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Abstract

Migraine is a debilitating neurological disorder affecting around 1 in 7 people worldwide, but its 

molecular mechanisms remain poorly understood. Some debate exists over whether migraine is a 

disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular 

changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci 

associated with migraine. To identify new susceptibility loci, we performed the largest genetic 

study of migraine to date, comprising 59,674 cases and 316,078 controls from 22 GWA studies. 
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We identified 44 independent single nucleotide polymorphisms (SNPs) significantly associated 

with migraine risk (P < 5 × 10−8) that map to 38 distinct genomic loci, including 28 loci not 

previously reported and the first locus identified on chromosome X. In subsequent computational 

analyses, the identified loci showed enrichment for genes expressed in vascular and smooth 

muscle tissues, consistent with a predominant theory of migraine that highlights vascular 

etiologies.

Migraine is ranked as the third most common disease worldwide, with a lifetime prevalence 

of 15–20%, affecting up to one billion people across the globe1,2. It ranks as the 7th most 

disabling of all diseases worldwide (or 1st most disabling neurological disease) in terms of 

years of life lost to disability1 and is the 3rd most costly neurological disorder after dementia 

and stroke3. There is debate about whether migraine is a disease of vascular dysfunction, or 

a result of neuronal dysfunction with vascular changes representing downstream effects not 

themselves causative of migraine4,5. However, genetic evidence favoring one theory versus 

the other is lacking. At the phenotypic level, migraine is defined by diagnostic criteria from 

the International Headache Society6. There are two prevalent sub-forms: migraine without 

aura is characterized by recurrent attacks of moderate or severe headache associated with 

nausea or hypersensitivity to light and sound. Migraine with aura is characterized by 

transient visual, sensory, or speech symptoms usually followed by a headache phase similar 

to migraine without aura.

Family and twin studies estimate a heritability of 42% (95% confidence interval [CI] = 36–

47%) for migraine7, pointing to a genetic component of the disease. Despite this, genetic 

association studies have revealed relatively little about the molecular mechanisms that 

contribute to pathophysiology. Understanding has been limited partly because, to date, only 

13 genome-wide significant risk loci have been identified for the prevalent forms of 

migraine8–11. In familial hemiplegic migraine (FHM), a rare Mendelian form of the disease, 

three ion transport-related genes (CACNA1A, ATP1A2 and SCN1A) have been 

implicated12–14. These findings suggest that mechanisms that regulate neuronal ion 

homeostasis might also be involved in migraine more generally, however, no genes related to 

ion transport have yet been identified for these more prevalent forms of migraine15.

We performed a meta-analysis of 22 genome-wide association (GWA) studies, consisting of 

59,674 cases and 316,078 controls collected from six tertiary headache clinics and 27 

population-based cohorts through our worldwide collaboration in the International Headache 

Genetics Consortium (IHGC). This combined dataset contained over 35,000 new migraine 

cases not included in previously published GWA studies. Here we present the findings of 

this new meta-analysis, including 38 genomic loci, harboring 44 independent association 

signals identified at levels of genome-wide significance, which support current theories of 

migraine pathophysiology and also offer new insights into the disease.

Gormley et al. Page 2

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Significant associations at 38 independent genomic loci

The primary meta-analysis was performed on all migraine samples available through the 

IHGC, regardless of ascertainment. These case samples included both individuals diagnosed 

by a doctor as well as individuals with self-reported migraine via questionnaires. Study 

design and sample ascertainment for each individual study is outlined in the Supplementary 

Note (and summarized in Supplementary Table 1). The final combined sample consisted of 

59,674 cases and 316,078 controls in 22 non-overlapping case-control datasets (Table 1). All 

samples were of European ancestry. Before including the largest study from 23andMe, we 

confirmed that it did not contribute any additional heterogeneity compared to the other 

population and clinic-based studies (Supplementary Table 2).

The 22 individual GWA studies completed standard quality control protocols (Online 
Methods) summarized in Supplementary Table 3. Missing genotypes were then imputed 

into each sample using a common 1000 Genomes Project reference panel16. Association 

analyses were performed within each study using logistic regression on the imputed marker 

dosages while adjusting for sex and other covariates where necessary (Online Methods and 

Supplementary Table 4). The association results were combined using an inverse-variance 

weighted fixed-effects meta-analysis. Markers were filtered for imputation quality and other 

metrics (Online Methods) leaving 8,094,889 variants for consideration in our primary 

analysis.

Among these variants in the primary analysis, we identified 44 genome-wide significant 

SNP associations (P < 5 × 10−8, Supplementary Figure 1) that are independent (r2 < 0.1) 

with regards to linkage disequilibrium (LD). We validated the 44 SNPs by comparing 

genotypes in a subset of the sample to those obtained from whole-genome sequencing 

(Supplementary Table 5). To help identify candidate risk genes from these, we defined an 

associated locus as the genomic region bounded by all markers in LD (r2 > 0.6 in 1000 

Genomes, Phase I, EUR individuals) with each of the 44 index SNPs and in addition, all 

such regions in close proximity (< 250 kb) were merged. From these defined regions we 

implicate 38 genomic loci for the prevalent forms of migraine, 28 of which have not 

previously been reported (Figure 1).

These 38 loci replicate 10 of the 13 previously reported genome-wide associations to 

migraine and six loci contain a secondary genome-wide significant SNP not in LD (r2 < 0.1) 

with the top SNP in the locus (Table 2). Five of these secondary signals were found in 

known loci (at LRP1/STAT6/SDR9C7, PRDM16, FHL5/UFL1, TRPM8/HJURP, and near 

TSPAN2/NGF), while the sixth was found within one of the 28 new loci (PLCE1). 

Therefore, out of the 44 independent SNPs reported here, 34 represent new associations to 

migraine. Three previously reported loci that were associated to subtypes of migraine 

(rs1835740 near MTDH for migraine with aura, rs10915437 near AJAP1 for migraine 

clinical-samples, and rs10504861 near MMP16 for migraine without aura)8,11 show only 

nominal significance in the current meta-analysis (P = 5 × 10−3 for rs1835740, P = 4.4 × 

10−5 for rs10915437, and P = 4.9 × 10−5 for rs10504861, Supplementary Table 6), however, 

these loci have since been shown to be associated to specific phenotypic features of 
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migraine17 and therefore may require a more phenotypically homogeneous sample to be 

accurately assessed for association. Four out of 44 SNPs (at TRPM8/HJURP, near 

ZCCHC14, MRVI1, and near CCM2L/HCK) exhibited moderate heterogeneity across the 

individual GWA studies (Cochran’s Q P-value < 0.05, Supplementary Table 7) therefore at 

these markers we applied a random effects model18.

Characterization of the associated loci

In total, 32 of 38 (84%) loci overlap with transcripts from protein-coding genes, and 17 

(45%) of these regions contain just a single gene (see Supplementary Figure 2 for regional 

association plots and Supplementary Table 8 for additional locus information). Among the 

38 loci, only two contain ion channel genes (KCNK519 and TRPM820). Hence, despite 

previous hypotheses of migraine as a potential channelopathy5,21, the loci identified to date 

do not support common variants in ion channel genes as strong susceptibility components in 

prevalent forms of migraine. However, three other loci do contain genes involved more 

generally in ion homeostasis (SLC24A322, ITPK123, and GJA124, Supplementary Table 9).

Several of the genes have previous associations to vascular disease (PHACTR1,25,26 

TGFBR2,27 LRP1,28 PRDM16,29 RNF213,30 JAG1,31 HEY2,32 GJA133, ARMS234), or are 

involved in smooth muscle contractility and regulation of vascular tone (MRVI1,35 GJA1,36 

SLC24A3,37 NRP138). Three of the 44 migraine index SNPs have previously reported 

associations in the National Human Genome Research Institute (NHGRI) GWAS catalog at 

exactly the same SNP (rs9349379 at PHACTR1 with coronary heart disease39–41, coronary 

artery calcification42, and cervical artery dissection26; rs11624776 near ITPK1 with thyroid 

hormone levels43; and rs11172113 at LRP1/STAT6/SDR9C7 with pulmonary function44; 

Supplementary Table 10). Six of the loci harbor genes that are involved in nitric oxide 

signaling and oxidative stress (REST45, GJA146, YAP147, PRDM1648, LRP149, and 

MRVI150).

From each locus we chose the nearest gene to the index SNP to assess gene expression 

activity in tissues from the GTEx consortium (Supplementary Figure 3). While we found 

that most of the putative migraine loci genes were expressed in many different tissue types, 

we could detect tissue specificity in certain instances whereby some genes showed 

significantly higher expression in a particular tissue group relative to the others. For instance 

four genes were more actively expressed in brain (GPR149, CFDP1, DOCK4, and 

MPPED2) compared to other tissues, whereas eight genes were specifically active in 

vascular tissues (PRDM16, MEF2D, FHL5, C7orf10, YAP1, LRP1, ZCCHC14, and JAG1). 

