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Aim: We compared predictive modeling approaches to estimate placental methylation 
using cord blood methylation. Materials & methods: We performed locus-specific 
methylation prediction using both linear regression and support vector machine models 
with 174 matched pairs of 450k arrays. Results: At most CpG sites, both approaches 
gave poor predictions in spite of a misleading improvement in array-wide correlation. 
CpG islands and gene promoters, but not enhancers, were the genomic contexts 
where the correlation between measured and predicted placental methylation levels 
achieved higher values. We provide a list of 714 sites where both models achieved an 
R2 ≥0.75. Conclusion: The present study indicates the need for caution in interpreting 
cross-tissue predictions. Few methylation sites can be predicted between cord blood 
and placenta.
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Background
Epigenetic mechanisms contribute to differ-
ences in the biologic functions of different 
tissues [1–3]. Understanding these differences 
and how we can borrow information or con-
trast tissue types can enhance epigenomic 
studies characterizing human populations. 
Previous research has suggested that DNA 
methylation levels in one tissue may serve as 
surrogate markers of DNA methylation levels 
in another tissue [4,5]. Since cord blood is a 
more available and frequently collected tissue 
than placenta, a predictive model between 
these two tissues may be useful to researchers 
in reproductive health. The general methy-
lomic patterns across tissues would also be 
informative regardless of which sites are cor-
related, as we need to understand these pat-
terns to better understand the role of meth-
ylation in tissue differentiation. Moreover, 
some studies suggest that DNA methylation 
patterns within some genomic regions are 

largely conserved across tissues, although 
intraindividual variation exceeds interindi-
vidual variation [6–8]. A recent study [9] pro-
posed to use support vector machine (SVM) 
to predict locus-specific methylation in a 
target tissue based on methylation in a sur-
rogate tissue (e.g., predicting methylation in 
atrial tissue using peripheral blood). SVM is 
a supervised learning method used to analyze 
data and recognize patterns [10]. SVM repre-
sents a powerful technique for general classi-
fication, regression and outlier detection and 
has been widely used in many bioinformatics 
applications. DNA methylation prediction 
based on a surrogate tissue could be espe-
cially useful when the target tissue of interest 
is difficult to collect, such as brain or heart 
tissue. Furthermore, these methods could be 
advantageous even for tissues that are more 
readily available. The placenta, for example, 
is an accessible tissue that can be noninva-
sively collected at delivery and has been pro-
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posed to harbor molecular signals that may reflect fetal 
programming from in utero exposures and risk factors. 
Yet, while collection of placenta is noninvasive, proto-
cols for sampling of placental tissue and storage are less 
standardized and more time consuming than those for 
cord blood, a source of fetal DNA that is also available 
at birth. As a result, fewer cohort studies have banked 
placenta samples as more have focused on collecting 
cord blood. Further, the placenta is a unique organ that 
– different from other human tissues – grows rapidly 
during pregnancy, is perfused by both maternal and 
fetal blood, and ends its functions at delivery. There-
fore, we need to determine whether DNA methylation 
prediction methods developed for other target tissues 
can be used for placenta.

In this study, we examined genome-wide methyla-
tion in 174 pairs of cord blood and placental samples. 
We present first a descriptive comparison of methyla-
tion levels in cord blood and placenta throughout the 
genome. We then performed locus-specific prediction 
of methylation in placenta based on methylation in cord 
blood using both linear regression and SVM prediction 
models. This comparison was conducted to determine 
whether methylation in cord blood can predict meth-
ylation in placenta, and to identify subsets of CpG sites 
and genomic contexts in which the  prediction model 
performed better or worse than average.

