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Abstract

To make good decisions, humans need to learn about and integrate different sources of

appetitive and aversive information. While serotonin has been linked to value-based deci-

sion-making, its role in learning is less clear, with acute manipulations often producing

inconsistent results. Here, we show that when the effects of a selective serotonin reuptake

inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly

improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in

volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning

task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a

widespread network of brain regions, including ventromedial prefrontal and anterior cingu-

late cortex. At a behavioral level, this was accompanied by more robust reward learning.

This suggests that serotonin can modulate the ability to learn via a mechanism that is inde-

pendent of stimulus valence. Such effects may partly underlie SSRIs’ impact in treating psy-

chological illnesses. Our results highlight both a specific function in learning for serotonin

and the importance of studying its role across longer timescales.

Author summary

Drugs acting on the neurotransmitter serotonin in the brain are commonly prescribed to

treat depression, but we still lack a complete understanding of their effects on the brain

and behavior. We do, however, know that patients who suffer from depression learn

about the links between their choices and pleasant and unpleasant outcomes in a different

manner than healthy controls. Neural markers of learning are also weakened in depressed

people. Here, we looked at the effects of a short-term course (2 weeks) of a serotonergic

antidepressant on brain and behavior in healthy volunteers while they learnt to predict
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what consequences their choices had in a simple computer task. We found that the antide-

pressant increased how strongly brain areas concerned with predictions of pleasant and

unpleasant consequences became active during learning of the task. At the same time, par-

ticipants who had taken the antidepressant also performed better on the task. Our results

suggest that serotonergic drugs might exert their beneficial clinical effects by changing

how the brain learns.

Introduction

To make good decisions in complex environments, humans and animals need to learn about

and integrate different sources of information, such as the good and bad aspects of the out-

comes of choices. The neurotransmitter serotonin has been implicated in value-based choice

and assumed to play a role in value learning, but even basic aspects of its function in such

learning remain contested.

Serotonin has recently been implicated in simple aspects of reward-guided learning and

decision-making. For example, when serotonergic neuron activity is recorded on a millisecond

timescale or levels are manipulated acutely, serotonin has been found to code information

about different aspects of good/appetitive [1–4] or bad/aversive [5,6] outcomes or to relate to

avoidance behaviors [7,8]. On this basis, it has been suggested that it has a role in learning

[9,10]. However, other studies have found no effects on learning [3,11–14] or have not dissoci-

ated learning from altered responsiveness to the valence of the reinforcing events themselves

[15]. Thus, there is still no clear understanding of serotonin’s role in value learning. Here, we

propose that this gap can be bridged by examining the effects of serotonin on value learning

over a different timescale.

From animal studies, it is known that serotonin not only transfers information on millisec-

ond timescales but also acts over protracted timescales of days and weeks. In fact, at the neuro-

nal level, prolonged increases in serotonin over such timescales lead to changes in plasticity

[16,17]. Increasing serotonin levels over several weeks, for example, by administering selective

serotonin reuptake inhibitors (SSRIs), can reintroduce juvenile-like plasticity in the visual cor-

tex [18] and the limbic system [19] in animals. Moreover, such effects are, respectively, linked

to improvements in learning about visual stimuli and fear extinction. Interestingly, the time-

frame of plasticity observed in animals is very similar to the timeframe for antidepressants to

take effect in patients, so it may be particularly revealing to study serotonin’s neural and behav-

ioral effects during learning at this timescale.

We therefore examined here whether prolonged increases in serotonin affect learning

about appetitive (monetary reward) and aversive outcomes (investment of effort) indepen-

dently of any effects such a manipulation may have on the coding of stimulus outcome

valence per se. In other words, we examined whether serotonin increase has any effect on

how we learn from pleasant or unpleasant outcomes as well as any direct impact on respon-

sivity to the pleasant and unpleasant events per se. Using effort as the unpleasant dimension

appeared particularly relevant in the context of serotonin’s role in treating clinical depres-

sion, in which motivation deficits are observed [20,21]. We recruited 29 human participants,

who received 20 mg/d of the SSRI citalopram for 2 weeks or placebo (in a double-blind

design), a similar dosage to that used clinically. Repeated administrations of SSRIs for this

period of time have been shown to increase serotonin levels in nonhuman primates [22] and

related markers of serotonin levels in humans [23–25]. A two-week administration schedule

was chosen, as this is similar to the timeframe of appearance of early clinical effects of SSRIs
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in depression [26], of behavioral change in mild-stress animal models of depression [17],

and of changes in neural plasticity in animals [17]. Participants subsequently performed a

learning task while we measured their brain activity using functional magnetic resonance

imaging (fMRI). In the task [27], participants concurrently learned about the changing val-

ues of two stimuli between which they had to choose on each trial. The value of each stimulus