Many other putative migraine loci genes were actively expressed in more than one tissue 

group.

Genomic inflation and LD-score regression analysis

To assess whether the 38 loci harbor true associations with migraine rather than reflecting 

systematic differences between cases and controls (such as population stratification) we 

analyzed the genome-wide inflation of test statistics in our primary meta-analysis. As 

expected for a complex polygenic trait, the distribution of test statistics deviates from the 

null (genomic inflation factor λGC = 1.24, Supplementary Figure 4) which is in line with 
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other large GWA study meta-analyses51–54. Since much of the inflation in a polygenic trait 

arises from LD between the causal SNPs and many other neighboring SNPs in the local 

region, we LD-pruned the data to create a set of LD-independent markers (i.e. in PLINK55 

with a 250-kb sliding window and r2 > 0.2). The resulting genomic inflation was reduced 

(λGC = 1.15, Supplementary Figure 5) and likely reflects the inflation remaining due to the 

polygenic signal at many independent loci, including those not yet significantly associated.

To confirm that the observed inflation is primarily coming from true polygenic signal, we 

analyzed the data from all imputed markers using LD-score regression56. This method tests 

for a linear relationship between marker test statistics and LD score, defined as the sum of r2 

values between a marker and all other markers within a 1-Mb window. The primary analysis 

results show a linear relationship between association test statistics and LD-score 

(Supplementary Figure 6) and estimate that the majority (88.2%) of the inflation in test 

statistics can be ascribed to true polygenic signal rather than population stratification or 

other confounders. These results are consistent with the theory of polygenic disease 

architecture shown previously by both simulation and real data for GWAS samples of similar 

size57.

Migraine subtype analyses

To elucidate pathophysiological mechanisms underpinning the migraine aura, we performed 

a secondary analysis by creating two subsets that included only samples with the subtypes; 

migraine with aura and migraine without aura. These subsets only included those studies 

where sufficient information was available to assign a diagnosis of either subtype according 

to classification criteria standardized by the International Headache Society (IHS)6. For the 

population-based studies this involved questionnaires, whereas for the clinic-based studies 

the diagnosis was assigned on the basis of a structured interview by telephone or in person. 

A stricter diagnosis is required for the subtypes as migraine aura is often challenging to 

distinguish from other neurological features that can present as symptoms from unrelated 

conditions.

As a result, the migraine subtype analyses consisted of considerably smaller sample sizes 

compared to the main analysis (6,332 cases vs. 144,883 controls for migraine with aura and 

8,348 cases vs. 139,622 controls for migraine without aura, Table 1). As with the primary 

analysis, the test statistics for migraine with aura or migraine without aura were consistent 

with underlying polygenic architecture rather than other potential sources of inflation 

(Supplementary Figure 7–Supplementary Figure 8). For the migraine without aura subset 

analysis we found seven significantly associated genomic loci (near TSPAN2, TRPM8, 

PHACTR1, FHL5, ASTN2, near FGF6, and LRP1, Supplementary Table 11 and 

Supplementary Figure 9). All seven of these loci were already identified in the primary 

analysis, possibly reflecting the fact that migraine without aura is the most common form of 

migraine (around 2 in 3 cases) and likely drives these association signals in the primary 

analysis. Notably, no loci were associated to migraine with aura in the other subset analysis 

(Supplementary Figure 10).

To investigate whether excess heterogeneity could be contributing to the lack of associations 

in migraine with aura, we performed a heterogeneity analysis between the two subgroups 
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(Online Methods and Supplementary Table 12). We selected the 44 LD-independent SNPs 

associated from the primary analysis and used a random-effects model to combine the 

migraine with aura and migraine without aura samples in a meta-analysis that allows for 

heterogeneity between the two migraine groups58. We found little heterogeneity with only 

seven of the 44 loci (at MEF2D, PHACTR1, near REST/SPINK2, ASTN2, PLCE1, 

MPPED2, and near MED14/USP9X) exhibiting signs of heterogeneity across subtype 

groups (Supplementary Table 13).

Credible sets of markers within each locus

For each of the 38 migraine-associated loci, we defined a credible set of markers that could 

plausibly be considered as causal using a Bayesian-likelihood based approach59. This 

method incorporates evidence from association test statistics and the LD structure between 

SNPs in a locus (Online Methods). A list of the credible set SNPs obtained for each locus is 

provided in Supplementary Table 14. We found three instances (in RNF213, PLCE1, and 

MRVI1) where the association signal could be credibly attributed to exonic missense 

polymorphisms (Supplementary Table 15). However, most of the credible markers at each 

locus were either intronic or intergenic, which is consistent with the theory that most 

variants detected by GWA studies involve regulatory effects on gene expression rather than 

disrupting protein structure60,61.

Overlap with eQTLs in specific tissues

To identify migraine loci that might influence gene expression, we used previously 

published datasets that catalog expression quantitative trait loci (eQTLs) in either of two 

microarray-based studies from peripheral venous blood (N1 = 3,754) or from human brain 

cortex (N2 = 550). Additionally, we used a third study based on RNAseq data from a 

collection of 42 tissues and three cell lines (N3 = 1,641) from the Genotype-Tissue 

Expression (GTEx) consortium62. While this data has the advantage of a diverse tissue 

catalog, the number of samples per tissue is relatively small (Supplementary Table 16) 

compared to the two microarray datasets, possibly resulting in reduced power to detect 

significant eQTLs in some tissues. Using these datasets we applied a method based on the 

overlap of migraine and eQTL credible sets to identify eQTLs that could explain 

associations at the 38 migraine loci (Online Methods). This approach merged the migraine 

credible sets defined above with credible sets from cis-eQTL signals within a 1-Mb window 

and tested if the association signals between the migraine and eQTL credible sets were 

correlated. After adjusting for multiple testing we found no plausible eQTL associations in 

the peripheral blood or brain cortex data (Supplementary Tables 17–18 and Supplementary 

Figure 11). In GTEx, however, we found evidence for overlap from eQTLs in three tissues 

(Lung, Tibial Artery, and Aorta) at the HPSE2 locus and in one tissue (Thyroid) at the 

HEY2/NCOA7 locus (Supplementary Table 19 and Supplementary Figure 12).

In summary, from three datasets we implicate eQTL signals at only two loci (HPSE2 and 
HEY2). This low number (two out of 38) is consistent with previous studies which have 

observed that available eQTL catalogues currently lack sufficient tissue specificity and 

developmental diversity to provide enough power to provide meaningful biological insight53. 

No plausibly causal eQTLs were observed in expression data from brain.
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Gene expression enrichment in specific tissues

To understand if the 38 migraine loci as a group are enriched for expression in certain tissue 

types, we again used the GTEx pilot data62 (see Online Methods). We found four tissues 

that were significantly enriched (after Bonferroni correction) for expression of the migraine 

genes (Figure 2). The two most strongly enriched tissues were part of the cardiovascular 

system; the aorta and tibial artery. Two other significant tissues were from the digestive 

system; esophagus muscularis and esophageal mucosa. We replicated these enrichment 

results using the DEPICT63 tool and an independent microarray-based gene expression 

dataset (Online Methods). DEPICT highlighted four tissues (Figure 3 and Supplementary 

Table 20) with significant enrichment of genes within the migraine loci; arteries (P = 1.58 × 

10−5), the upper gastrointestinal tract (P = 2.97 × 10−3), myometrium (P = 3.03 × 10−3), and 

stomach (P = 3.38 × 10−3).

Taken together, the expression analyses implicate arterial and gastrointestinal (GI) tissues. 

To discover if this enrichment signature could be attributed to a more specific type of 

smooth muscle, we examined the expression of the nearest genes at migraine loci in a panel 

of 60 types of human smooth muscle tissue64. Overall, migraine loci genes were not 

significantly enriched in a particular class of smooth muscle (Supplementary Figures 13–

15). This suggests that the enrichment of migraine risk variants in genes expressed in tissues 

with a smooth muscle component is not specific to blood vessels, the stomach or GI tract, 

but rather appears to be generalizable across vascular and visceral smooth muscle types.

Combined, these enrichment results suggest that some of the genes affected by migraine-

associated variants are highly expressed in vascular tissues and their dysfunction could play 

a role in migraine. Furthermore, the results suggest that other tissue types (e.g. smooth 

muscle) could also play a role and this may become evident once more migraine loci are 

discovered.

Enrichment in tissue-specific enhancers

To further assess the hypothesis that migraine variants might operate via effects on gene-

regulation, we investigated the degree of overlap with histone modifications. Using 

candidate causal variants from the migraine loci, we examined their enrichment within cell-

type specific enhancers from 56 primary human tissues and cell types from the Roadmap 

Epigenomics65 and ENCODE projects66 (Online Methods and Supplementary Table 21). 