Materials & methods
Subject & tissue collection
Cord blood and placental tissues were collected from 
174 participants from the dual-site PRogramming of 
Intergenerational Stress Mechanisms study, a prospec-
tive pregnancy cohort of mother–child pairs originally 
designed to examine how perinatal stress influences 
respiratory health in children. Women were recruited 
from prenatal clinics during pregnancy (26.9 ± 8.1 
weeks gestation) from Beth Israel Deaconess Medical 
Center in Boston (MA, USA) and the Icahn School 
of Medicine at Mount Sinai in New York (NY, USA) 
from March 2011 to August 2014. Eligibility criteria 
included: English- or Spanish-speaking; age ≥18 years 
at enrollment; and singleton pregnancy. Cord blood 
was collected before delivery of the placenta. Cord 
blood was separated into plasma and buffy coat by 
centrifugation and buffy coat was stored at -20°C. 
Placentas were sampled per a published protocol [11], 
immediately after birth. Each of four samples (∼1 cm3) 
was taken on the fetal side approximately 4 cm from 
the cord insertion site and approximately 1–1.5 cm 
below the fetal membrane to avoid membrane con-
tamination. The decidua and fetal membranes were 
removed, the sample was rinsed in a cold phosphate-
buffered saline bath, cut into smaller pieces (∼0.1 cm3) 

and placed into 1 ml of RNAlater™ RNA Stabiliza-
tion Reagent (Qiagen) to allow for isolation of RNA 
in addition to DNA from the same samples. Samples 
in RNAlater were placed at -4°C for ≤24 h; excess 
RNAlater was then removed and samples were placed 
at -80°C until DNA extraction. DNA was isolated 
using the Gentra Puregene kit from Qiagen (MD, 
USA) and quantified using an Implen Nanophotom-
eter Pearl (CA, USA). The origin of placental tissue 
from the fetal side of the organ was confirmed by the 
near-perfect agreement of placenta and cord blood 
samples in 64 genotyping probes used for identity 
verification – indicating no meaningful contamina-
tion with maternal DNA. Across these 64 genotyping 
probes the range of the Pearson correlation between 
cord blood and placenta for each of the 174 sample 
pairs was (0.99, 1). Procedures for PRogramming of 
Intergenerational Stress Mechanisms were approved 
by the Institutional Review Boards at the Brigham and 
Women’s Hospital and the Icahn School of Medicine 
at Mount Sinai. Beth Israel Deaconess Medical Center 
relied on Brigham and Women’s Hospital for review 
and oversight of the protocol. Written informed 
 consent was obtained from all participants.

DNA methylation profiling
HumanMethylation450 BeadChips (Illumina, Inc., 
CA, USA) were used to interrogate 485,577 DNA 
methylation sites and to generate a measure of the 
methylation proportion at each site. Specifically, 
single-CpG-site methylation values were quantified 
after bisulfite conversion using fluorescence measures 
at site-specific probes, which was computed as the 
methylated intensity divided by the sum of both the 
methylated and unmethylated intensities. Methyla-
tion values ranged from zero (for a fully unmethylated 
CpG site) to one (for a fully methylated CpG site). As 
others have found that the differences between plates 
or chips are often the largest source of technical varia-
tion [12,13], all pairs of placenta and cord blood (from 
the same individual) were arrayed on the same chip 
with a  randomized position (row and column).

Quality control & preprocessing
The presence of failed arrays or outliers was checked 
with detection p-values (all samples passed with 
detection p-values <0.05 in >99% of probes) and 
through visualization of principal components. Prin-
cipal components plots and the analysis of five pairs 
of technical replicates that were arranged across chips 
and plates were further used to assess potential batch 
effects. Sample identity was checked via imputed sex 
and agreement of genotype with paired tissues. Data 
were preprocessed using background correction [14], 
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dye bias and probe type adjustment [15]. BMIQ (Beta 
Mixture Quantile dilation) normalization strategy was 
applied to all probes to adjust the methylation values of 
 Infinium II probes into a statistical distribution char-
acteristic of Infinium I probes. The BMIQ function in 
the R package wateRmelon [16] was used.

