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Aims: Assessing whether epigenetic alterations mediate associations between 
environmental exposures and health outcomes is increasingly popular. We investigate 
the impact of exposure misclassification in such investigations. Materials & methods: 
We quantify bias and false-positive rates due to exposure misclassification in mediation 
analysis and assess the performance of the simulation extrapolation method (SIMEX). 
We evaluate whether DNA-methylation mediates smoking–birth weight relationship 
in the Norwegian Mother and Child Study birth cohort. Results: Ignoring exposure 
misclassification increases type I error in mediation analysis. The direct effect is 
underestimated and, when the mediator is a biomarker of the exposure, as is true for 
smoking, the indirect effect is overestimated. Conclusion: Misclassification correction 
plus cautious interpretation are recommended for mediation analyses in the presence 
of exposure misclassification.
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Evidence is accumulating that environmen-
tal exposures modify the epigenome. In 
humans, the best-studied epigenetic modi-
fication is methylation and the best-studied 
exposure is smoking. Smoking in adults has 
been reproducibly associated with alterations 
in methylation at specific loci [1]. Similar 
effects have been seen in newborns whose 
mothers smoked during pregnancy [2]. These 
smoking-methylation signals have been used 
to develop novel biomarkers of exposure [3–
6]. In addition to its value as an exposure 
biomarker, there is great interest in the pos-
sibility that differential methylation at rel-
evant loci mediates well-established associa-
tions between smoking and disease, both for 
adult [7,8] and in utero exposures [9,10].

It is widely acknowledged that measure-
ment of human environmental exposures, 
including smoking, is prone to error [11]. 
Random error exists for all exposures. How-
ever, for smoking in particular, differential 

biased reporting occurs whereby some pro-
portions of smokers falsely claim, on surveys, 
to be nonsmokers [12]. In addition, because of 
the well-publicized negative health impacts 
of maternal smoking during pregnancy 
on the developing fetus, pregnant women 
under-report smoking more than nonpreg-
nant smokers of reproductive age [13]. None-
theless, studies that address whether meth-
ylation signatures from smoking mediate its 
health outcomes have ignored the potential 
role of measurement error in assessment of 
smoking [7–10,14]. Given this measurement 
error, evaluation of mediation may be com-
plicated by the fact that the proposed media-
tors, DNA sites differentially methylated by 
smoking, are excellent biomarkers that may 
better capture the exposure than  self-reported 
smoking [3–6].

In the field of mediation analysis, bias 
introduced by measurement error in 
the mediator variable has been investi-
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gated [15–17]. However, misclassification of the expo-
sure variable has not been well evaluated. Reduced 
birth weight is a well-established sequelae of maternal 
smoking during pregnancy [18]. Given strong evidence 
of differential methylation in newborns in relation to 
smoking by the mother [2], it has been of interest to 
consider whether these signals mediate the effects of 
maternal smoking on birth weight. It has recently been 
reported that differential DNA methylation of a single 
CpG site in placenta mediates up to 36% of the effect 
of smoking on lower birth weight [9]. In another study, 
differential methylation in newborn’s blood at a single 
CpG site in a different gene was reported to mediate 
19–46% of the relationship between smoking and 
birthweight [10]. Because self-reported smoking status 
during pregnancy is prone to misclassification, we were 
interested in evaluating the sensitivity of mediation 
analysis with methylation data to exposure misclassi-
fication bias. For this purpose, we considered a pub-
lished scenario in perinatal epidemiology, for which we 
have relevant data [10], as an example.

Our study makes several contributions. First, we 
study the impact of exposure misclassification on the 
estimation of direct and indirect causal effects and 
testing of the indirect effect in methylation studies 
analytically. Second, we assess the impact of misclas-
sification on estimation and testing via a simulation 
study. Third, we evaluate the ability of the SIMEX 
approach to adjust for exposure misclassification in 
this setting. Finally we use data from the Norwegian 
Mother and Child Cohort Study (MoBA) [19,20] to con-
duct a mediation analysis accounting for misclassifi-
cation of self-reported smoking status using SIMEX. 
Our study provides evidence that ignoring misclassifi-
cation can bias results of mediation analyses and shows 
the value of incorporating misclassification correction 
in mediation analysis in the context of environmental 
epigenetic studies.

Methods
Mediation analysis in the absence of exposure 
misclassification
With reference to our example of mediation of the 
effect of maternal smoking during pregnancy on 
newborn birth weight by smoking-related differential 
methylation, let A denote the exposure, maternal smok-
ing and M denote the mediator, DNA methylation. Let 
Y denote the outcome, birth weight and C denote a 
vector of covariates representing potential confound-
ers. The directed acyclic graph in Figure 1 describes the 
setting of mediation analysis. Mediation analysis can 
be employed to quantify how much of the total effect 
of maternal smoking on birth weight (Figure 1A) is 
explained by the indirect effect of smoking on birth 

weight that is mediated by the DNA-methylation level, 
relative to the direct effect of smoking on birthweight 
through pathways independent of DNA methyla-
tion (Figure 1B). Under the counterfactual framework 
for causal inference direct and indirect causal effects 
have been rigorously defined [21,22] (section A1 of the 
Supplementary material).

To validly estimate direct and indirect effects, the 
following four confounding assumptions need to be 
satisfied. Conditioning on covariates C, there is no 
unmeasured confounding of the exposure–outcome 
relationship, the mediator–outcome relationship, the 
exposure–mediator relationship and there are no medi-
ator–outcome confounders affected by the exposure. 
See [22,23] for further discussion of these assumptions. 
Furthermore, models for the outcome and mediator 
need to be correctly specified. For continuous outcome 
and mediator (as in the current setting of outcome birth 
weight and mediator methylation), under the assump-
tion of no exposure–mediator interaction in the out-
come model, typically made by published applications 
of mediation analysis in environmental epigenetics, if 
we specify three linear regression models:

( , ) 'E Y A a C c c0 1i i i= = + += + + +o o o

( , , ) 'E Y A a M m a mC c c0 1 2i i i i= = = + + +=

( , ) 'E M A a aC c c0 1b b b= = + +=

then the estimators of total effect (TE), direct effect 
(NDE) and indirect effect (NIE) take the form [24,25]:

TE 1i= +o

NDE 1i=

NIE 0 2 1 1b i i i= - -+o

Under the assumption of no unmeasured confound-
ing and that models 1–3 are correctly specified, these 
estimators (which are equivalent to the ones proposed 
by [24] in the psychology literature) can be interpreted 
as causal direct and indirect causal effects [22]. Esti-
mators for direct and indirect effects in the presence 
of exposure-mediator interaction are given in Section 
A1 of the Supplementary Material. A discussion on the 
comparison between traditional and causal inference 
approaches to mediation analysis is given in [26].