These variants showed highest enrichment in tissues from the mid-frontal lobe and 

duodenum smooth muscle but were not significant after adjusting for multiple testing 

(Figure 4).

Gene set enrichment analyses

To implicate underlying biological pathways involved in migraine, we applied a Gene 

Ontology (GO) over-representation analysis of the 38 migraine loci (Online Methods). We 

found nine vascular-related biological function categories that were significantly enriched 

after correction for multiple testing (Supplementary Table 22). Interestingly, we found little 

statistical support from the identified loci for some molecular processes that have been 

previously linked to migraine, e.g. ion homeostasis, glutamate signaling, serotonin signaling, 
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nitric oxide signaling, and oxidative stress. However, it is possible that the lack of 

enrichment for these functions may be explained by recognizing that current annotations for 

many genes and pathways are far from comprehensive, or that larger numbers of migraine 

loci need to be identified before we have sensitivity to detect enrichment in these 

mechanisms.

For a more comprehensive pathway analysis we used DEPICT, which incorporates gene co-

expression information from microarray data to implicate additional, functionally less well-

characterized genes in known biological pathways, protein-protein complexes and mouse 

phenotypes63 (by forming so-called ‘reconstituted gene sets’). From DEPICT we identified 

67 reconstituted gene sets that are significantly enriched (FDR < 5%) for genes found 

among the migraine associated loci (Supplementary Table 23). Because the reconstituted 

gene sets had genes in common, we clustered them into 10 distinct groups (Figure 5 and 

Online Methods). Several gene sets, including the most significantly enriched reconstituted 

gene set (Abnormal Vascular Wound Healing; P = 1.86 × 10−6), were grouped into clusters 

related to cell-cell interactions (ITGB1 PPI, Adherens Junction, and Integrin Complex). 

Several of the other gene set clusters were also related to vascular-biology (Figure 5 and 

Supplementary Table 23). We still did not observe any support for molecular processes with 

hypothesized links to migraine (Supplementary Table 24), however, this could again be due 

to the reasons outlined above.

DISCUSSION

In what is the largest genetic study of migraine to date, we identified 38 distinct genomic 

loci harboring 44 independent susceptibility markers for the prevalent forms of migraine. We 

provide evidence that migraine-associated genes are involved both in arterial and smooth 

muscle function. Two separate analyses, the DEPICT and the GTEx gene expression 

enrichment analyses, point to vascular and smooth muscle tissues being involved in common 

variant susceptibility to migraine. The vascular finding is consistent with known co-

morbidities and previously reported shared polygenic risk between migraine, stroke and 

cardiovascular diseases67,68. Furthermore, a recent GWA study of Cervical Artery 

Dissection (CeAD) identified a genome-wide significant association at the same index SNP 

(rs9349379 in the PHACTR1 locus) as is associated to migraine, suggesting the possibility 

of partially shared genetic components between migraine and CeAD26. These results suggest 

that vascular dysfunction and possibly also other smooth muscle dysfunction likely play 

roles in migraine pathogenesis.

The support for vascular and smooth muscle enrichment of the loci is strong, with multiple 

lines of evidence from independent methods and independent datasets. However, it remains 

likely that neurogenic mechanisms are also involved in migraine. For example, several lines 

of evidence from previous studies have pointed to such mechanisms5,69–72. We found some 

support for this when looking at gene expression of individual genes at the 38 loci 

(Supplementary Figure 3 and Supplementary Table 25), where several genes were 

specifically active in brain tissues. While we did not observe statistically significant 

enrichment in brain across all loci, it may be that more associated loci are needed to detect 

this. Alternatively, it could be due to difficulties in collecting appropriate brain tissue 
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samples with enough specificity, or other technical challenges. Additionally, there is less 

clarity of the biological mechanisms for a neurological disease like migraine compared to 

some other common diseases, e.g. autoimmune or cardio-metabolic diseases where 

intermediate risk factors and underlying mechanisms are better understood.

Interestingly, some of the analyses highlight gastrointestinal tissues. Although migraine 

attacks may include gastrointestinal symptoms (e.g. nausea, vomiting, diarrhea)6 it is likely 

that the signals observed here broadly represent smooth muscle signals rather than 

gastrointestinal specificity. Smooth muscle is a predominant tissue of the intestine, yet 

specific smooth muscle subtypes were not available to test this hypothesis in our primary 

enrichment analyses. We showed instead in a range of 60 smooth muscle subtypes, that the 

migraine loci are expressed in many types of smooth muscle, including vascular 

(Supplementary Figures 14–15). These results, while not conclusive, suggest that the 

enrichment of the migraine loci in smooth muscle is not specific to the stomach and GI tract.

Our results implicate cellular pathways and provide an opportunity to determine whether the 

genomic data supports previously presented hypotheses of mechanisms linked to migraine. 

One prevailing hypothesis, stimulated by findings in familial hemiplegic migraine (FHM), 

has been that migraine is a channelopathy5,21. Among the 38 migraine loci, only two harbor 

known ion channels (KCNK519 and TRPM820), while three additional loci (SLC24A322, 

near ITPK123, and near GJA124) can be linked to ion homeostasis. This further supports the 

findings of previous studies that in common forms of migraine, ion channel dysfunction is 

not the major pathophysiological mechanism15. However, more generally, genes involved in 

ion homeostasis could be a component of the genetic susceptibility. Moreover, we cannot 

exclude that ion channels could still be important contributors in migraine with aura, the 

form most closely resembling FHM, as our ability to identify loci in this subgroup is more 

challenging. Another suggested hypothesis relates to oxidative stress and nitric oxide (NO) 

signaling73–75. Six genes with known links to oxidative stress and NO were identified within 

these 38 loci (REST45, GJA146, YAP147, PRDM1648, LRP149, and MRVI150). This is in 

line with previous findings11, however, the DEPICT pathway analysis observed no 

association between NO-related reconstituted gene sets and migraine (FDR > 0.54, 

Supplementary Table 24).

Notably, in the migraine subtype analyses, it was possible to identify specific loci for 

migraine without aura but not for migraine with aura. However, the heterogeneity analysis 

(Supplementary Tables 12–13) demonstrated that most of the identified loci are implicated 

in both migraine subtypes. This suggests that the absence of significant loci in the migraine 

with aura analysis is mainly due to lack of power from the reduced sample size. 

Additionally, as shown by the LD score analysis (Supplementary Figures 6–8), the amount 

of heritability captured by the migraine with aura dataset is considerably lower than 

migraine without aura, such that in order to reach comparable power, a sample size of two- 

to three-times larger would be required. This may reflect a higher degree of heterogeneity in 

the clinical capture, more complex underlying biology, or even a larger contribution to risk 

from low-frequency and rare variation for this form of the disease.
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In conclusion, the 38 genomic loci identified in this study support the notion that factors in 

vascular and smooth muscle tissues contribute to migraine pathophysiology and that the two 

major subtypes of migraine, migraine with aura and migraine without aura, have a partially 

shared underlying genetic susceptibility profile.

ONLINE METHODS

Study design and phenotyping

A description of the study design, ascertainment and phenotyping for each GWA study is 

provided in the Supplementary Note.

Quality Control

The 22 individual GWA studies were subjected to pre-established quality control (QC) 

protocols as recommended elsewhere76,77. Differences in genotyping chips, DNA quality 

and calling pipelines necessitated that QC parameters were tuned separately for each study. 

At a minimum, we excluded markers with high missingness rates (>5%), low minor allele 

frequency (<1%), and failing a test of Hardy-Weinberg equilibrium. We also excluded 

individuals with a high proportion of missing genotypes (>5%) and used identity-by-descent 

(IBD) estimates to remove related individuals (IBD > 0.185). A summary of the genotyping 

platforms, QC, and software used in each study is provided in Supplementary Table 3. To 

control for population stratification within each study, we merged the genotypes passing QC 

filters with HapMap III data from three populations; European (CEU), Asian (CHB+JPT) 

and African (YRI). We then performed a principal components analysis on the merged 

dataset and excluded any (non-European) population outliers. To control for any sub-

European population structure, we performed a second principal components analysis within 

each study to ensure that cases and controls were clustering together. Any principal 

components that were significantly associated with the phenotype were included as 

covariates in the model when calculating test statistics for the meta-analysis (Supplementary 

Table 4).

Imputation

Following study-level QC, estimated haplotypes were phased for each individual using (in 

most instances) the program SHAPEIT78. Missing genotypes were then imputed into these 

haplotypes using the program IMPUTE279 and a mixed-population 1000 Genomes Project16 

reference panel (March 2012, phase I, v3 release or later). A minority of contributing studies 

used alternative programs for phasing and imputation; BEAGLE80, MACH81, MINIMAC82, 

or in-house custom software. A summary of software and procedures used is provided in 

Supplementary Table 3.