Probe filtering
Linear and SVM prediction models were not per-
formed on all 485,577 methylation probes. Filtered-out 
probes included 1217 probes with a detection p-value 
> 0.05 in >1% of the samples, 64 genotyping SNPs, 
3089 CpH sites, 29,127 cross-reactive probes [17], 
74,645 CpG sites with variants within ten base pairs 
that are common to Asian, American, African and 
European populations with a frequency of >1%, and 
9371 probes on chromosome X or Y [18]. We performed 
three further steps to prevent unknown SNPs from 
driving DNA methylation prediction as these would 
be shared across tissues. First, we conducted an empiri-
cal check for additional probes under the influence of 
a SNP and excluded from both tissues 3992 CpG sites 
with a multimodal distribution of methylation (Dip 
test p-value < 0.05) in either cord blood or placental 
samples. Second, we dropped 5132 probes with >10% 
of extreme outliers (<25th percentile – 3IQR or >75th 
percentile + 3IQR) either in cord blood or placental 
samples and, third, we trimmed extreme outliers in 
both cord blood and placental samples. The resulting 
dataset for analysis included 358,940 probes. In order 
to assess the contribution of subject-level characteris-
tics to the concordance of DNA methylation in these 
probes between cord blood and placenta, we used lin-
ear regression models to test whether within-person 
R2 values for different sample pairs were associated 
with gestational age, sex, race/ethnicity, education or 
 collection site.

Statistical models for prediction
Linear prediction model
Let y

ij
 and x

ij
 be, respectively, the placental and cord 

blood methylation values referring to the j-th CpG site 
in the i-th participant. Let z

ij
 be the mean of the cord 

blood methylation values across all the nearby DNA 
methylation sites that are correlated to the j-th CpG 
site in the i-th subject (not including the j-th site), as 
defined below. The linear regression model for 
 prediction of the j-th CpG site is y

ij
 = β

0j
 + β

1j
 x

ij
 + β

2j
 z

ij
 

+ ε
ij
. In order to estimate the coefficients of this model 

and to assess its prediction accuracy, data were ran-
domly divided into ten sets for cross-validation (cv) 
using a training and a testing set. The samples of the 
training set were used to fit the linear regression model 
and to compute the predictor coefficients’ estimates 

j0bt , j1bt  and j2bt . For the i-th sample in the testing 
dataset, the predicted placental methylation value in 
the j-th CpG site is: 

y x z* * *
ij j j ij j ij0 1 2b b b= + +t t t

where x*
ij
 and z*

ij
 are, respectively, the cord blood meth-

ylation value and the mean of the correlated nearby 
cord blood methylation sites from the sample being 
predicted. The assign.to.clusters function in the R 
package Aclust [19] was used to define the sets of neigh-
boring CpG sites that are correlated with each other, 
using default parameters. This function implements a 
clustering method to discover methylation regions by 
clustering together adjacent probes within a genomic 
distance constraint according to their Spearman cor-
relation between samples (within a single tissue). This 
covariate was added as an additional predictor, where 
available (33% of the analyzed probes), as a more sta-
ble measure of the regional methylation pattern in the 
surrogate tissue.

SVM prediction model
SVM is a supervised learning method used to analyze 
data and recognize patterns. SVM represents a pow-
erful technique for both classification and regression 
purposes and has been widely used in many bioinfor-
matic applications. In this analysis we used SVM for 
regression, introduced by Vapnik [10] in 1963. This sta-
tistical model is based on the computation of a linear 
regression function in a high dimensional feature space 
where the input data are mapped via a nonlinear func-
tion called the kernel function (for an introduction to 
SVMs see Chapter 12 of [20]). The main advantages 
of SVM over linear regression are that it can account 
for nonlinear relationships, it avoids overfitting, and 
it is robust to noise. The SVM model for prediction is 
constructed in a similar manner as the linear regres-
sion model. Let f(x,z) denote the SVM model, then, 
for the i-th sample in the testing data set, the predicted 
 placental methylation value in the j-th CpG site is: 

( , )y f x z* * *
ij ij ij=

where x*
ij
 and z*

ij
 are, respectively, the cord blood meth-

ylation value and the mean of the cord blood methyla-
tion values across the correlated sites from the sample 
being predicted. The train function in caret R pack-
age [21] was used, with parameter ‘method’ equal to 
svmRadial (SVMs with Radial Basis Function  Kernel), 
σ = 1 and C = 1.

In order to better understand the relationship 
between these two tissues, we also ran our models in 
the reverse order – using placenta as a surrogate tissue 
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to predict methylation in cord blood. For these models 
we used the same prediction strategies (linear model 
[LM] and SVM), and model formulation, including 
the mean of the correlated nearby sites where appli-
cable (after running Aclust in the placenta) in the same 
set of probes as specified above.