The most popular test for indirect effects is based on 
the product method, also known as the Sobel test [27]. 
This is a Wald test for the null hypothesis H

0
: β

1
 θ

2
 = 0 

based on the delta method standard error 
NIE

2
1
2 2

2
2

2 1v v b v i= +i b  where 2
2vi  and 2

1vb  are the 
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Figure 1. (A) Directed acyclic graph for average causal 
effect of sustained smoking during pregnancy (A) on 
birth weight (Y) (TE = 1i

+
 from Equation 1); (B) Directed 

acyclic graph for direct of sustained smoking during 
pregnancy (A) on birth weight (Y) and indirect effect 
of sustained smoking during pregnancy (A) on birth 
weight (Y) through DNA-methylation (M) (NDE = θ1 
from Equation 3, NIE = 1 1 1 2i i b i- =+

) (C) denotes a 
vector of confounders.
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variances of the maximum likelihood estimates of θ
2
 

and β
1
, respectively.

Mediation analysis in the presence of exposure 
misclassification
Let A* denote a binary exposure, self-reported smoking 
status during pregnancy in our example, potentially 
misclassified and A the true smoking status. We express, 
without loss of generality, measurement error in an addi-
tive form, A* = A + U. For a binary exposure, A* and A 
take values in {0, 1}, while the misclassification error U 
takes values in {-1,0, 1}. Assume that U is independent 
of the outcome, the mediator and the covariates, given 
true maternal smoking status A (i.e., misclassification 
error is nondifferential with respect to outcome, media-
tor and covariates). In this case the misclassification 
probabilities are characterized by sensitivity SN = P(A* 
= 1|A = 1) and specificity SP = P(A* = 0|A = 0) of the 
potentially misclassified exposure A*, yielding 
P(A*|A,M,Y,C) = P(A*|A). Under these assumptions 
misclassification is dependent on the true latent expo-
sure because Cov(U,A) ≠ 0 [28]. This misclassification 
mechanism is realistic for self-reported maternal smok-
ing during pregnancy and the results presented here can 
be easily extended to the case in which the error U is 
dependent on covariates as well. We expect perfect spec-
ificity (SP = 1) because it is reasonable to assume that if 
the mother is a nonsmoker (A = 0), she will report cor-
rectly to be a nonsmoker (A* = 0). However, we expect 
that some smoking mothers (A = 1) might incorrectly 
report being nonsmokers (A* = 0), leading to imperfect 
sensitivity (SN ≠ 1). Let, *NDE%  and *NIE%  denote the 
naive direct and indirect effect estimators, respectively, 
when we fit the regression models in Equations 1–3 
replacing the true exposure (A) with the self-reported 
exposure (A*). Let *iV  denote the naive outcome regres-
sion parameter estimators when the true exposure (A) is 
replaced with the self-reported exposure (A*) in 
Equation 2. Let *bW  denote the naive mediator regres-
sion parameter estimators when the true exposure (A) is 
replaced with the self-reported exposure (A*) in 
Equation 3. In the results section we will assess analyti-
cally the bias of naive estimators of the natural direct 
and indirect effects and the type I error of the Sobel test 
when the assumptions given above hold and when 
 exposure misclassification is ignored in the analysis.

Correction approach
To correct for misclassification and obtain valid esti-
mates of natural direct and indirect effects, we use a 
two-stage approach introduced in [15,16]. In the first 
stage, assuming plausible values for SP and SN, media-
tor and outcome regression coefficients are estimated 
using the SIMEX (simulation and extrapolation) 

approach to correct for misclassification of expo-
sure [29,30]. In the second stage the SIMEX coefficient 
estimates are plugged into the formulas of NDE and 
NIE to obtain misclassification corrected estimates 
of the causal contrasts of interest with standard errors 
obtained via the bootstrap [29]. SIMEX has been shown 
to perform well in mediation analysis when the media-
tor is measured with error both in linear and nonlinear 
models [15]. For an assumed amount of measurement 
error (or misclassification error in this case), SIMEX 
simulates new datasets by additional error and calcu-
lates estimates for each of these new datasets, yielding 
data on the expected coefficient estimates as a function 
of the amount of measurement error. The procedure 
then fits a parametric model to this function, and then 
extrapolates this function back to the no-measurement 
error case. We used a quadratic model for the measure-
ment error – coefficient estimate relationship because 
of its flexibility. Additional information on SIMEX 
and on its implementation, using the R package Simex 
can be found in [31]. Our code can be found in the 
Supplementary Material Section A8. When the amount 
of misclassification is not known from external valida-
tion data, as in our situation, we obtain SIMEX esti-
mates under a range of specificity and sensitivity values.