Statistical analysis

Individual study association analyses were implemented using logistic regression with an 

additive model on the imputed dosage of the effect allele. All models were adjusted for sex 

and other relevant covariates when appropriate (Supplementary Table 4). As age information 

was not available for individuals from all studies we were not able to adjust for it in our 

models. However, we note that all of the GWA studies were comprised of adults past the 
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typical age of onset, hence, age is at most a non-confounding factor and false positive rates 

would not be affected by its inclusion/exclusion. The programs used for performing the 

within-study association analyses were either SNPTEST, PLINK or R (URLs). The program 

GWAMA was then used to perform a fixed-effects meta-analysis weighted by the inverse 

variances to obtain a combined effect size, standard error and P-value at each marker. We 

excluded markers in any study that had low imputation quality scores (IMPUTE2 INFO < 

0.6 or MACH r2 < 0.6) or low minor allele frequency (MAF < 0.01). Additionally, we 

filtered out markers that were missing from more than half of all studies (12 or more) or 

exhibited high heterogeneity (heterogeneity index i2 > 0.75). After filtering, 8,045,569 total 

markers were tested in the meta-analysis.

Chromosome X meta-analysis

Due to the different ploidy of males and females on chromosome X, we implemented a 

model of X-chromosome inactivation (XCI) that assumes an equal effect of alleles in both 

males and females. This was achieved by scaling male dosages to the range 0–2 to match 

that of females. In total, 57,756 cases and 299,109 controls were available for the X-

chromosome analysis (Supplementary Table 1). The reduced sample size compared to the 

autosomal data occurred because some of the individual GWA studies (EGCUT, Rotterdam 

III, Twins UK, and 846 controls from GSK for the ‘German MO’ study) did not contribute 

chromosome X data.

LD score regression analysis

We conducted a univariate heritability analysis based on summary statistics using LD score 

regression (LDSC) v1.0.056. For this analysis, high-quality common SNPs were extracted 

from the summary statistics by filtering the data on the following criteria: presence among 

the HapMap Project Phase 3 SNPs83, allele matching to 1000 Genomes data, no strand 

ambiguity, INFO score > 0.9, MAF >= 1%, and missingness less than two thirds of the 90th 

percentile of the total sample size. The HLA region (chromosome 6, 25–35 Mb) was 

excluded from the analysis. From this data, we used LDSC to quantify the proportion of the 

total inflation in chi-square statistics that can be ascribed to polygenic heritability by 

calculating the ratio of the LDSC intercept estimate and the chi-square mean using the 

formula described in the original publication56.

Heterogeneity analysis of migraine subtypes

To determine if heterogeneity between the migraine subtypes might have affected our ability 

to identify new loci, we performed an additional meta-analysis using a subtype-

differentiated approach that allows for different allelic effects between two groups58. Since a 

large proportion of the controls were shared in the original migraine with aura and migraine 

without aura datasets (Table 1), for this analysis we created two additional subsets of the 

migraine subtype data that contained no overlapping controls between the two new subsets 

(Supplementary Table 12). The new migraine with aura subset consisted of 4,837 cases and 

49,174 controls and the new migraine without aura subset consisted of 4,833 cases and 

106,834 controls. To assess the heterogeneity observed, we chose the 44 index SNPs from 

the primary meta-analysis and applied the subtype-differentiated meta-analysis method to 
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these. We observed that only seven out of the 44 SNPs exhibited heterogeneity in the 

subtype-differentiated test (Heterogeneity P-value < 0.05, Supplementary Table 13) 

suggesting that most loci likely affect risk for both subtypes.

Defining credible sets

Within each migraine-associated locus, we defined a credible set of variants that could be 

considered 99% likely to contain a causal variant. The method has been introduced in detail 

elsewhere53,59 and is outlined again briefly here. Assume D is the data including the 

genotype matrix X for all of the P variants (genotype for variant j is denoted as xj) and 

disease status Y (for N individuals), and β is the model parameters. We define the ‘model’, 

denoted A, as the causal status for all of the P variants in the locus: A = {aj}, in which aj is 

the causal status for variant j. aj = 1 if the variant j is causal, whereas aj = 0 if it is not. We 

assume that there is one and only one genuine signal for each locus, therefore, one and only 

one of the P variants is causal: Σj aj = 1. For convenience, we define Aj as the model that 

only variant j is causal, and A0 as the model that no variant is causal (null model). The 

probability for model Aj(where variant j is the only causal variant in this locus) given the 

data can be calculated using Bayes’ rule:

(1)

We estimate Equation (1) using the steepest descent approach84. Making the assumption of a 

flat prior on the model parameters, we approximate the integral over the model parameters 

using their maximum likelihood estimator (β̂j):

(2)

where the sample size is denoted by N and the number of fitted parameters for model Aj is 

denoted by |βj|· |βj| is a constant because model Aj has the same number of parameters 

across all variants. In the framework of a generalized linear model, the deviance for two 

nested models follows an approximate chi-square distribution. We therefore define χj
2 as the 

deviance comparing the null model and the model in which variant j is causal

(3)

We further show that χj
2 can be calculated as the chi-square statistic of fitting a binomial 

model with the disease status (Y) as the dependent variable and the genotype of variant j as 

the explanatory variable:
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(4)

Pr(Aj|D) in Equation (2) is then a function of the χj
2:

(5)

where l0 = Pr (D|A0, β0̂). We make the assumption that the prior causal probability for all 

variants is equal, i.e., Pr(Aj) is the same across all variants j. Equation (5) can then be 

simplified with a constant for the term  and the probability that variant j 
is causal can be calculated using

(6)

which can be normalized across all variants as

(7)

Finally, the 99% credible set of variants is defined as the smallest set of models, with each 

model designating one causal variant, S = {Aj}, such that

(8)

This credible set of variants has 99% probability of containing the causal variant, given the 

assumption that there is a true association and that all possible causal variants have been 

genotyped (both assumptions are likely to be valid in genome-wide significant regions of 

data that have been imputed to 1000 Genomes). We have made the R-script for 

implementing the method freely available online (URLs).

eQTL credible set overlap analysis

To assess if the association statistics in the 38 migraine loci could be explained by credible 

overlapping eQTL signals, we used two eQTL microarray datasets. The first consisted of 
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3,754 samples from peripheral venous blood85 and the second was from a meta-analysis of 

human brain cortex studies of 550 samples86. From both studies we obtained summary 

statistics from an association test of putative cis-eQTLs between all SNP-transcript pairs 

within a 1-Mb window of each other. Then for the most significant eQTLs (P < 1 × 10−4) 

found for genes within a 1Mb window of migraine credible set variants (see Defining 
credible sets), we created an additional credible set of markers for each eQTL. We then 

tested (using Spearman’s rank correlation) whether there was a significant correlation 

between the association test-statistics in each migraine credible set compared to the 

expression test-statistics in each overlapping eQTL credible set. Significant correlation 

between a migraine credible set and an eQTL credible set was taken as evidence of the 

migraine locus tagging a real eQTL. An appropriate significance threshold for multiple 

testing was determined by Bonferroni correction.

GTEx tissue enrichment analysis

Gene sets for each locus were obtained by taking all genes within 50kb of credible set SNPs. 

Identified genes were then analyzed for tissue enrichment using publicly available 

expression data from the pilot phase of the Genotype-Tissue Expression project (GTEx)62, 

version 3. In this dataset, postmortem samples from 42 human tissues and three cell lines 

across 1,641 samples (Supplementary Table 16) were used for bulk RNA sequencing 

according to a unified protocol. All samples were sequenced using Illumina 76 base-pair 

paired-end reads. Collapsed reads per kilobase per million mapped reads (RPKM) values for 

52,577 transcripts were filtered for those with unique HGNC IDs (n = 20,932). We also 

excluded transcripts from any non-coding RNAs. All transcripts were ranked by mean 

RPKM across all samples and 100,000 permutations of each credible set gene list were 

generated by selecting a random transcript for each entry in the credible set within +/−100 

ranks of the transcript for that gene. For each sample, the RPKM values were converted into 

ranks for that transcript, and sums of ranks within each tissue were computed for each gene. 

Enrichment P-values for each tissue were calculated by taking the total number of instances 

where the gene list of interest had a lower sum of ranks than the permuted sum of ranks 

(divided by the total number of permutations). We estimated the number of independent 

tissues via the matSpD tool87 and then used Bonferroni correction to adjust for 27 

independent tests (P < 1.90 × 10−3).

