategic combination show promise as new therapeutic approaches to treatment of KRAS LADC.
These novel drug combinations may improve clinical management of KRAS LADC.
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KRASmutation is an oncogenic driver required
for LADC tumor initiation and maintenance

Activating KRAS mutations are detected in approxi-
mately 33% of LADC. KRAS mutations are also present
in preneoplastic lesions of the lung (atypical alveolar
hyperplasias, AAH), suggesting early acquisition during
lung neoplasia.1 Genomic sequencing of lung adenomas
in situ revealed both regional histological and genomic
heterogeneity; however, KRAS mutations were observed
uniformly throughout individual lesions, indicating that
mutant KRAS drives early tumor cell transformation,
selection and evolution.2 Expression of mutant
KrasG12D in the mouse lung is sufficient to drive LADC
initiation, providing in vivo evidence that KRAS is a key
oncogenic driver of LADC initiation.3,4 Interestingly, sys-
temic delivery of KRAS siRNA significantly inhibited
tumor growth and metastasis of mutant KRAS LADC
tumors, demonstrating a continued dependency on
mutant KRAS signaling for tumor maintenance.5

Therapeutic targeting of KRAS LADC

Small molecule inhibitors designed to directly target
KRAS have focused on several approaches: agents
designed to decrease exchange of GDP for GTP, increase
the hydrolytic activity of mutant KRAS, or inhibit effec-
tor binding and/or activation (recently reviewed by Mar-
cus and Mattos).6 Inhibitors of KRAS processing/
membrane association, and disruption of interaction

with chaperones that transfer KRAS to and from the cell
membrane have also been investigated.7 However,
despite these efforts, agents directly targeting KRAS have
been of limited clinical utility. As a consequence, exten-
sive efforts have more recently focused on defining key
oncogenic KRAS signaling pathways, and targeting more
druggable downstream signaling components of these
KRAS-dependent pathways.

PKCi is required for KRAS LADC

Studies from our lab and others demonstrate that atypi-
cal PKCi promotes tumorigenesis in numerous human
tumor types in vitro and in vivo.8,9 PKCi is frequently
targeted for tumor-specific genetic alteration and/or
overexpression in many human tumor types, including
myelogenous leukemias,10 glioma,11 triple negative breast
cancer12 and cancers of the lung,13 colon,14 pancreas15

and ovary.16-18 PKCi was the first PKC isozyme to be
identified as a bonafide oncogene in human cancer; first
demonstrated by our group in non-small cell lung cancer
(NSCLC),13 and subsequently in ovarian and other can-
cers.18,19 Atypical PKCs directly interact with oncogenic
RAS in vitro and in vivo, implicating them as mediators
of oncogenic RAS signaling.20 PKCi is required for Kras
LADC tumorigenesis in mice, and for the transformed
growth of KRAS LADC cell lines, revealing PKCi as a
critical effector in KRAS LADC.21,22

PKCi promotes the transformed growth and invasion
of KRAS LADC cells by activating an oncogenic
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RAC1-MEK-ERK proliferative signaling pathway.22,23 In
KRAS LADC cells, PKCi forms an oncogenic complex
with the polarity protein PAR6 through PB1-PB1
domain interactions.23 The RHO family GTPase guanine
nucleotide exchange factor ECT2 binds this complex and
serves to activate the RHO family GTPase RAC1, which
in turn drives a RAC1-PAK-MEK-ERK signaling cas-
cade.23-25 PKCi directly phosphorylates ECT2 at T328,
an event that promotes ECT2 binding to the PKCi-
PAR6 complex, RAC1 activation, and transformed
growth and invasion in NSCLC cells.23,24 PKCɩ-RAC1-
MEK-ERK signaling drives proliferation and invasion, at
least in part, by stimulating expression of matrix metallo-
proteinase 10 (MMP10).23,26,27 Taken together, these
data demonstrate that PKCi drives a critical proliferative
signaling pathway required for the transformed growth
of KRAS LADC.

A critical factor regulating NSCLC susceptibility to che-
motherapy-induced apoptosis is splice site selection within
the BCL-X gene, yielding either pro-apopotic Bcl-x(s) or
anti-apoptotic Bcl-x(L).28,29 Downregulation of PKCi in
KRAS LADC A549 cells significantly decreased cell survival
and reduced expression of SAP155, an RNA trans-acting
factor that promotes Bcl-x pre-mRNA splice site selection
to generate the pro-survival Bcl-x(L).30 Re-expression of
Bcl-x(L) in PKCi-depleted cells rescued cell survival, dem-
onstrating that PKCi promotes survival of KRAS NSCLC
cells by regulating alternative splicing of the BCL-X pre-
mRNA.30