Assessment of prediction accuracy
In order to compare the two regression procedures 
and assess their prediction accuracy we used k-fold cv, 
which is commonly employed in predictive modeling 
to use all of the data without overfitting. Specifically, 
we first randomly divided the samples into ten subsets 
or ‘folds’. At each of ten iterations, all the samples in a 
specific fold were removed (left out) and the remaining 
samples constituted a training dataset which was used 
to estimate the prediction models (linear and SVM). 
The left-out samples were then used as a testing data 
set. We applied the prediction model (linear and SVM) 
to obtain predicted values for the left-out samples. We 
used the square of the Pearson’s correlation coefficient 
(R2) and the root mean square error to estimate the 
accuracy of the predicted relative to the actual values. 
The steps above were repeated ten times, that is, once 
for each of the folds. We used the trainControl func-
tion in the caret R package [21] by setting the ‘method’ 
and ‘number’ parameters to cv and 10, respectively. 
The choice of the number of folds is arbitrary: a larger 
number is more computationally expensive and less 
biased, but can suffer from large variability, while a 
lower value is usually less computationally expensive 
and has less variance, but may be more biased. It is 
often reported that the optimal number of folds is 
between five and ten, because the statistical perfor-
mance does not increase with larger values of folds, and 
averaging over fewer than ten splits remains computa-
tionally feasible (Chapter 7 of [20]). Although we are 
primarily interested in prediction, with a sample size 
of 174 we would expect a power of 0.8 to detect linear 
 associations with an R2 as low as 0.04.

To understand whether prediction performance 
related to the genomic context of each probe, we 
stratified results by the Illumina annotation catego-
ries (version 1.2) [22] for promoters, CpG islands and 
enhancers, and compared the probes in each of these 
categories with the remainder of the analytic data-
set. Because imprinted genes have a unique pattern 
of epigenetic control that is established in the germ-
line, we also investigated prediction performance 
among a set of 620 probes in the analytic dataset that 
fell within imprinted regions previously described in 
leukocytes [23]. All data processing and analyses were 
conducted using R version 3.3.1 [24] and additional 
R packages as cited throughout.

Results
In this study we examined cord blood and placental 
samples from 174 participants. The average gesta-
tional age was 39.2 (range: 34.6–41.6) weeks. Most 
of the participants self-reported white (38%) or black 
(including Haitian) (38%) race, and 13% reported 
Hispanic ethnicity.

Methylation patterns across cord blood & 
placenta
DNA methylation profiles were measured at single-
CpG-site resolution for 485,577 DNA methylation sites 
on 174 pairs of cord blood and placental samples using 
Illumina HumanMethylation450 BeadChips. The 
preprocessing and filtering steps described in Methods 
reduced the number of sites for comparison to 358,940 
CpGs across the 22 autosomal chromosomes. We first 
examined the distribution of cord blood and placen-
tal DNA methylation values across all 174 samples. 
For descriptive purposes, we labeled methylation levels 
>0.7 as hypermethylated and methylation levels <0.3 
as hypomethylated. These thresholds are arbitrary but 
approximately capture the two large modes seen when 
plotting the density of the 450k array, as most probes are 
largely methylated or unmethylated. In cord blood, the 
majority of CpG sites were either hyper- or hypometh-
ylated: methylation levels were >0.7 and <0.3 across 
all the samples in 41.54 and 40.59% of the CpG sites, 
respectively. Moreover, in almost half of the cord blood 
CpG sites (48.04%) methylation levels were ≥0.5 in 
all individuals. In placenta, methylation levels showed 
different distributions: 23.84% of the CpG sites had 
methylation >0.7, whereas 34.98% had methylation 
<0.3 in all individuals. Also, the percentage of CpG 
sites with methylation levels ≥0.5 across all subjects 
was lower in placenta (34.25%) than in cord blood. 
This greater proportion of intermediate methylation 
in human placenta has been previously reported [23]. 
Table 1 shows cord blood and placental DNA meth-
ylation distributions according to the functional cat-
egories of the Illumina annotation. CpG islands and 
promoters were the functional regions with the most 
consistently similar methylation levels between cord 
blood and placenta. 19.6% of the CpG sites had a dif-
ference in methylation >0.1 for all 174 samples. Cross-
tissue differences in methylation were largely conserved 
across individuals: a CpG site with a methylation level 
higher in placenta than in cord blood in one of the 
participants generally had higher methylation levels in 
placenta than in cord blood in most other participants 
(Supplementary Figure 1). In addition, the magnitude 
of difference was similar across individuals. For each 
subject, we computed the square of the Pearson correla-
tion coefficient (R2) between the two tissues, using all 
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probes, and this ranged from 0.52 to 0.72 with a mean 
of 0.65 (Table 2). In order to assess the contribution of 
individual characteristics to the concordance of DNA 
methylation between cord blood and placenta, we used 
linear regression models to test whether within-person 
R2 values for different sample pairs were associated 
with gestational age, sex, race/ethnicity, education, 
or collection site, and we did not find any statistically 
 significant associations.