Simulation study
We conducted a simulation study to assess the perfor-
mances of the naive mediation analysis that ignores 
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exposure misclassification and the SIMEX correction 
approach. In particular, we investigated the bias 

( * , * )NDE NDE NIE NIE- -% %
, 

relative bias ( ( *) / , ( *) / )bias NDE NDE bias NIE NIE% %
 

and variance ( ( *), ( *))var NDE var NIE% %
 in the 

estimates of direct and indirect effects. Further, we 
studied Type I error rates of the Sobel test for H

0
: NIE 

= β
1
θ

2
 = 0 Note that the NIE will be zero if either (a) 

there is no effect of exposure on the mediator and no 
effect of the mediator on the outcome (θ

2
 = 0 from 

Equation 2 and β
1
 = 0 from Equation 3); or if (b) there 

is no effect of exposure on the mediator, but there is an 
effect of the mediator on the outcome (i.e., β

1
 = 0, θ

2
 ≠ 

0); or if (c) there is an effect of exposure on the media-
tor, but there is no effect of the mediator on the out-
come (i.e., β

1
 ≠ 0, θ

2
 = 0). In considering the indirect 

effect of smoking on birth weight through DNA meth-
ylation, we are particularly concerned about falsely 
rejecting the null hypothesis under this last scenario 
(β

1
 ≠ 0, θ

2
 = 0). The data generating process for these 

simulations, including sample size (n = 500) and distri-
butions of exposure, mediator, covariates and outcome, 
was designed to mimic the recent study reporting that 
smoking-related differential methylation at specific 
CpG sites mediates part of the effect of maternal smok-
ing exposure on birth weight [10]. Further, we specified 
mediator and outcome regression parameters accord-
ing to the reported findings of this study. We assessed 
bias under the null hypothesis of no indirect effect and 
under the alternative hypothesis, assuming DNA 
methylation is a strong biomarker of the exposure. 
Therefore, under the alternative hypothesis we assumed 
β

1
 ≠ 0 in Equation 3 and θ

2
 ≠ 0 in Equation 2. Under 

the null hypothesis of no indirect effect we assumed β
1
 

≠ 0 in Equation 3 and θ
2
 = 0 in Equation 2. For simula-

tions of type I error rates under the null hypothesis of 
no indirect effect, we considered the case in which the 
indirect effect is null because of no effect of methyla-
tion on birth weight (θ

2
 = 0) and no effect of smoking 

status on methylation (β
1
 = 0), but where smoking 

affects methylation (θ
2
 = 0, β

1
 ≠ 0). Full description of 

the simulation scenarios is given in Section A3 of 
Supplementary Material.

Analysis of Norwegian Mother & Child Study data
Finally, to assess the impact of misclassification of 
self-reported smoking status on estimates of media-
tion of the effect of maternal smoking on birthweight 
by specific methylation signals, we analyzed the same 
exposure–mediator–outcome scenario presented in [10] 
using data from the Norwegian Mother and Child 

Study (MoBa) pregnancy cohort. Naive analyses that 
ignore misclassification were conducted using the 
same approach employed in [10] and described in the 
previous sections. We then applied the SIMEX correc-
tion approach to assess the sensitivity to the results to 
exposure misclassification. MoBa is a large population-
based pregnancy study targeting all women in Norway 
who gave birth between 1999 and 2008 [19,20]. Illumina 
HumanMethylation450K data from cord blood were 
measured on a subcohort of MoBa participants born 
between 2002 and 2004 (n = 1068), along with ques-
tionnaire data on smoking and potential confounders 
at about weeks 17 and 30 of pregnancy and cotinine 
measured in maternal plasma collected at about gesta-
tional week 18 of pregnancy [32]. Data on birthweight 
and gestational age were obtained from the Medical 
Birth Registry of Norway. Gestational age at birth was 
based mainly on routine fetal ultrasonographic exami-
nation at week 17–19, administered to more than 98% 
of Norwegian women. When ultrasound data were 
missing, gestational age was calculated using last 
 menstrual period [33].

The Regional Committee for Medical Research 
Ethics, Norway and the NIEHS Institutional Review 
Board approved the study.

We first performed a naive mediation analysis in 
MoBa, ignoring exposure misclassification, to quan-
tify the amount of mediation of the smoking–birth 
weight association due to methylation at each of three 
GFI1 CpG sites that were replicated in the published 
mediation analysis [10]. Gestational age was included as 
a linear variable as in the published mediation analy-
sis [10] as well as in recent epigenome wide methylation 
analyses [34,35]. Women who reported smoking early 
in pregnancy but who quit early on were not consid-
ered sustained smokers. We used this exposure vari-
able because the smoking methylation associations 
observed in previous studies are not seen for smoking 
that ends early in pregnancy but rather require more 
sustained exposure across the pregnancy [2,36].

To better evaluate the impact of misclassification we 
considered two definitions of sustained smoking. One 
is based on self-report alone. We then enhanced self-
report by using cotinine measurements done at about 
18 weeks so mothers who reported being nonsmokers 
but had cotinine values compatible with current smok-
ing status were reclassified as smokers. We fitted the 
naive outcome and mediator regressions of the form of 
Equations 1–3 adjusting for sex, maternal age, maternal 
education, gestational age, parity and maternal pre-
pregnancy BMI as potential confounders for compa-
rability with the analysis presented in [10]. There were 
1022 individuals with data on maternal smoking, the 
CpGs and all covariates available for these analyses. 
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We then ran mediation analysis taking misclassifica-
tion into account using the SIMEX method [30] for 
binary smoking status (sustained smoking across the 
pregnancy, yes or no). Applying SIMEX to outcome 
and mediator regressions, we obtained corrected esti-
mates of the regression parameters and then used those 
estimates in the equations for the direct and indirect 
effects. Because SIMEX requires specifying sensitiv-
ity and specificity, and a wide range of sensitivities has 
been reported for self-reported smoking status [13,37], 
we assessed the robustness of the naive results to a wide 
range of plausible sensitivity (SN) parameter values 
(between 0.6 and 0.9). We assumed perfect specificity 
(SP = 1) because we do not expect pregnant women to 
falsely report smoking if they are nonsmokers. We used 
the bootstrap to estimate  standard errors of the direct 
and indirect effects.

In addition to sustained smoking, we evaluated 
exposure to any smoking during the pregnancy. 
Women who reported smoking on either pregnancy 
questionnaire were coded as yes for any smoking with-
out regard to whether they reported quitting early in 
pregnancy. This variable was used to classify mater-
nal smoking in the discovery cohort in the published 
mediation analysis [10].

Results
Asymptotic bias & type I error
In the absence of exposure-mediator interaction, 

*NDE *
1i= X%  and by directly applying results on the 

impact of exposure misclassification in linear regres-
sion [28], the naive estimator of the natural direct effect 
is shown to be biased toward the null ( )<*

1 1i iY . The 
bias of *NDE%  depends on the magnitude of the mis-
classification error and the true parameter θ

1
. We show 

in the Supplementary Material sections A5–A7 that 
under the special case of no direct effect, the naive 
 estimator of the direct effect is unbiased.