PKCi drives a KRAS LADC tumor-initiating cell
(TIC) phenotype

KRAS LADC tumors are comprised of a heterogeneous pop-
ulation of cells that exhibit a hierarchy of tumorigenic
potential. Cells at the top of this hierarchy, tumor-initiating
cells (TICs), exhibit a high level of tumor-initiating activity
and an enhanced capacity to recapitulate KRAS LADC in
vivo.31-33 TICs exhibit the unique capacity to both self-
renew, and form a more differentiated, but highly prolifer-
ative tumor cell population, driving both tumor initiation
and maintenance.34,35 Tumors harboring mutant KRAS
exhibit enhanced chemoresistance,36 radiation resistance,37

and poor survival;38 all properties associated with the TIC
phenotype, suggesting that KRAS is an important driver of
the LADCTIC phenotype.39,40

We have identified PKCɩ as a key mediator of the
KRAS LADC TIC phenotype.21,41 PKCɩ is highly
expressed in mutant Kras transformed bronchioalveolar
cells, a putative stem cell population and cell-of-origin of
LADC in the mouse lung.21 PKCi deficiency dramatically
reduces Kras-mediated transformation and expansion of
the bronchioalveolar population, thereby inhibiting

Kras-driven tumor formation.21 MMP10, a critical target
of PKCɩ proliferative signaling, is also required for Kras-
mediated bronchioalveolar stem cell expansion and
LADC tumorigenesis.42 MMP10 is elevated in human
KRAS LADC TICs, and both PKCɩ and MMP10 are
required for LADC TIC behavior and tumor forma-
tion.26,41 These data demonstrate that PKCɩ is required
for maintenance of the KRAS LADC TIC phenotype,
and indicate that MMP10 is an important mediator of
PKCɩ-driven growth of KRAS LADC TICs.

Notch3 is also required for KRAS LADC TICs self-
renewal, tumor initiation andmaintenance.32,33We recently
demonstrated that PKCɩ regulates Notch3 expression in
KRAS LADC TICs by phosphorylating the ELF3 transcrip-
tion factor, thereby promoting its occupancy of the
NOTCH3 promoter. KRAS LADCs require expression of
PKCɩ, ELF3 and Notch3 for TIC cell growth, clonal expan-
sion and tumorigenesis.41 A critical feature of TICs is the
ability to undergo symmetric cell division to self-renew, as
well as asymmetric cell division to generate a more differen-
tiated, highly proliferative population of tumor cells.34

PKCɩ-ELF3-Notch3 controls the TIC phenotype by regulat-
ing asymmetric cell division, a process required for tumor
initiation and expansion.41 Interestingly, the PKCɩ-ELF3-
Notch3 signaling axis is specific for mutant KRAS LADC
TICs, since this cascade is not observed in LADC TICs har-
boring wild-type KRAS or in lung squamous cell carcinoma
(LSCC). Our previous work demonstrated that PKCɩ drives
a LSCC TIC phenotype by activating a distinct PKCi-
SOX2-Hedgehog (Hh) signaling axis that drives Hh-depen-
dent TIC growth.41,43

PKCi inhibitors as anti-tumor agents

Given the potential for PKCi as a therapeutic target, we
and others have sought to identify PKC isotype-selective
inhibitors of PKCi. Recently, an isotype selective, ATP-
competitive inhibitor of PKCi activity (CRT0066854)
was identified and characterized to suppress transformed
growth of mutant Ras cancer cell lines.44 A separate
screen for molecules that could bind a unique sequence
in the PKCi catalytic domain and inhibit its kinase activ-
ity identified ICA-1, capable of blocking PKCi substrate
phosphorylation and transformed growth in neuroblas-
toma cells.45 While both of these inhibitors hold promise
as PKCi-targeted agents, evidence of their effectiveness
as therapeutic agents awaits pre-clinical evaluation. To
identify inhibitors of PKCi that could be rapidly
translated to clinical application, we conducted a high-
throughput screen of FDA-approved drugs for
compounds that inhibit oncogenic PKCi signaling. We
reasoned that compounds that can disrupt the PB1-PB1
domain interaction between PKCi and its oncogenic

SMALL GTPASES 59



partner PAR6 would exhibit anti-tumor activity.46 Our
screen identified the anti-rheumatoid agent aurothioma-
late (ATM) as a selective inhibitor of the PKCi-PAR6
interaction.46,47 ATM, and the structurally related anti-
rheumatoid drug, auranofin (ANF), selectively bind the
PB1 domain of PKCi and block PAR6 binding, inhibit
PKCi-mediated oncogenic signaling (i.e. the RAC1-
MEK-ERK signaling axis) and block transformed growth
and invasion of NSCLC cells in vitro and in vivo.27,46,47