Specificity of individual genes in GTEx tissues

We selected the nearest gene to the index SNP at each migraine locus and then investigated 

the individual expression activity of each of these genes. As the number of samples for some 

tissues was small, we grouped individual tissues into four categories; brain, vascular, 

gastrointestinal, and other tissues (Supplementary Table 16). For each selected gene, we then 

tested whether the average expression (mean RPKM) was significantly higher in a particular 

tissue group compared to the ‘other tissues’ category. We assessed significance using a one-

tailed t-test and used Bonferroni correction to adjust for 114 tests (38 genes × 3 tissue 

groups). While some genes were observed to be significantly expressed in multiple tissue 

groups, we determined that a gene was tissue-specific if it was only expressed highly in one 

tissue group (i.e. brain, vascular, or gastrointestinal, Supplementary Table 25).
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eQTL credible set analysis in GTEx tissues

For all tissues and transcripts (filtered as above), we identified genome-wide significant (P < 

2 × 10−13) cis-eQTLs within a 1Mb window of each transcript and created credible sets (see 

Defining credible sets) for each eQTL locus identified in each tissue. We found a total of 35 

of these significant eQTL credible sets within a 1Mb window of the migraine loci, however, 

only seven out of 35 contained variants that overlapped with a migraine credible set. For 

these seven eQTL credible sets, we then tested (Spearman’s rank correlation) if the test 

statistics between the two overlapping credible sets were significantly correlated. Significant 

correlation between a migraine credible set and an eQTL credible set was taken as evidence 

of the migraine locus tagging a real eQTL. Multiple testing was controlled for using 

Bonferroni correction (i.e. for seven tests at P < 7.1 × 10−3).

Enhancer enrichment analysis

Markers of gene regulation were defined using ChIP-seq datasets from ENCODE66 and the 

NIH Roadmap Epigenome65 projects. Based on the histone H3K27ac signal, which 

identifies active enhancers, we processed data from 56 cell lines and tissue samples to 

identify cell/tissue-specific enhancers, which we define as the 10% of enhancers with the 

highest ratio of reads in that cell/tissue type divided by the total reads88. The raw data is 

publicly available (URLs) and a description of the 56 tissues/cell types is provided in 

Supplementary Table 21. We mapped the credible set variants at each migraine locus to 

these enhancer sites and compared the overlap observed with tissue-specific enhancers 

relative to a background of 10,000 randomly selected sets of SNPs of equal size. We 

restricted the background selection to 1000 Genomes project variants (MAF > 1%) that also 

passed QC filters in the meta-analysis (i.e. to only allow the selection of SNPs that had an a 
priori chance of being associated). The selection procedure then involved randomly selecting 

genomic regions that were of equivalent length and density of enhancers as found in the 

original locus. Once an appropriate region was found, a set of SNPs was randomly selected 

to match the number of SNPs in the credible set for that locus. If the selected SNPs mapped 

to an equal number of enhancer sites (of any tissue type) as credible SNPs from the original 

locus, then these were added to the background set of SNPs for comparison. If the selected 

SNPs did not map to the correct number of enhancers, the selection procedure was repeated 

until an appropriate set was found. This procedure was repeated 10,000 times for each locus 

to obtain an empirical null distribution. The enrichment significance was then estimated 

empirically by calculating the proportion of replicates that were greater than the observed 

value. Finally, we used Bonferroni correction to adjust for multiple testing of 56 tissue/cell 

types (P < 8.9 × 10−4).

Gene Ontology enrichment analysis

The set of 38 genes that are nearest to the index SNP in each migraine locus was chosen and 

tested for over-representation in Gene Ontology (GO) annotations. The PANTHER89 tool 

(URLs) was used to perform the analysis implementing a binomial test to determine if the 

number of genes from the migraine test set found in each GO Pathway is likely to have 

occurred by chance alone. The association P-values were adjusted for the number of 

pathways tested by Bonferroni correction.
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DEPICT reconstituted gene set enrichment analysis

DEPICT63 (Data-driven Expression Prioritized Integration for Complex Traits) is a 

computational tool, which, given a set of GWA study summary statistics, allows 

prioritization of genes in associated loci, enrichment analysis of reconstituted gene sets, and 

tissue enrichment analysis. DEPICT was run using 124 independent genome-wide 

significant SNPs as input (PLINK clumping parameters: --clump-p1 5e-8 --clump-p2 1e-5 --

clump-r2 0.6 --clump-kb 250. Note, rs12845494 and rs140002913 could not be mapped). 

LD distance (r2 > 0.5) was used to define locus boundaries (note that this locus definition is 

different than used elsewhere in the text) yielding 37 autosomal loci comprising 78 genes. 

DEPICT was run using default settings, that is, 500 permutations for bias adjustment, 20 

replications for false discovery rate estimation, normalized expression data from 77,840 

Affymetrix microarrays for gene set reconstitution (see reference90), 14,461 reconstituted 

gene sets for gene set enrichment analysis, and testing 209 tissue/cell types assembled from 

37,427 Affymetrix U133 Plus 2.0 Array samples for enrichment in tissue/cell type 

expression.

Post-analysis, we omitted reconstituted gene sets in which genes in the original gene set 

were not nominally enriched (Wilcoxon rank-sum test) because, by design, genes in the 

original gene set are expected to be enriched in the reconstituted gene set. Therefore, lack of 

enrichment complicates interpretation because the label of the reconstituted gene set may be 

inaccurate. Hence, the eight reconstituted gene sets were removed from the results: MP:

0002089, MP:0002190, ENSG00000151577, ENSG00000168615, ENSG00000143322, 

ENSG00000112531, ENSG00000161021, and ENSG00000100320. We also removed an 

association identified for another gene set (ENSG00000056345 PPI, P = 1.7×10−4, FDR = 

0.04) because it is no longer part of the Ensembl database. The Affinity Propagation tool91 

was finally used to cluster related reconstituted gene sets into 10 groups (URLs).

DEPICT tissue enrichment analysis

DEPICT used data from 37,427 human microarray samples captured on the Affymetrix 

HGU133a2.0 platform to test if genes in the 38 migraine loci are highly expressed in 209 

tissues/cell types with Medical Subject Heading (MeSH) annotations. The annotation 

procedure and method for normalizing expression profiles across annotations is outlined in 

the original publication63. The tissue/cell type enrichment analysis algorithm was 

conceptually identical to the gene set enrichment analysis whereby enrichment P-values 

were calculated empirically using 500 permutations for bias adjustment and 20 replications 

for false discovery rate estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Padhraig Gormley1,2,3,4,*, Verneri Anttila2,3,5,*, Bendik S Winsvold6,7,8, Priit Palta9, 
Tonu Esko2,10,11, Tune H. Pers2,11,12,13, Kai-How Farh2,5,14, Ester Cuenca-
Leon1,2,3,15, Mikko Muona9,16,17,18, Nicholas A Furlotte19, Tobias Kurth20,21, Andres 

Gormley et al. Page 16

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ingason22, George McMahon23, Lannie Ligthart24, Gisela M Terwindt25, Mikko 
Kallela26, Tobias M Freilinger27,28, Caroline Ran29, Scott G Gordon30, Anine H 
Stam25, Stacy Steinberg22, Guntram Borck31, Markku Koiranen32, Lydia Quaye33, 
Hieab HH Adams34,35, Terho Lehtimäki36, Antti-Pekka Sarin9, Juho Wedenoja37, 
David A Hinds19, Julie E Buring21,38, Markus Schürks39, Paul M Ridker21,38, Maria 
Gudlaug Hrafnsdottir40, Hreinn Stefansson22, Susan M Ring23, Jouke-Jan 
Hottenga24, Brenda WJH Penninx41, Markus Färkkilä26, Ville Artto26, Mari 
Kaunisto9, Salli Vepsäläinen26, Rainer Malik28, Andrew C Heath42, Pamela A F 
Madden42, Nicholas G Martin30, Grant W Montgomery30, Mitja I Kurki1,2,3,9,43, Mart 
Kals10, Reedik Mägi10, Kalle Pärn10, Eija Hämäläinen9, Hailiang Huang2,3,5, Andrea 
E Byrnes2,3,5, Lude Franke44, Jie Huang4, Evie Stergiakouli23, Phil H Lee1,2,3, 
Cynthia Sandor45, Caleb Webber45, Zameel Cader46,47, Bertram Muller-
Myhsok48,77,82, Stefan Schreiber49, Thomas Meitinger50,51, Johan G Eriksson52,53, 
Veikko Salomaa53, Kauko Heikkilä54, Elizabeth Loehrer34,55, Andre G 
Uitterlinden56, Albert Hofman34, Cornelia M van Duijn34, Lynn Cherkas33, Linda M. 
Pedersen6, Audun Stubhaug57,58, Christopher S Nielsen57,59, Minna Männikkä32, 
Evelin Mihailov10, Lili Milani10, Hartmut Göbel60, Ann-Louise Esserlind61, Anne 
Francke Christensen61, Thomas Folkmann Hansen62, Thomas Werge63,64,65, 
International Headache Genetics Consortium66, Jaakko Kaprio9,67,68, Arpo J 
Aromaa53, Olli Raitakari69,70, M Arfan Ikram34,35,70, Tim Spector33, Marjo-Riitta 
Järvelin32,72,73,74, Andres Metspalu10, Christian Kubisch75, David P Strachan76, 
Michel D Ferrari25, Andrea C Belin29, Martin Dichgans28,77, Maija Wessman9,16, 
Arn MJM van den Maagdenberg25,78, John-Anker Zwart6,7,8, Dorret I Boomsma24, 
George Davey Smith23, Kari Stefansson22,79, Nicholas Eriksson19, Mark J Daly2,3,5, 
Benjamin M Neale2,3,5,§, Jes Olesen61,§, Daniel I Chasman21,38,§, Dale R 
Nyholt80,§, and Aarno Palotie1,2,3,4,5,9,81,§