Exposure misclassification will bias the estima-
tor of the exposure coefficient in the mediator model 
(β

1
) downward but will bias the estimator of the 

coefficient for the mediator in the outcome model 
(θ

2
) upward. The indirect effect, in the absence of 

exposure–mediator interaction, is the product of the 
coefficient for the exposure in the mediator model 
and the coefficient of the mediator in the outcome 
model (Equation 6 & Figure 1). Therefore, in theory, 
the bias of the naive indirect effect estimator can be 
in either direction. However, when the mediator is a 
strong biomarker for the exposure (i.e., β

1
 ≠ 0), as is 

the case for smoking methylation signals, our ana-
lytic results and simulation studies below show that 
the bias of the total effect estimator is larger than the 
bias of the natural direct effect estimator, leading to 

overestimation of the indirect effect. In other words, 
when the biomarker mediator captures the variabil-
ity of true latent smoking exposure better than the 
self-reported measure of smoking, some of the direct 
effect is incorrectly attributed to the mediator (the 
indirect effect). Results on asymptotic bias in the 
presence of exposure-mediator interaction are less 
intuitive and for a full description of the results and 
proofs, the reader can refer to  sections A4–A7 of the 
Supplementary Materials.

Another important issue when studying a potential 
mediator that is a strong biomarker for the exposure is 
that under the null hypothesis of no indirect effect,

*NIE%  will be biased. Under this setting, one of the 
necessary conditions for the validity of type I error of 
the Sobel test for an indirect effect is not met. There-
fore, under the null hypothesis of no indirect effect, if 
the exposure is misclassified and the mediator is a bio-
marker for the exposure, the Type I error rate will not 
be preserved. In the scenario we consider [10], the expo-
sure is related to the mediator. Therefore, in reasonable 
scenarios of mediation analysis in environmental epi-
genetic studies, the naive mediation analysis is likely 
biased and there is risk of reporting false-positive find-
ings of mediated effects through DNA methylation 
whenever the exposure is imperfectly measured and 
DNA methylation is a biomarker of the exposure.

Simulation study
We now illustrate the bias of estimates of natural direct 
and indirect effects and type I error of tests for mediation 
in the presence of exposure misclassification. Under the 
simulation settings described in the previous section, in 
the presence of misclassification of a binary exposure 
due to misreport (Table 1 & Supplementary Figure 1), 
the direct effect is underestimated and the indirect 
effect is overestimated under all simulation scenarios 
(i.e., 1 the alternative hypothesis [β

1
 ≠ 0, θ

2
 ≠ 0] and 

2 the null hypothesis of no indirect effect [β
1
 ≠ 0, θ

2
 

= 0]). The exposure–mediator association (β
1
) and 

the exposure–outcome association (θ
1
) are underes-

timated and the mediator–outcome association (θ
2
) 

is overestimated (Supplementary Figure 2). Applica-
tion of the SIMEX approach significantly reduces the 
bias of direct and indirect effect estimators, resulting 
in approximately unbiased estimates of direct and 
 indirect effects (Supplementary Table 1).

We also note that the type I error of the Sobel test 
of the indirect effect is conservative in the absence of 
misclassification [38]. However, in the presence of expo-
sure misclassification, the Type I error of the Sobel test 
of the indirect effect is elevated above the nominal 
5% when the mediator is a strong biomarker of the 
 exposure (Table 2).
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Mediation analysis in the MoBa study
Küpers et al. [10] performed an epigenome-wide asso-
ciation study of the association between dichotomous 
maternal smoking (129 exposed, 129 unexposed) and 
DNA methylation data in the Groningen Expert Cen-
ter for Kids with Obesity (GECKO) cohort and then 
analyzed the 35 top CpGs (those epigenome-wide 
significant at FDR < 0.05) to assess whether methyl-
ation at these CpGs mediates the effect of maternal 
smoking on birth weight. Among eight CpG sites in 
the GFI1 gene that showed the most robust media-
tion in the GECKO cohort, three gave significant 
Sobel p-values both in meta-analysis of two additional 
birth cohorts (Avon Longitudinal Study of Parents 
and Children (ALSPAC) and Generation R) [39,40] and 
in meta-analysis across all three cohorts. The authors 
reported a significant indirect effect whereby differ-
ential methylation of each of these three GFI1 CpGs 
mediated 19–46% of the decrease in birth weight in 
the GECKO discovery cohort and a smaller 12–19% 
in the three cohort meta-analysis.

Analyses for the MoBa cohort were conducted for 
the same three CpG loci in GFI1 using R software ver-
sion 3.1.3. Commented code of the analyses can be 
found in the Supplementary Material Section A8.

Table 3 contains naive regression analyses of the 
MoBa cohort, using self-reported sustained smok-
ing as the exposure, birth weight as the outcome and 
the three GFI1 CpGs (cg09935388, cg12876356, 
cg14179389) that were found to significantly medi-
ate the smoking-birth weight association in [10]. Our 
study population of 1022 individuals with nonmissing 
data for all covariates included 117 women classified as 
 sustained smokers by self-report.

In naive linear regression analyses, without any 
potential CpG mediator in the model, (Table 3) mater-
nal smoking is significantly related to birthweight; birth 
weight was 93 g lower in newborns of smoking mothers. 
However, controlling for the CpG mediators attenuates 
the association between smoking and birth weight and 
it ceases to be statistically significant (Table 3). Among 
the three CpGs, all previously reported at epigenome 
wide Bonferroni significance in relation to maternal 
smoking in MoBa [32], adjustment for cg09935388 
leads to the greatest reduction in the effect estimate 
for smoking on birthweight (Table 3). Among the three 
CpGs, cg09935388 also had the strongest association 
with smoking (β = 0.12 vs β = 0.07 for the other two).