The anti-tumor activity of these agents is dependent
upon their ability to bind PKCi and inhibit PKCi-PAR6
signaling since a PB1 domain PKCi mutant that no lon-
ger binds ATM but retains binding to PAR6, can support
transformed growth and confer resistance to the growth
inhibitory effects of ATM.47 ANF is currently being eval-
uated clinically as an anti-tumor agent in lung and ovar-
ian cancer patients.48,49 These compounds are well
tolerated in the oncology setting and exhibit promising
therapeutic potential.49

Though ATM and ANF exhibit efficacy as single agents
in pre-clinical models, it is likely they will find optimal clini-
cal use in strategic combination with other agents. In this
regard, we have demonstrated synergistic pre-clinical effi-
cacy of ANF in combination with a SMO inhibition in
LSCC.43 In mutant KRAS LADC, combining ANF and a
gamma-secretase inhibitor (GSI; inhibitor of Notch signal-
ing) exhibited synergistic activity in KRAS LADC in vitro
and in vivo, demonstrating effective “vertical blockade” of
this critical signaling pathway (Fig. 1).41

We have also assessed ATM in combination with inhibi-
tors of signaling pathways frequently activated in KRAS
LADC, including rapamycin (mTOR), Erlotinib (EGFR)

and the multikinase inhibitor, Sorafenib (Fig. 2A). Whereas
each of these drug combinations showed synergistic growth
inhibitory effects in one or more cell line, the combination
of ATM and rapamycin showed highly significant synergis-
tic activity in 3 out of 3 mutantKRAS LADC cell lines tested
(Fig. 2A). Although mTOR inhibitors have shown clinical
activity in lung cancer patients, a significant impediment to
their use has been either intrinsic or acquired resistance.
Combined ATM and rapamycin exhibits enhanced anti-
tumor activity against KRAS LADC tumor growth in vivo
(Fig. 2B). Taken together these data indicate that combined
PKCi and mTOR inhibition may be an effective “horizontal
blockade” strategy to treat mutant KRAS LADC, including
those tumors that exhibit intrinsic or acquired resistance to
mTOR inhibition (summarized in Fig. 1). A phase I trial is
currently ongoing to assess this combination clinically.

Summary

Preclinical studies demonstrate that PKCɩ inhibition repre-
sents a viable therapeutic approach to treatment of KRAS
LADC, particularly when used in strategic combination
with agents targeting other KRAS effectors. Beyond KRAS
LADC, PKCɩ promotes the oncogenic phenotype of many
other cancers; therefore clinical development of PKCɩ-tar-
geted therapies may provide effective therapeutic options
for many other oncology patients.

Materials and methods

Materials: KRAS mutant LADC cell lines, A549, A427
and H460, were purchased from American Type Culture

Figure 1. Clinically relevant PKCɩ-targeted combination therapies for treatment of KRAS LADC. “Vertical Blockade” of the PKCɩ-ELF3-
Notch3 signaling axis and “Horizonal Blockade” of PKCɩ and mTOR signaling pathways are denoted.
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Collection and maintained in culture conditions as
recommended.

In vitro studies: Anchorage-independent growth in
soft agar was assessed as previously described.27 Drug
interactions were analyzed using the median effect com-
bination index of Chou and Talalay, calculated using
CalcuSyn software.50 n D 5/dose group and results are
representative of 2 independent experiments.

In vivo studies. 5 £ 106 H460 cells were injected into
the flank of 4–8 week old immunocompromised nude
mice (Jackson Labs). Tumor cells were allowed to engraft
and tumor size was monitored 3£/week by caliper meas-
urements. Tumor volume was calculated as length x
width x height x 0.5236. Mice were randomly distributed
into treatment group when tumor average size D
10 mm3. Mice were administered ATM (60 mg/kg) and/

Figure 2. ATM and rapamycin exhibit synergistic growth inhibitory activity against KRAS LADC. (A) Combination Index (CI) analysis of
ATM combined with Erlotinib, rapamycin and sorafenib for inhibition of anchorage independent growth of KRAS LADC cells. (B) Com-
bined ATM and rapamycin significantly inhibits growth of H460 KRAS LADC xenograft tumors. Mice were treated with ATM (60 mg/kg/
day) and/or rapamycin (5 mg/kg/day) or diluent alone (control). Mean C/¡ SE is plotted. n D 8–9/group. �p < 0.05 versus control;
��p < 0.05 vs. rapamycin or ATM alone.
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or rapamycin (1 mg/kg) daily by intraperitoneal injection
and humanely harvested after 16 d treatment. Control
mice were injected daily with equivalent volumes of dilu-
ent only.
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