Cross-tissue prediction of methylation levels
We explored methylation prediction in placenta based 
on methylation in cord blood by using linear regression 
and SVM prediction models. We applied tenfold cv to 
assess prediction accuracy and avoid overfitting. At 
most CpG sites, both models gave inaccurate predic-
tions: 75% of CpG sites had an R2 between measured 
and predicted placental methylation values lower than 
0.25 (Figure 1). Also, we found no substantial differ-
ences between the performance of predictions gener-
ated by the linear model and by the SVM model (R2 
and root mean square error distributions were very 
similar between the two models). The averages of the 
R2 among all 358,940 linear and SVM prediction 
models were equal to 0.17 and 0.15, respectively.

We also calculated from each pair of samples the R2 
between placental and SVM/LM-predicted placental 
methylation values among all the CpG sites. The aver-
age R2 from the same individual increased from 0.65 
(between cord blood and placental methylation values) 
to 0.98 (between placental and SVM/LM-predicted 
placental methylation values) (Table 2).

In order to compare different genomic contexts, 
we stratified the distribution of the site-specific cor-
relations by Illumina annotation category (Figure 2). 
We found that CpG islands and promoters, but not 

enhancers, were the annotation subsets where the R2 
between measured and predicted placental methyla-
tion values achieved higher values in both the linear 
and SVM models. Among the 620 included probes 
that fell in imprinted regions [23], predictions were 
slightly worse than the remainder of probes for both 
LM and SVM models (mean R2 of 0.159 vs 0.174 for 
linear models, t-test p-value = 0.0004).

We next explored those CpG sites where the SVM 
prediction model achieved high or low R2 values in 
the tenfold cv. The highest values of R2 (≈0.94) were 
obtained in CpG sites where cord blood and placen-
tal methylation distributions were very similar to each 
other (Figure 3). In contrast, in the CpG sites that 
showed different methylation levels between the two 
tissues, the correlation between measured and SVM-
predicted methylation levels computed by tenfold cv 
were low. For example, Figure 3B shows three CpG 
sites where R2 is almost equal to zero: cg14182041 and 
cg12255501 are hypermethylated while cg18824446 
is hypomethylated in cord blood but not in placenta. 
Overall, we found more CpG sites hyper- or hypo-
methylated in cord blood but not in placenta than 
the opposite situation (Supplementary Figure 2). The 
lighter diagonals in Figure 4A & B show that the SVM 
prediction model performed better when the means 
and the standard deviations of cord blood and placen-
tal methylation levels across all samples were similar to 
each other. In particular, the correlation between mea-
sured and SVM-predicted methylation values achieved 
the highest values in the CpG sites where there was 
a higher standard deviation in methylation across all 
samples (Supplementary Figure 3). We found 714 CpG 
sites with R2 ≥0.75 in both linear and SVM models. 
The proportion of these probes across autosomal chro-
mosomes ranged from 0.1% (in chromosome 18) to 

Table 1. Cord blood and placental DNA methylation distributions according to the Illumina annotation functional 
categories.