In our MoBa data, naive mediation analysis impli-
cates methylation at CpG cg09935388 as a potential 
mediator of the smoking–birth weight relationship 
(Table 4). We estimate a nonsignificant natural direct 
effect of smoking on birth weight (NDE = -64.1; 
95% CI: -148.1–30.6), an indirect effect (via meth-

ylation) that is marginally statistically significant (NIE 
= -30.3; 95% CI: -60.5–0.0), based on the bootstrap 
CIs, which are recommended when sample size is small 
to moderate. The Sobel test yields stronger evidence of 
mediation (p = 0.021). The naive analyses estimate that 
32% of the total effect of smoking on birthweight is 
mediated by this CpG. For the other two CpGs, which 
are less strongly associated with smoking and birth-
weight, the naive analyses provide weaker evidence of 
mediation: the indirect effects are nonsignificant and 
the proportions mediated are much lower (Table 4).

Correcting for potential misreporting of smoking 
during pregnancy using the SIMEX approach weakens 
the evidence for mediation at cg09935388 (Table 4). 
Under the assumption of fairly severe, but realistic [13] 
misclassification of smoking based on self-report in 
pregnant women (SN = 0.70), comparison of results 
after application of the SIMEX approach suggests 
that the direct effect of smoking on birth weight, not 
through methylation of CpG cg09935388, is underesti-
mated (NDE

SN = 0.7
 = -73.8; 95% CI: -171.3–35.9), and 

the indirect effect is overestimated (NIE
SN=0.7

 = -28.4; 
95% CI: -59.0–6.0; proportion mediated = 27%) by 
the naive analyses. Under all sensitivity values consid-
ered, SIMEX corrected analyses for CpGs cg12876356 
and cg14179389 indicate severe under-estimation of 
the direct effect of smoking in the naive analysis and 
weaker evidence of mediation by the CpGs.

We repeated the mediation analyses (naive and 
SIMEX corrected) after enhancing the exposure vari-
able by incorporating cotinine, a short-term biomarker 
of smoking, measured in mid-pregnancy. We reclassi-
fied as smokers 18 mothers who reported being non-
smokers, but had a cotinine level consistent with smok-
ing resulting in 135 sustained smokers. This enhanced 
exposure variable should have less measurement error 
than smoking assessed by self-report alone. The reduc-
tion in birth weight for infants of smoking mothers 
is greater for this enhanced variable (-116 g; 95% CI: 
-195 to -36) than for the self-report alone variable 
(-93 g; 95% CI: -180 to -8) (Supplementary Table 2 
includes results for the other two CpGs). In naive anal-
yses (Table 5) for CpG cg0993538 when using this 
enhanced smoking variable, the direct effects are larger 
(-89 vs -64 g) compared with the mediation analysis 
using self-reported smoking in Table 4 (results for the 
other two CpGs in Supplementary Table 3). The indi-
rect effects are smaller, have wider CIs and the pro-
portion mediated is correspondingly much smaller 
(0.24 compared with 0.32) than in the analysis of self-
reported smoking. Moreover, the Sobel test is margin-
ally statistically significant (p-value = 0.051). Applica-
tion of the SIMEX correction approach yields a more 
substantial reduction in the proportion mediated by 
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CpG cg0993538 (from about 0.24 to 0.15) than in 
the analysis with self-reported smoking (reduced from 
about 0.32 to 0.26). SIMEX also increased the size and 
the precision of the estimated natural direct effect of 
smoking more than in the analysis of the self-reported 
variable (at sensitivity of 0.6, NDE was -89.4 [95% 
CI: -179.5–2.6] in the naive and -106.9 [95% CI: 
-216.4–8.1] in the SIMEX for the enhanced exposure 
variable compared with -64.1 [95% CI: -148.1–30.6] 
naive and -76.3 [95% CI: -183.5–37.3] SIMEX for the 
self-reported variable).

To evaluate in our MoBa data, the worst-case sce-
nario for misclassification of exposure to maternal 
smoking, we also repeated the analysis using any 
smoking during pregnancy as the exposure variable. 
Women coded as yes to any smoking (N = 288) include 
the more than 50% of women who quit early in preg-
nancy. In linear regression, the coefficient for any 
smoking during pregnancy was -40.0 g birthweight 
(SE = 30.9; p = 0.20) and was greatly reduced after 
adjustment for cg0993538 to -17.5 g (SE = 32.5; p = 

0.59) with smaller reductions after adjustment for each 
of the other two CpGs (Supplementary Table 4). In 
naive mediation analyses there was a significant indi-
rect effect -23.3 (95% CI: -41.4 to -2.9, Sobel test p = 
0.011) of smoking on birthweight through this CpG 
but no significant direct effect of smoking on birth-
weight and the proportion mediated was much larger 
than in the sustained smoking analyses at 58%, even 
higher than that the 46% observed in the GECKO 
study of the same exposure variable [10] (Table 6). After 
SIMEX measurement error correction the proportion 
mediated was reduced, although the reduction was 
proportionally smaller than in the analyses of the two 
sustained smoking variables (Table 6). Results for the 
other two CpGs are reported in Supplementary Table 5.

Discussion
Mediation analysis is the primary tool for investigating 
the role of epigenenetic mechanisms in health effects 
of environmental exposures. Its use is increasing along 
with evidence for epigenetic impacts of smoking and 

Table 1. Bias, Relative bias and variance of naive estimators of total effect, natural direct effect, natural indirect 
effect and proportion mediated for simulation scenario I assuming sensitivity = (0.70, 0.80, 0.90, 0.95), and 
specificity = 1.