Affiliations
1Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General 
Hospital and Harvard Medical School, Boston, USA 2Medical and Population 
Genetics Program, Broad Institute of MIT and Harvard, Cambridge, USA 3Stanley 
Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, 
USA 4Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, 
UK 5Analytic and Translational Genetics Unit, Massachusetts General Hospital and 
Harvard Medical School, Boston, USA 6FORMI, Oslo University Hospital, P.O. 4956 
Nydalen, 0424 Oslo, Norway 7Department of Neurology, Oslo University Hospital, 
P.O. 4956 Nydalen, 0424 Oslo, Norway 8Institute of Clinical Medicine, University of 
Oslo, P.O. 1171 Blindern, 0318 Oslo, Norway 9Institute for Molecular Medicine 
Finland (FIMM), University of Helsinki, Helsinki, Finland 10Estonian Genome Center, 
University of Tartu, Tartu, Estonia 11Division of Endocrinology, Boston Children's 
Hospital, Boston, USA 12Statens Serum Institut, Dept of Epidemiology Research, 
Copenhagen, Denmark 13Novo Nordisk Foundation Center for Basic Metabolic 
Research, University of Copenhagen, Copenhagen, Denmark 14Illumina, 5200 
Illumina Way, San Diego, USA 15Vall d'Hebron Research Institute, Pediatric 
Neurology, Barcelona, Spain 16Folkhälsan Institute of Genetics, Helsinki, Finland, 

Gormley et al. Page 17

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FI-00290 17Neuroscience Center, University of Helsinki, Helsinki, Finland, FI-00014 
18Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, 
Finland, FI-00014 1923andMe, Inc., 899 W. Evelyn Avenue, Mountain View, CA, 
USA 20Institute of Public Health, Charité – Universitätsmedizin Berlin, Charitéplatz 
1,10117 Berlin, Germany 21Division of Preventive Medicine, Brigham and Women’s 
Hospital, Boston MA 02215 22deCODE Genetics, 101 Reykjavik, Iceland 23Medical 
Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, 
UK 24Vrije Universiteit, Department of Biological Psychology, Amsterdam, the 
Netherlands, 1081 BT 25Leiden University Medical Centre, Department of 
Neurology, Leiden, The Netherlands, PO Box 9600, 2300 RC 26Department of 
Neurology, Helsinki University Central Hospital, Haartmaninkatu 4, 00290 Helsinki, 
Finland 27Department of Neurology and Epileptology, Hertie-Institute for Clinical 
Brain Research, University of Tuebingen, Germany 28Institute for Stroke and 
Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-
Universität München, Feodor-Lynen-Str. 17, 81377 Munich Germany 29Karolinska 
Institutet, Department of Neuroscience, 171 77 Stockholm, Sweden 30Department 
of Genetics and Computational Biology, QIMR Berghofer Medical Research 
Institute, 300 Herston Road, Brisbane, QLD 4006, Australia 31Ulm University, 
Institute of Human Genetics, 89081 Ulm, Germany 32University of Oulu, Center for 
Life Course Epidemiology and Systems Medicine, Oulu, Finland, Box 5000, 
Fin-90014 University of Oulu 33Department of Twin Research and Genetic 
Epidemiology, King’s College London, London, UK 34Dept of Epidemiology, 
Erasmus University Medical Center, Rotterdam, the Netherlands, 3015 CN 35Dept of 
Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands, 3015 
CN 36Department of Clinical Chemistry, Fimlab Laboratories, and School of 
Medicine, University of Tampere, Tampere, Finland, 33520 37Department of Public 
Health, University of Helsinki, Helsinki, Finland 38Harvard Medical School, Boston 
MA 02115 39University Duisburg Essen, Essen, Germany 40Landspitali University 
Hospital, 101 Reykjavik, Iceland 41VU University Medical Centre, Department of 
Psychiatry, Amsterdam, the Netherlands, 1081 HL 42Department of Psychiatry, 
Washington University School of Medicine, 660 South Euclid, CB 8134, St. Louis, 
MO 63110, USA 43Neurosurgery of NeuroCenter, Kuopio University Hospital, 
Finland 44University Medical Center Groningen, University of Groningen, Groningen, 
The Netherlands, 9700RB 45MRC Functional Genomics Unit, Department of 
Physiology, Anatomy & Genetics, Oxford University, UK 46Nuffield Department of 
Clinical Neuroscience, University of Oxford, UK 47Oxford Headache Centre, John 
Radcliffe Hospital, Oxford, UK 48Max-Planck-Institute of Psychiatry, Munich, 
Germany 49Christian Albrechts University, Kiel, Germany 50Institute of Human 
Genetics, Helmholtz Zentrum München, Neuherberg, Germany 51Institute of Human 
Genetics, Technische Universität München, Munich, Germany 52Department of 
General Practice and Primary Health Care, University of Helsinki and Helsinki 
University Hospital, Helsinki Finland 53National Institute for Health and Welfare, 
Helsinki, Finland. 54Institute of Clinical Medicine, University of Helsinki, Helsinki, 
Finland 55Department of Environmental Health, Harvard T.H. Chan School of Public 

Gormley et al. Page 18

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Health, Boston, USA 02115 56Dept of Internal Medicine, Erasmus University 
Medical Center, Rotterdam, the Netherlands, 3015 CN 57Dept of Pain Management 
and Research, Oslo University Hospital, Oslo, 0424 Oslo, Norway 58Medical Faculty, 
University of Oslo, Oslo, 0318 Oslo, Norway 59Department of Ageing and Health, 
Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, Oslo, Norway, 
NO-0403 60Kiel Pain and Headache Center, 24149 Kiel, Germany 61Danish 
Headache Center, Department of Neurology, Rigshospitalet, Glostrup Hospital, 
University of Copenhagen, Denmark 62Institute of Biological Psychiatry, Mental 
Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark 63Institute 
Of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, 
DK-2100 Copenhagen, Denmark 64Institute of Clinical Sciences, Faculty of Medicine 
and Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark 
65iPSYCH - The Lundbeck Foundation’s Initiative for Integrative Psychiatric 
Research, DK-2100 Copenhagen, Denmark 67Department of Public Health, 
University of Helsinki, Helsinki, Finland 68Department of Health, National Institute for 
Health and Welfare, Helsinki, Finland 69Research Centre of Applied and Preventive 
Cardiovascular Medicine, University of Turku, Turku, Finland, 20521 70Department 
of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 
Finland, 20521 71Dept of Neurology, Erasmus University Medical Center, 
Rotterdam, the Netherlands, 3015 CN 72Imperial College London, Department of 
Epidemiology and Biostatistics, MRC Health Protection Agency (HPE) Centre for 
Environment and Health, School of Public Health, UK, W2 1PG 73University of Oulu, 
Biocenter Oulu, Finland, Box 5000, Fin-90014 University of Oulu 74Oulu University 
Hospital, Unit of Primary Care, Oulu, Finland, Box 10, Fin-90029 OYS 75University 
Medical Center Hamburg Eppendorf, Institute of Human Genetics, 20246 Hamburg, 
Germany 76Population Health Research Institute, St George’s, University of London, 
Cranmer Terrace, London SW17 0RE, UK 77Munich Cluster for Systems Neurology 
(SyNergy), Munich, Germany 78Leiden University Medical Centre, Department of 
Human Genetics, Leiden, The Netherlands, PO Box 9600, 2300 RC 79Faculty of 
Medicine, University of Iceland, 101 Reykjavik, Iceland 80Statistical and Genomic 
Epidemiology Laboratory, Institute of Health and Biomedical Innovation, 
Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, 
Australia 81Department of Neurology, Massachusetts General Hospital, Boston, 
USA 82Institute of Translational Medicine, University of Liverpool, Liverpool, UK

Acknowledgments

We would like to thank the numerous individuals who contributed to sample collection, storage, handling, 
phenotyping and genotyping within each of the individual cohorts. We also thank the important contribution to 
research made by the study participants. We are grateful to Huiying Zhao (QIMR Berghofer Medical Research 
Institute) for helpful correspondence on the pathway analyses. We acknowledge the support and contribution of 
pilot data from the GTEx consortium. A list of study-specific acknowledgements can be found in the 
Supplementary Note.