Annotation category n Hypomethylated status 
(β < 0.3) (%)

Hypermethylated status 
(β > 0.7) (%)

Methylated status  
(β ≥ 0.5) (%)

 Cord blood Placenta Cord blood Placenta Cord blood Placenta 

All probes 358,940 40.6 35.0 41.5 23.8 48.0 34.3

Island 118,945 79.3 68.2 11.8 6.6 13.8 10.1

Shelf 32,537 7.0 5.8 72.4 46.5 82.2 62.3

Shore 86,626 42.0 35.2 33.8 19.8 41.4 30.2

Other 120,832 10.5 10.0 68.0 37.6 77.3 53.4

Enhancer 79,889 24.6 18.8 51.8 29.2 60.4 43.7

Not enhancer 279,051 45.2 39.6 38.6 22.3 44.5 31.5

Promoter 25,921 88.3 83.5 6.6 4.7 7.6 7.0

Not promoter 333,019 36.9 31.2 44.3 25.3 51.2 36.4
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Figure 1. Prediction accuracy of both linear models 
and support vector machine models was evaluated 
by using R2 and root mean square error between 
measured and predicted methylation values. For both 
models, the distribution of R2 (A) and root mean square 
error (B) in all CpG sites are shown. The filled square 
and triangle represent the mean.  
LM: Linear model; RMSE: Root mean square error; 
SVM: Support vector machine.
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0.3% (in chromosome 19), but did not differ signifi-
cantly (χ2 test, p = 0.74). We performed a χ2 test for 
the equality of proportions of the Illumina functional 
categories in the subset of probes where both models 
achieved good predictions versus the remainder. We 
found that good prediction CpG sites were enriched in 
shelves (14 vs 9%, p-value = 2.10e-07) and promoters 
(13 vs 7%, p = 5.48e-12), but depleted among CpG 
sites in shores (17 vs 24%, p = 3.02e-05) and enhanc-
ers (11 vs 22%, p = 8.21e-13). However, these 714 
good prediction probes did not share any pathways 
associated with biologic processes in a Gene Ontol-
ogy enrichment analysis (all False Discovery Rate 
corrected p-values near 1) using the gometh function 
of the missMethyl package [25]. We also performed a 
sensitivity analysis using the methylation data before 
any preprocessing: 407 (57%) of these 714 CpG sites 
still presented an R2 ≥0.75 in both linear and SVM 

models. The list of the 714 CpG sites with R2 ≥0.75 in 
both models is provided in the Supplementary Material 
along with their relevant annotation and descriptive 
statistics from our results.

As a sensitivity analysis, we used the function esti-
mateCellCounts in the R package minfi [26,27] to estimate 
the cell type proportions in the cord blood samples and 
reran both LM and SVM approaches using five out of 
six of the estimated proportions (which sum to one) as 
covariates. Adjusting for cell type proportions did not 
improve the LM predictions (the average [range] of the 
R2 across all 358,940 models was 0.17 [0.00–0.94]) 
and substantially worsened the SVM predictions (the 
average [range] of the R2 across all 358,940 models was 
0.08 [0.00–0.70]).

As an additional exploration of our data, we also 
reversed our question of interest and performed predic-
tion of cord blood methylation using the placenta with 
the same model formulation in the same set of probes. 
We found overall consistency in the performance of 
the reversed models with only 736 probes meeting the 
criteria for good prediction, of which 603 (82%) were 
among the 714 good prediction CpGs for estimating 
placental methylation.

Discussion
In this study we used statistical models to predict locus-
specific DNA methylation levels in placenta using cord 
blood methylation. In particular, we built a linear 
prediction model for each of the 358,940 CpG sites 
we considered. In each site, prediction accuracy was 
assessed with tenfold cv by computing the R2 between 
measured and predicted methylation values across 174 
subjects. The average R2 among all 358,940 linear 
prediction models, which can be considered an over-
all estimate of linear prediction accuracy, was equal to 
0.17. We repeated the same steps using a SVM predic-
tion model: the average R2 among all 358,940 SVM 
models was equal to 0.15. These results suggest that, 
overall, both modeling approaches perform poorly in 

Table 2. Mean and range of the overall correlation R2 from the same individual between cord 
blood and placental methylation values (first line) and between placental and predicted placental 
methylation values obtained with both support vector machine model (second line) and linear 
regression model (third line).