 True SN = 0.70 SN = 0.80 SN = 0.90 SN = 0.95

  Bias Rel. 
bias 

Var Bias Rel. 
bias 

Var Bias Rel. 
bias 

Var Bias Rel. 
bias 

Var 

H1(β1
a ≠ 0, θ2

b ≠ 0)

TE -194 77.6 -0.40 990 58.2 -0.30 1013 32.98 -0.17 1305 19.4 -0.10 1397

NDE -149 74.5 -0.50 1090 59.6 -0.40 1176 37.25 -0.25 1942 20.86 -0.14 1952

NIE -45 -1.80 0.04 149 -0.9 0.02 193 -2.7 0.06 270 -2.25 0.05 330

PM 0.24 0.16 0.67 0.04 0.12 0.50 0.02 0.072 0.30 0.02 0.04 0.17 0.01

H0 (β1
a ≠ 0, θ2

b = 0)      

TE -150 60.0 -0.40 990 45.0 -0.30 998 25.5 -0.17 1019 15.0 -0.10 1045

NDE -150 75.0 -0.50 1090 59.6 -0.40 1177 37.5 -0.25 1305 20.86 -0.14 1398

NIE 0 -16 -16/0 127 -14 -14/0 174 -11 -11/0 225 -6 -6/0 319

PM 0 0.21 0.21/0 0.02 0.15 0.15/0 0.03 0.10 0.10/0 0.03 0.05 0.05/0 0.37
†Exposure-mediator association from Equation 3.
‡Mediator-outcome association from Equation 2.
NDE: Natural direct effect; NIE: Natural indirect effect; PM: Proportion mediated; SN: Sensitivity; SP: Specificity; TE: total effect; var: Variance.

Table 2. Type I error of Sobel test for indirect effect for simulation scenario I assuming sensitivity = 
(0.70, 0.80, 0.90, 0.95), and specificity = 1.

True† SN = 0.70 SN = 0.8 SN = 0.9 SN = 0.95

H0 (β1
b = 0, θ2

c = 0) 0% 0% 0% 0% 0%

H0 (β1
b = 0, θ2

c = 0) 4.9% 27% 18% 10% 6.5%
†Type I error of Sobel test when the true exposure is used in the regression analyses.
‡Exposure–mediator association from Equation 3.
§Mediator–outcome association from Equation 2.
SN: Sensitivity.
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other environmental exposures and the desire to iden-
tify biologic and public health implications of these 
epigenetic signals. However, mediation analysis is sub-
ject to various biases. It relies on stringent and untest-
able assumptions of no-unmeasured confounding and 
correct model specification. In observational studies, 
biases due to selection, missing data and measurement 
error further challenge the validity of mediation analy-
sis [41]. Sensitivity analyses for violation of the assump-
tions of no-unmeasured confounding and no selection 
bias have been proposed [42,43]. Recently, Mendelian 
randomization (MR) estimation strategies have been 

suggested as an option to evaluate the reduced effect 
of measurement error in mediation analyses of meth-
ylation signals [44,45] in epigenetic studies. In MR, if 
there are genetic variants robustly associated with the 
exposure of interest, these can be used to help infer 
causality by serving as correctly measured instrumen-
tal variables, which are not associated with various 
confounders and are not directly influenced by the 
outcome of interest. Richmond et al. recently sug-
gested that an earlier report that 30% of the associa-
tion between adult smoking and lung cancer can be 
explained by methylation at a single smoking related 

Table 3. Linear regression of self-reported sustained maternal smoking during pregnancy in relation 
to infant birth weight before and after adjustment for effects of maternal smoking on methylation 
at three CpGs in the GFI1 gene in the Norwegian Mother and Child Cohort Study.

Regression model specification Coeff† SE p-value

No mediator (CpG) adjustment -93.22 43.55 0.03

Adjusting for cg09935388 -63.99 46.21 0.17

Adjusting for cg12876356 -77.01 45.11 0.09

Adjusting for cg14179389 -82.48 45.42 0.07
†Regression coefficient interpretable as difference in birth weight, in grams between offspring of smoking mothers relative to nonsmokers.
Each separate linear regression model (only the specified CpG included) includes the following covariates: gestational age, child gender, 
maternal age, maternal education, parity, selection group and maternal prepregnancy BMI.
SE: Standard error.

Table 4. Estimates of natural direct and natural indirect effects of sustained maternal smoking, 
assessed by self-report, on birth weight and proportion mediated by three methylation cites (CpGs) 
in GFI1 in naive analyses and after SIMEX correction for measurement error in the Norwegian 
Mother and Child Study study.

CpG SN NDE (95% CI) NIE (95% CI) PM

cg09935388 Naive -64.1 (-148.1 to 30.6) -30.3 (-60.5 to 0.0) 0.32

 0.6 -76.3 (-183.5 to 37.3) -27.8 (-60.4 to 9.2) 0.26

 0.7 -73.8 (-171.3 to 35.9) -28.4 (-59.0 to 6.0) 0.27

 0.8 -70.4 (-161.6 to 38.8) -29.6 (-59.8 to 3.1) 0.29

 0.9 -66.3 (-153.5 to 34.4) -30.0 (-60.7 to 1.1) 0.31

cg12876356 Naive -78.0 (-158.9 to 11.7) -16.3 (-38.0 to 6.8) 0.17

 0.6 -86.5 (-183.8 to 17.3) -13.9 (-39.6 to 12.5) 0.14

 0.7 -85.5 (-178.9 to 22.1) -14.5 (-37.9 to 10.9) 0.15

 0.8 -82.1 (-170.6 to 15.5) -15.3 (-38.7 to 9.6) 0.16

 0.9 -79.5 (-164.7 to 15.1) -16.0 (-38.4 to 7.9) 0.17

cg14179389 Naive -81.4 (-168.0 to 12.4) -11.7 (-35.0 to 11.4) 0.13

 0.6 -93.8 (-194.2 to 14.6) -8.0 (-36.9 to 20.6) 0.08

 0.7 -91.3 (-184.2 to 14.0) -9.4 (-36.3 to 18.0) 0.10

 0.8 -86.0 (-181.8 to 15.9) -9.9 (-36.2 to 15.8) 0.10

 0.9 -85.0 (-173.7 to 15.4) -10.9 (-35.3 to 13.1) 0.11

The SIMEX corrected values are presented for four different values for sensitivity of the self-reported maternal smoking exposure 
variable: 0.6, 0.70, 0.80, 0.90 where specificity = 1. Median and 95% percentile CIs for the bootstrap estimates are in units of grams of birth 
weight.
NDE: Natural direct effect; NIE: Natural indirect effect; SN: Sensitivity; PM: Proportion mediated.
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CpG might be spurious and reflect measurement error 
in self-reported smoking [44]. They suggested that MR, 
using genetic variants related to smoking, might be 
a way to evaluate that possibility. Assumptions and 
application of MR analysis for the estimation of direct 
and indirect effects are further outlined in [45].