Gormley et al. Page 19

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

1. Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–
2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380:2163–
2196. [PubMed: 23245607] 

2. Vos T, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 
301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for 
the Global Burden of Disease Study 2013. Lancet. 2015; 386:743–800. [PubMed: 26063472] 

3. Gustavsson A, et al. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 
2011; 21:718–779. [PubMed: 21924589] 

4. Pietrobon D, Striessnig J. Neurological diseases: Neurobiology of migraine. Nature Reviews 
Neuroscience. 2003; 4:386–398. [PubMed: 12728266] 

5. Tfelt-Hansen PC, Koehler PJ. One hundred years of migraine research: Major clinical and scientific 
observations from 1910 to 2010. Headache. 2011; 51:752–778. [PubMed: 21521208] 

6. Headache Classification Committee of the International Headache Society (IHS). The International 
Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013; 33:629–808. 
[PubMed: 23771276] 

7. Polderman TJC, et al. Meta-analysis of the heritability of human traits based on fifty years of twin 
studies. Nat. Genet. 2015; 47:702–709. [PubMed: 25985137] 

8. Anttila V, et al. Genome-wide association study of migraine implicates a common susceptibility 
variant on 8q22.1. Nat. Genet. 2010; 42:869–873. [PubMed: 20802479] 

9. Chasman DI, et al. Genome-wide association study reveals three susceptibility loci for common 
migraine in the general population. Nat Genet. 2011; 43:695–698. [PubMed: 21666692] 

10. Freilinger T, et al. Genome-wide association analysis identifies susceptibility loci for migraine 
without aura. Nat. Genet. 2012; 44:777–782. [PubMed: 22683712] 

11. Anttila V, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. 
Genet. 2013; 45:912–917. [PubMed: 23793025] 

12. Ophoff RA, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations 
in the Ca2+ channel gene CACNL1A4. Cell. 1996; 87:543–552. [PubMed: 8898206] 

13. De Fusco M, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit 
associated with familial hemiplegic migraine type 2. Nat. Genet. 2003; 33:192–196. [PubMed: 
12539047] 

14. Dichgans M, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial 
hemiplegic migraine. Lancet. 2005; 366:371–377. [PubMed: 16054936] 

15. Nyholt DR, et al. A high-density association screen of 155 ion transport genes for involvement 
with common migraine. Hum. Mol. Genet. 2008; 17:3318–3331. [PubMed: 18676988] 

16. Altshuler DM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 
2012; 491:56–65. [PubMed: 23128226] 

17. Chasman DI, et al. Selectivity in Genetic Association with Sub-classified Migraine in Women. 
PLoS Genet. 2014; 10:e1004366. [PubMed: 24852292] 

18. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of 
genome-wide association studies. Am. J. Hum. Genet. 2011; 88:586–598. [PubMed: 21565292] 

19. Morton MJ, Abohamed A, Sivaprasadarao A, Hunter M. pH sensing in the two-pore domain K+ 
channel, TASK2. Proc. Natl. Acad. Sci. U. S. A. 2005; 102:16102–16106. [PubMed: 16239344] 

20. Ramachandran R, et al. TRPM8 activation attenuates inflammatory responses in mouse models of 
colitis. Proc. Natl. Acad. Sci. U. S. A. 2013; 110:7476–7481. [PubMed: 23596210] 

21. Hanna MG. Genetic neurological channelopathies. Nat. Clin. Pract. Neurol. 2006; 2:252–263. 
[PubMed: 16932562] 

22. Kraev A, et al. Molecular cloning of a third member of the potassium-dependent sodium-calcium 
exchanger gene family, NCKX3. J. Biol. Chem. 2001; 276:23161–23172. [PubMed: 11294880] 

23. Ismailov II, et al. A biologic function for an ‘orphan’ messenger: D-myo-inositol 3,4,5,6-
tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc. Natl. 
Acad. Sci. U. S. A. 1996; 93:10505–10509. [PubMed: 8816834] 

Gormley et al. Page 20

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. De Bock M, et al. Connexin channels provide a target to manipulate brain endothelial calcium 
dynamics and blood-brain barrier permeability. J. Cereb. Blood Flow Metab. 2011; 31:1942–1957. 
[PubMed: 21654699] 

25. Kathiresan S, et al. Genome-wide association of early-onset myocardial infarction with single 
nucleotide polymorphisms and copy number variants. Nat. Genet. 2009; 41:334–341. [PubMed: 
19198609] 

26. Debette S, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery 
dissection. Nat. Genet. 2015; 47:78–83. [PubMed: 25420145] 

27. Law C, et al. Clinical features in a family with an R460H mutation in transforming growth factor 
beta receptor 2 gene. J Med Genet. 2006; 43:908–916. [PubMed: 16885183] 

28. Bown MJ, et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein 
receptor-related protein 1. Am. J. Hum. Genet. 2011; 89:619–627. [PubMed: 22055160] 

29. Arndt AK, et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a 
cause of cardiomyopathy. Am. J. Hum. Genet. 2013; 93:67–77. [PubMed: 23768516] 

30. Fujimura M, et al. Genetics and Biomarkers of Moyamoya Disease: Significance of RNF213 as a 
Susceptibility Gene. J. stroke. 2014; 16:65–72. [PubMed: 24949311] 

31. McElhinney DB, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation 
in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002; 106:2567–2574. 
[PubMed: 12427653] 

32. Bezzina CR, et al. Common variants at SCN5A–SCN10A and HEY2 are associated with Brugada 
syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 2013; 45:1044–1049. 
[PubMed: 23872634] 

33. Sinner MF, et al. Integrating genetic, transcriptional, and functional analyses to identify five novel 
genes for atrial fibrillation. Circulation. 2014; 130:1225–1235. [PubMed: 25124494] 

34. Neale BM, et al. Genome-wide association study of advanced age-related macular degeneration 
identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. U. S. A. 2010; 107:7395–
7400. [PubMed: 20385826] 

35. Desch M, et al. IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth 
muscle relaxation. Cardiovasc. Res. 2010; 86:496–505. [PubMed: 20080989] 

36. Lang NN, Luksha L, Newby DE, Kublickiene K. Connexin 43 mediates endothelium-derived 
hyperpolarizing factor-induced vasodilatation in subcutaneous resistance arteries from healthy 
pregnant women. Am. J. Physiol. Heart Circ. Physiol. 2007; 292:H1026–H1032. [PubMed: 
17085540] 

37. Dong H, Jiang Y, Triggle CR, Li X, Lytton J. Novel role for K+-dependent Na+/Ca2+ exchangers 
in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. Am. J. Physiol. 
Heart Circ. Physiol. 2006; 291:H1226–H1235. [PubMed: 16617138] 

38. Yamaji M, Mahmoud M, Evans IM, Zachary IC. Neuropilin 1 is essential for gastrointestinal 
smooth muscle contractility and motility in aged mice. PLoS One. 2015; 10:e0115563. [PubMed: 
25659123] 

39. Lu X, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci 
for coronary artery disease. Nature Genetics. 2012; 44:890–894. [PubMed: 22751097] 

40. Hager J, et al. Genome-wide association study in a Lebanese cohort confirms PHACTR1 as a 
major determinant of coronary artery stenosis. PLoS One. 2012; 7:e38663. [PubMed: 22745674] 

41. The Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in 
Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 2011; 
43:339–344. [PubMed: 21378988] 

42. O’Donnell CJ, et al. Genome-wide association study for coronary artery calcification with follow-
up in myocardial infarction. Circulation. 2011; 124:2855–2864. [PubMed: 22144573] 

43. Porcu E, et al. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific 
differences in the regulation of thyroid function. PLoS Genet. 2013; 9:e1003266. [PubMed: 
23408906] 

44. Soler Artigas M, et al. Genome-wide association and large-scale follow up identifies 16 new loci 
influencing lung function. Nat. Genet. 2011; 43:1082–1090. [PubMed: 21946350] 

Gormley et al. Page 21

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Lu T, et al. REST and stress resistance in ageing and Alzheimer disease. Nature. 2014; 507:448–
454. [PubMed: 24670762] 

46. Kar R, Riquelme MA, Werner S, Jiang JX. Connexin 43 channels protect osteocytes against 
oxidative stress-induced cell death. J. Bone Miner. Res. 2013; 28:1611–1621. [PubMed: 
23456878] 

47. Dixit D, Ghildiyal R, Anto NP, Sen E. Chaetocin-induced ROS-mediated apoptosis involves ATM-
YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis. 2014; 5:e1212. 
[PubMed: 24810048] 

48. Chuikov S, Levi BP, Smith ML, Morrison SJ. Prdm16 promotes stem cell maintenance in multiple 
tissues, partly by regulating oxidative stress. Nat. Cell Biol. 2010; 12:999–1006. [PubMed: 
20835244] 

49. Castellano J, et al. Hypoxia stimulates low-density lipoprotein receptor-related protein-1 
expression through hypoxia-inducible factor-1α in human vascular smooth muscle cells. 
Arterioscler. Thromb. Vasc. Biol. 2011; 31:1411–1420. [PubMed: 21454812] 

50. Schlossmann J, et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 
receptor and cGMP kinase Ibeta. Nature. 2000; 404:197–201. [PubMed: 10724174] 

51. Nalls MA, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk 
loci for Parkinson’s disease. Nat. Genet. 2014; 46:7989–7993.