Tissue pair All probes

 Mean R2 Range

Cord blood – placenta 0.65 0.52–0.72

Placenta – SVM predicted placenta 0.98 0.96–0.99

Placenta – LM predicted placenta 0.98 0.96–0.99

R2 is the square of the Pearson correlation coefficient.
LM: Linear regression model; SVM: Support vector machine.
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Figure 2. R2 and root mean square error distributions 
stratified by annotation category in both linear models 
and support vector machine models. The categories 
were designated using Illumina annotation. The filled 
square and triangle represent the mean.  
LM: Linear regression model; RMSE: Root mean square 
error; SVM: Support vector machine.

0.75

0.25

Island Shelf Shore Other

R
2

0.75

0.25

Enhancer Not enhancer

R
2

0.75

0.25

Promoter Not promoter

R
2

LM

SVM

Model

future science group

Epigenome-wide cross-tissue predictive modeling & comparison of cord blood & placental methylation    Research Article

predicting locus-specific methylation levels between 
the two tissues.

Our analysis attempted to replicate a previous study 
that contrasted linear and SVM models to predict 
locus-specific methylation in a target tissue based 
on methylation in a surrogate tissue [9]. In each pair 
of tissues, the overall (array-wise) R2 from the same 
individual between surrogate and target methylation 
values was always lower than the R2 from the same 
individual between measured and predicted methyla-
tion values (R2 increases from 0.38 between tissues to 
0.89 for peripheral blood leukocytes [PBL]-to-artery 
prediction; from 0.39 to 0.95 for PBL-to-atrium; 
and from 0.81 to 0.98 for lymphoblastoid cell line-
to-PBL). Consistent with their results, in our study, 
the overall array-wise correlation R2 from the same 
individual increased from 0.65 (between cord blood 
and placental methylation values) to 0.98 (between 
placental and SVM/LM-predicted placental methyla-
tion values) (Table 2). However, the summary of the 
R2 of the entire array measured on the same individual 
(e.g., measured vs predicted methylation) is mislead-
ing and does not indicate reasonable overall predic-
tions for two reasons. The first reason the array-wide 
correlation is misleading is because most probes take 
values close to 0 or 1 and this bimodal array-wide dis-
tribution is highly influential on the correlation as a 
summary measure (whereas individual probes are more 
normally distributed across individuals). More impor-
tantly, as shown in Figure 3B, at many CpG sites both 
models simply shifted cord blood methylation values 
toward the mean of placental methylation values. This 
change in the intercept improves the within-person 
comparison while the correlation between measured 
and predicted placental methylation values remained 
very low at the probe level. Therefore, also considering 
that the standard deviation of the placental methyla-
tion was very small in the majority of sites (Figure 4B), 
it is not surprising that the array-wide correlation from 
the same individual between measured and predicted 
placental methylation values is much higher than 
the one between cord blood and placental methyla-
tion values. For example, at the CpG sites reported in 
Figure 3B (Illumina IDs: cg14182041, cg18824446 
and cg12255501), although the overall correlation 
R2 from the same individual increased from 0.24 
between cord blood and placental methylation values 
to 0.79 between placental and LM-predicted placental 
methylation values and to 0.78 between placental and 
SVM-predicted placental methylation values, the aver-
age correlation R2 among the three CpG sites between 
measured and predicted placental methylation values 
was very low in both linear (0.005) and SVM (0.004) 
models.

We did find that probe-level methylation prediction 
performed better in CpG islands and promoters than 
in enhancers. A previous study showed that most CpG 
sites in CpG islands are hypomethylated across the 
genome [28], perhaps suggesting that our better per-
formance in these regions is related to their biologic 
role and stable methylation, while higher variability of 
methylation across tissues in enhancers has also been 
reported [29]. By contrast, we report that the predic-
tion was slightly worse in probes within imprinted 
regions, which we had anticipated might have better 
agreement across tissues due to the shared origins of 
epigenetic control in these regions originating in the 
germline.