Here we examine the potential impact of exposure 
misclassification using the example of maternal smok-
ing during pregnancy as the exposure and smoking-
related methylation signals in the newborn as the 
putative mediators of the well-established relationship 
between smoking and reduced birth weight.

Our simulation studies and analyses of the MoBa 
data show that in environmental epigenetic studies 
on the mediating role of DNA methylation, when the 
methylation signal is a good biomarker of an exposure 
that is measured with error, there is a substantial risk 
of false positives and overestimation of the proportion 
mediated. This is the case for maternal smoking during 
pregnancy and newborn methylation where the smok-
ing-related methylation signals are excellent biomarkers 
of exposure compared with self-report [3–6]. It is known 
that some smokers self-report as nonsmokers and this 
misreporting is more prominent during pregnancy 
because of the well-publicized health effects of smoking 
on the newborn and the attendant stigma to acknowl-
edging this behavior [13]. The methylation signals detect 
smoking across pregnancy that is not reported by moth-
ers. In addition, the degree of methylation difference 
at a site captures information about the amount and 
duration of smoking across the pregnancy which influ-
ences birth weight (or other health effects of maternal 
smoking) but is not captured by yes or no self-report. 
As a result, the indirect effect captures part of the direct 
effect because DNA methylation is less subject to mea-
surement error than self-reported smoking, identifies 
falsely reported nonsmokers and captures quantitative 
information on duration and amount relevant to the 

outcome thus supplementing the measured exposure 
(self-reported smoking) itself. Thus mediation by the 
smoking methylation biomarker is overestimated.

We based our analyses on a recently published 
scenario whereby three CpGs in GFI1, differentially 
methylated in newborns in relation to self-reported 
maternal smoking, were reported to mediate 19–46% 
of the effect this in utero exposure on offspring birth 
weight [10]. These three CpGs are robust sites of dif-
ferential methylation from maternal smoking reported 
in various studies including the MoBa dataset used for 
the current analysis [32]. The Küpers et al. [10] study 
was well conducted and included replication of the 
mediation finding in two additional high-quality 
birth cohorts [10]. Nonetheless, similar to other stud-
ies of smoking or other exposure-related methylation 
signals as mediators of exposure-related health effects, 
the potential contribution of misclassification was not 
estimated. We would expect misclassification to act 
the same way in the discovery and replication cohorts 
and thus replication of the apparent mediation does 
not reduce possibility that exposure misclassification 
contributes to the finding of mediation. Of inter-
est, the proportion mediated by methylation at GFI1 
cg09935388 was much higher in the GECKO dis-
covery cohort (0.46), where the smoking variable was 
any smoking during pregnancy, than in the combined 
two replication cohorts (0.16) where the smoking vari-
able was sustained smoking across the pregnancy [10]. 
The methylation signals in GFI1, like other top sites 
in epigenome wide analyses, reflect sustained smoking 
during the pregnancy as opposed to smoking that ends 
early in pregnancy that is captured by the any smok-
ing variable [36]. Reduced birthweight is also more 
strongly associated with sustained smoking than any 
smoking [3]. The much stronger proportion mediated 
observed in the GECKO discovery cohort than for the 
combined replication cohorts may reflect the greater 

Table 5. Estimates of natural direct and natural indirect effects of sustained maternal smoking, 
assessed by cotinine-enhanced self-report, on birth weight and proportion mediated by CpGs 
cg09935388 in GFI1 in both naive analyses and after SIMEX correction for measurement error in the 
Norwegian Mother and Child Study.

CpG SN NDE (95% CI) NIE (95% CI) PM

cg09935388 Naive -89.4 (-179.5 to 2.6) -27.8 (-59.7 to 5.1) 0.24

 0.6 -106.9 (-216.4 to 8.1) -18.7 (-60.4 to 21.7) 0.15

 0.7 -102.1 (-205.9 to 16.2) -21.5 (-60.8 to 17.6) 0.17

 0.8 -97.9 (-195.5 to 4.2) -23.9 (-59.6 to 11.9) 0.20

 0.9 -92.2 (-184.0 to -0.9) -25.7 (-59.1 to 8.3) 0.22

The SIMEX corrected values are presented for four different values for sensitivity of the self-reported maternal smoking exposure 
variable: 0.6, 0.70, 0.80, 0.90 where specificity = 1. Median and 95% percentile CIs for the bootstrap estimates are in units of grams of birth 
weight
NDE: Natural direct effect; NIE: Natural indirect effect; SN: Sensitivity; PM: Proportion mediated.
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misclassification associated with any compared with 
sustained smoking during pregnancy. Accordingly, 
when we analyzed the any smoking during pregnancy 
variable in MoBa, we estimated a similarly greater 
proportion of mediation by CpG methylation than 
obtained with sustained smoking.

When we analyzed the cotinine-enhanced exposure 
variable, we found that the direct effect of smoking 
was larger and more precisely estimated and the pro-
portion mediated was much lower than in the analysis 
of sustained smoking based on self-report alone. This 
finding has two implications. First, an enhanced mea-
sure of exposure, with less measurement error, leads to 
lower estimates of the proportion of mediation by the 
smoking CpG signal, a biomarker of the exposure. The 
proportion mediated was reduced more and the direct 
effect was both larger and more precisely estimated 
after SIMEX correction. Given that misclassification 
correction may be less widely used than it might be 
because of the perception that is generally leads to less 
precise effect estimates, this is an important result.

These results complement a body of literature on the 
impact of misclassification in mediation analysis under 
a regression framework. This previous work has focused 
on instances where the mediator, rather than the expo-
sure, is measured with error or misclassified [15,16]. In our 
study methylation might be measured with some error, 
however, the three smoking associated CpGs have been 
reported at genome wide significance in at multiple indi-
vidual studies of varying sizes [32,10] and are among the 
top eight findings in a meta-analysis of 13 cohorts [2]. 
Thus they probably have larger effect sizes and are likely 
measured with lower error than less robust signals.