52. Lambert JC, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for 
Alzheimer’s disease. Nat. Genet. 2013; 45:1452–1458. [PubMed: 24162737] 

53. Ripke S, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014; 
511:421–427. [PubMed: 25056061] 

54. Wood AR, et al. Defining the role of common variation in the genomic and biological architecture 
of adult human height. Nat. Genet. 2014; 46:1173–1186. [PubMed: 25282103] 

55. Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am. J. Hum. Genet. 2007; 81:559–575. [PubMed: 17701901] 

56. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat. Genet. 2015; 47:291–295. [PubMed: 25642630] 

57. Yang J, et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 2011; 
19:807–812. [PubMed: 21407268] 

58. Magi R, Lindgren CM, Morris AP. Meta-analysis of sex-specific genome-wide association studies. 
Genet. Epidemiol. 2010; 34:846–853. [PubMed: 21104887] 

59. Maller JB, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. 
Genet. 2012; 44:1294–1301. [PubMed: 23104008] 

60. Nicolae DL, et al. Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance 
discovery from GWAS. PLoS Genet. 2010; 6:e1000888. [PubMed: 20369019] 

61. Maurano MT, et al. Systematic Localization of Common Disease-Associated Variation in 
Regulatory DNA. Science. 2012; 337:1190–1195. [PubMed: 22955828] 

62. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013; 
45:580–585. [PubMed: 23715323] 

63. Pers TH, et al. Biological interpretation of genome-wide association studies using predicted gene 
functions. Nat. Commun. 2015; 6:5890. [PubMed: 25597830] 

64. Chi JT, et al. Gene expression programs of human smooth muscle cells: Tissue-specific 
differentiation and prognostic significance in breast cancers. PLoS Genet. 2007; 3:1770–1784. 
[PubMed: 17907811] 

65. Bernstein BE, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 2010; 
28:1045–1048. [PubMed: 20944595] 

66. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human 
genome. Nature. 2012; 489:57–74. [PubMed: 22955616] 

67. Winsvold BS, et al. Genetic analysis for a shared biological basis between migraine and coronary 
artery disease. Neurol. Genet. 2015; 1:e10. [PubMed: 27066539] 

68. Malik R, et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of 
common variants. Neurology. 2015; 84:2132–2145. [PubMed: 25934857] 

Gormley et al. Page 22

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



69. Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AMJM. Migraine 
pathophysiology: lessons from mouse models and human genetics. Lancet. Neurol. 2015; 14:65–
80. [PubMed: 25496898] 

70. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for 
peripheral sensitisation. Lancet Neurol. 2009; 8:679–690. [PubMed: 19539239] 

71. Hadjikhani N, et al. Mechanisms of migraine aura revealed by functional MRI in human visual 
cortex. Proc. Natl. Acad. Sci. 2001; 98:4687–4692. [PubMed: 11287655] 

72. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994; 
117:199–210. [PubMed: 7908596] 

73. Olesen J. The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. 
Pharmacol Ther. 2008; 120:157–171. [PubMed: 18789357] 

74. Ashina M, Hansen JM, Olesen J. Pearls and pitfalls in human pharmacological models of migraine: 
30 years’ experience. Cephalalgia. 2013; 33:540–553. [PubMed: 23671251] 

75. Read SJ, Parsons AA. Sumatriptan modifies cortical free radical release during cortical spreading 
depression: A novel antimigraine action for sumatriptan? Brain Res. 2000; 870:44–53. [PubMed: 
10869500] 

76. Anderson CA, et al. Data quality control in genetic case-control association studies. Nat. Protoc. 
2010; 5:1564–1573. [PubMed: 21085122] 

77. Winkler TW, et al. Quality control and conduct of genome-wide association meta-analyses. Nat. 
Protoc. 2014; 9:1192–1212. [PubMed: 24762786] 

78. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of 
genomes. Nature Methods. 2011; 9:179–181. [PubMed: 22138821] 

79. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype 
imputation in genome-wide association studies through pre-phasing. Nature Genetics. 2012; 
44:955–959. [PubMed: 22820512] 

80. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for 
whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 
2007; 81:1084–1097. [PubMed: 17924348] 

81. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: Using sequence and genotype data to 
estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 2010; 34:816–834. [PubMed: 
21058334] 

82. Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype imputation. Bioinformatics. 
2015; 31:782–784. [PubMed: 25338720] 

83. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse 
human populations. Nature. 2010; 467:52–58. [PubMed: 20811451] 

84. Schwarz G. Estimating the Dimension of a Model. The Annals of Statistics. 1978; 6:461–464.

85. Wright FA, et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 
2014; 46:430–437. [PubMed: 24728292] 

86. Richards AL, et al. Schizophrenia susceptibility alleles are enriched for alleles that affect gene 
expression in adult human brain. Mol. Psychiatry. 2012; 17:193–201. [PubMed: 21339752] 

87. Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in 
linkage disequilibrium with each other. Am. J. Hum. Genet. 2004; 74:765–769. [PubMed: 
14997420] 

88. Farh KK-H, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. 
Nature. 2014; 518:337–343. [PubMed: 25363779] 

89. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the 
PANTHER classification system. Nat. Protoc. 2013; 8:1551–1566. [PubMed: 23868073] 

90. Fehrmann RSN, et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. 
Nat. Genet. 2015; 47:115–125. [PubMed: 25581432] 

91. Frey BJ, Dueck D. Clustering by Passing Messages Between Data Points. Science. 2007; 315:972–
976. [PubMed: 17218491] 

Gormley et al. Page 23

Nat Genet. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Manhattan plot of the primary meta-analysis of all migraine (59,674 cases vs. 316,078 

controls). Each marker was tested for association using an additive genetic model by logistic 

regression adjusted for sex. A fixed-effects meta-analysis was then used to combine the 

association statistics from all 22 clinic and population-based studies. The horizontal axis 

shows the chromosomal position and the vertical axis shows the significance of tested 

markers from logistic regression. Markers that reach genome-wide significance (P < 5 × 

10−8) at previously known and newly identified loci are highlighted according to the color 

legend.
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Figure 2. 
Gene expression enrichment of genes from the migraine loci in GTEx tissues. Expression 

data from 1,641 samples was obtained using RNAseq for 42 tissues and three cell lines from 

the GTEx consortium. Enrichment P-values were assessed empirically for each tissue using 

a permutation procedure (100,000 replicates) and the red vertical line shows the significance 

threshold after adjusting for multiple testing by Bonferroni correction (see Online 
Methods).
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Figure 3. 
Gene expression enrichment of genes from the migraine loci in 209 tissue/cell type 

annotations by DEPICT. Expression data was obtained from 37,427 human microarray 

samples and then genes in the migraine loci were assessed for high expression in each of the 

annotation categories. Enrichment P-values were determined by comparing the expression 

pattern from the migraine loci to 500 randomly generated loci and the false discovery rate 

(horizontal dashed line) was estimated to control for multiple testing (see Online Methods). 

A full list of these enrichment results are provided in Supplementary Table 20.
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Figure 4. 
Enrichment of the migraine loci in sets of tissue-specific enhancers. We mapped credible 

sets from the migraine loci to sets of enhancers under active expression in 56 tissues and cell 

lines (identified by H3K27ac histone marks from the Roadmap Epigenomics65 and 

ENCODE66 projects). Enrichment P-values were assessed empirically by randomly 

generating a background set of matched loci for comparison (10,000 replicates) and the 

vertical dotted line is the significance threshold after adjusting for 56 separate tests by 

Bonferroni correction (see Online Methods).
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Figure 5. 
DEPICT network of the reconstituted gene sets that were significantly enriched (false 

discovery rate < 0.05) for genes at the migraine loci (Online Methods). Enriched gene sets 

are represented as nodes with pairwise overlap denoted by the width of the connecting lines 

and empirical enrichment P-value is indicated by color intensity (darker is more significant). 

The 67 significantly enriched gene sets were clustered by similarity into 10 group nodes as 

shown in (a) where each group node is named after the most representative gene set in the 

group. (b) Shows one example of gene sets that were clustered within the now expanded 

ITGB1 PPI group. A full list of the 67 significantly enriched reconstituted gene sets can be 

found in Supplementary Table 23.
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