Even though we did not expect all probes to be good 
surrogates for predicting between tissues (e.g. those 
with low overall variation), we were surprised by 
the low total number of probes that we found that 
achieved R2 ≥0.75 in both models (714 probes, listed 
in supplemental material). In these CpG sites, mean 
and standard deviation of methylation levels across all 
participants were very similar between cord blood and 
placenta. This result is consistent with Figure 4 and 
suggests that greater similarity between cord blood 
and placental methylation level distributions leads to 
better locus-specific methylation prediction. Lastly, 
we found that this group of probes was depleted of 
CpG sites in shores and enhancers, but enriched in 
CpG sites in shelves and promoters. These results are 
consistent with the overall distribution of the R2 from 
predictions across the Illumina annotation functional 
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Figure 3. Scatter plots between measured placental methylation values (y-axis) and both support vector 
machine-predicted placenta (blue) and cord blood (red) methylation values (x-axis) in three CpG sites where the 
R2 achieves, respectively, high (A) and low (B) values. Above each plot is the corresponding CpG site’s Illumina ID 
and the value of the R2 between measured and predicted placental methylation values obtained by tenfold cross-
validation.  
SVM: Support vector machine.

Figure 4. R2 between measured and support vector machine-predicted placental methylation levels in terms of 
the average (A) and the standard deviation (B) of both cord blood and placental methylation values across all 
subjects. Each hexagon bin’s color corresponds to the mean of the R2 of all the CpG sites contained in that bin and 
the overlaid red contour lines show the density of the set of analyzed sites.  
SVM: Support vector machine.
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categories (Figure 2). Although we did not have meth-
ylation data from the mothers, we might anticipate 
that the inclusion methylation from a relevant surro-
gate tissue in the mother (e.g., peripheral blood) would 

also improve prediction – particularly among probes 
under genetic control. Because the methylome of the 
human placenta is known to have unique character-
istics [23], it is unclear whether the results we report 
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here on probe-specific prediction modeling would be 
improved if comparing cord blood with a more similar 
tissue. Nonetheless, we anticipate that our caution to 
avoid overinterpretation of the within-subject correla-
tion as an indicator of prediction at the probe level 
remains generally applicable.

Conclusion
In this study we used both linear and SVM models to 
predict locus-specific DNA methylation levels in pla-
centa using cord blood methylation in 174 pairs of an 
epigenome-wide array. Overall, both linear and SVM 
models gave poor predictions across these tissues: 75% 
of CpG sites had an R2 between measured and pre-
dicted placental methylation values lower than 0.25. 
CpG islands and gene promoters, but not enhancers, 
were enriched genomic contexts in the small subset of 
probes where the R2 between measured and predicted 
placental methylation levels achieved higher values. 
We found that the use of the array-wide correlation 
of predictions versus measured values was misleading 
because both models simply shifted the cord blood 
methylation values toward the mean of placental meth-
ylation while the probe-level predictions remained 
poor. While there remains a great interest in using sur-
rogate tissues in epigenetics, care is needed in summa-
rizing the performance of prediction methods in this 
challenging domain.
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Executive summary

•	 In the present study we compared predictive modeling approaches to estimate methylation in placenta based 
on methylation in cord blood.

•	 We performed locus-specific methylation prediction using both linear regression and support vector machine 
models with 174 matched pairs of 450k arrays.

•	 At most CpG sites, both approaches gave poor predictions: 75% of CpG sites had an R2 between measured and 
predicted placental methylation values lower than 0.25.

•	 We found that the use of the array-wide correlation of predictions versus measured values was misleading and 
did not indicate reasonable overall predictions.

•	 CpG islands and gene promoters, but not enhancers, were the enriched genomic contexts where the 
correlation between measured and predicted placental methylation levels achieved higher values.

•	 We provide a list of 714 CpG sites where both models achieved an R2 ≥ 0.75 and thus cord blood predicts 
placental methylation.

•	 The present study indicates the need for caution in interpreting cross-tissue predictions. Few methylation sites 
can be predicted between cord blood and placenta.
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