All studies of exposure and methylation in blood 
are potentially confounded by effects of the exposure 
on cell composition. Thus this is a limitation in the 
interpretation of the study of [10], our analyses of the 
MoBa data and any other analyses examining poten-
tial mediation of health effects by exposure related 

methylation differences. A reference panel based on 
cord blood has become available to estimate cell type 
proportions for analyses of DNA extracted from whole 
cord blood [46]. When we add these estimated cell 
types to the model shown in Table 3, there is no fur-
ther attenuation of the coefficient for birthweight in 
relation to sustained maternal smoking beyond that 
from adding cg09935388 to the model (β = -63.99 g 
before cell type adjustment vs -65.99 g after cell type 
adjustment). While these cell-type correction methods 
have limitations, this result provides some reassur-
ance that the associations between maternal smoking, 
cg09935388 methylation and birthweight evaluated 
by [10] and followed up in this paper are not simply 
due to confounding by cell type. However, it should 
be noted that neither mediation analysis nor measure-
ment error correction address the potential influence 
of exposure related difference in cell composition on 
reported  findings regarding effects of exposure on 
methylation.

Integration of measurement error strategies within 
standard mediation analyses can reduce measurement 
error bias. It confers the important added benefit of 
realistically quantifying uncertainty around the medi-
ation estimates. We illustrate a sensitivity analysis for 
misclassification bias employing the SIMEX correc-
tion approach [30], which can be implemented with 
easy-to-use software. The SIMEX approach for mis-
classified categorical variables allows the misclassifica-
tion mechanism to be dependent on the true exposure 
status, as is typically the case for smoking where some 
smokers report themselves as nonsmokers on surveys. 
SIMEX can also be adopted for continuous variables 
and in nonlinear models as well (e.g., in the presence 
of exposure–mediator interaction) and if a categorical 
outcome, mediator or covariates are misclassified as 
well.

We included gestational age as a linear term 
for comparability with the mediation analysis of 

Table 6. Estimates of natural direct and natural indirect effects of any maternal smoking during 
pregnancy, assessed by self-report, on birth weight and proportion mediated by CpGs cg09935388 
in GFI1 in both naive analyses and after SIMEX correction for measurement error in the Norwegian 
Mother and Child Study.

CpG SN NDE (95% CI) NIE (95% CI) PM

cg09935388 Naive -16.7 (-84.6 to 52.9) -23.3 (-41.4 to -2.9) 0.58

 0.6 -21.1 (-112.1 to 64.6) -26.8 (-51.6 to -0.9) 0.55

 0.7 -20.7 (-103.8 to 65.4) -25.8 (-48.0 to -1.7) 0.55

 0.8 -18.7 (-96.0 to 63.5) -25.0 (-46.1 to -2.1) 0.57

 0.9 -18.3 (-90.0 to 54.3) -24.1 (-43.4 to -2.8) 0.57

The SIMEX corrected values are presented for four different values for sensitivity of the self-reported maternal smoking exposure variable: 
0.6, 0.70, 0.80, 0.90 where specificity = 1. Median and 95% percentile CIs for the bootstrap estimates are in units of grams of birth weight.
NDE: Natural direct effect; NIE: Natural indirect effect; PM: Proportion mediated; SN: Sensitivity.
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Kupers et al. [10]. Of note, in our MoBa data, meth-
ylation at cg09935388 was not significantly related to 
gestational age (p = 0.79). It is possible that in a study 
of birthweight a different form of gestational age, such 
as Z scores, might have been a better adjustment vari-
able [47]. Nonetheless gestational age as a simple linear 
term has been robustly associated in recent genome 
wide analyses with methylation at many individual 
CpG sites [34,35]. Likewise, in both papers, there is 
likely measurement error in gestational lag. However, 
possible misspecification or misclassification of gesta-
tional age as an adjustment term in either study would 
not change our conclusion regarding measurement 
error in the self-reported smoking variable leading to 
potential overestimation of mediation of the smoking 
birthweight association by methylation at cg09935388, 
a strong biomarker of smoking.

There are limitations to this study. The SIMEX 
approach yields only approximately consistent estimates 
in small samples and therefore residual measurement 
error bias is possible despite the seemingly large sam-
ple size in our study. We, and no doubt others, plan to 
address these issues in future work. In the meanwhile, 
residual effects of misclassification on estimates of 
mediation are likely, given currently available exposure 
measures and measurement error correction methods. 
Thus, even when employing measurement error correc-
tion, great caution is warranted in the interpretation of 
mediation analysis involving a potential exposure bio-
marker. While our example focuses on methylation, the 
results are applicable to other types of mediators that 
may also capture some of the exposure under study. In 
this work we focused on evaluating the impact of mis-
classification on quantification of the mediating role of 
DNA methylation CpG sites at GFI1 reported in the 
literature. Application of misclassification correction 
approaches in epigenome-wide analysis is an important 
future direction.

Future perspective
Appreciation of the potential overestimation of media-
tion by epigenetic signals of exposure disease relation-
ships will lead to both adoption of measurement error 
correction approaches and greater caution in interpret-
ing apparent mediation in environmental epigenetics. 

Because current misclassification correction methods 
are even more effective when better exposure measures 
are used, both improved exposure assessment and novel 
statistical developments in the field of mediation anal-
ysis currently underway will improve both the validity 
and power of mediation analyses to quantify the role of 
DNA methylation or other epigenetic signals in medi-
ating the effects of environmental exposures effects on 
human health across the life course.
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Executive summary

•	 Analytic results, an extensive simulation study, and analysis of real data show that ignoring exposure 
misclassification when evaluating mediation of exposure disease relationships, or similar biomarkers of the 
exposure, can lead to false or exaggerated conclusions regarding mediation.

•	 Measurement error correction approaches that acknowledge potential exposure misclassification can improve 
validity of findings on potential epigenetic targets on the pathway between environmental exposures 
and health outcomes. However, even when using these correction approaches caution is warranted in the 
interpretation of apparent mediation by epigenetic signals are good exposure biomarkers.
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