was determined by a pleasant (amount of monetary reward) and an unpleasant (amount of

effort) dimension (we ensured that participants perceived the reward dimension as reward-

ing and the effort as aversive, see S1 Text #2 “Task description—training”). Our task allowed

us to measure the neural and behavioral effects SSRIs might have on learning signals for

pleasant and/or unpleasant information. It also made it possible to dissociate the effect SSRIs

had on responses to receipt of positive and negative outcomes per se as opposed to the effect

on learning about positive or negative outcomes. We hypothesized that if SSRIs affected

learning independently of coding of valence, it should strengthen neural learning signals for

both dimensions similarly. We found that SSRIs led to stronger reward and effort-related

learning signals (i.e., reward and effort prediction errors [RPEs and EPEs]—the neural

responses to the differences between the received and the expected outcomes) in a wide-

spread network of brain areas coding value information. At the same time, however, activity

related simply to the receipt of reward/effort outcomes per se was unaffected. This suggests

that prolonged SSRI administration directly influences learning signals in humans over and

above any effect it has on signaling pleasant or unpleasant outcomes per se. Not only were

neural learning signals stronger but, at a behavioral level, we found that reward-related

learning in complex environments was improved.

Results

Task and study design

This study investigated how neural and behavioral measures of reward and effort learning

were modulated by repeated administration of an SSRI when both dimensions needed to be

learned concurrently and could potentially interfere with one another.

To address this, healthy human participants (for details, see S1 Text #1 “Participants”) per-

formed a previously established multidimensional learning task [27,28], while we measured

their brain activity using fMRI. Participants were randomly assigned to 2 weeks of a clinical

dose of the SSRI citalopram (20 mg/d, n = 15) or placebo (n = 14). Participants did not differ

in any sociodemographic measures, and citalopram did not lead to any changes (baseline ver-

sus after 2 weeks of treatment) for any self-reported scores of depression, anxiety, positive or

negative affect, or mood state (S1 Table).

The task [27] is described more extensively in the supporting methods (S1 Text, #2 “Task

description”). In short, in the task, participants repeatedly chose between the same two

options, aiming to choose the options maximizing their monetary gain and minimizing the

effort they needed to exert to obtain the reward (Fig 1). When making their decisions (Fig

1A), they therefore had to take into account the independent reward and effort magnitudes

associated with each of the two options, which they had to learn from experience across tri-

als. These magnitudes slowly varied over the course of the experiment (Fig 1D). At the time

of the decision, participants were additionally shown on the screen the randomly drawn

probability of how likely each option was to lead to a real or hypothetical reward outcome

(the probability determined what we later refer to, for the sake of brevity, as the “reward

type” of a choice). If an option led to what we called a real reward outcome, participants

received the reward magnitude points as monetary pay-off for the experiment; if an option

led to a hypothetical reward outcome, participants were only shown how much money they

Serotonin in reward and effort learning
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Fig 1. Task description. In the decision phase (A), participants were shown two options (i.e., choices)

overlaid with a cue (percentage number) informing them of the probability of receiving a real (rather than

hypothetical) reward for each choice. They could only decide after an initial monitoring phase (1.4–4.5 s). The

chosen option was then highlighted for 2.9–8s. In the following outcome phase (B), participants saw the

outcome for the chosen option first (1.9–2.1 s). The reward magnitude was shown as a purple bar (top of the

screen); the effort magnitude was indicated through the position of a dial on a circle. Whether they received a

reward (i.e., the trial’s reward type) was indicated by a green tick mark (real reward, top display) or a red

Serotonin in reward and effort learning
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could have won for this choice, but were not awarded it as monetary pay-off on this particu-

lar occasion. As these reward probabilities were randomly drawn on each trial, the reward

type (real versus hypothetical) of one trial should not influence participants’ decisions on

the next trial. However, we have shown previously [27] that reward type on one trial never-

theless biased participants’ behavior on the next trial in this learning task.

After each choice, participants saw the outcome of their choice (Fig 1B). At this time

point, participants could learn about the reward and effort magnitudes of the two options.

In other words, they could update their effort/reward expectation if it was violated, i.e., if the

current trial’s outcome deviated from their prior expectation. Note that a numeric expres-

sion of how much one’s prediction deviated from the actual outcome and therefore should

be changed is called the prediction error (PE), see below. This task was designed to be chal-

lenging for participants: ideally, they should simultaneously learn about both the reward and

effort magnitude associations of the options regardless of whether rewards were real or

hypothetical. Thus, optimal learning needed to represent all these components separately to

prevent them interfering with one another. In constructing the task schedule (example in

Fig 1D), we ensured that all factors of interest, e.g., the behavioral and neural measures of

learning about reward and effort, varied independently from each other. This ensured, as in

other studies [3,27,29,30], that their independent effects on behavior and neural activity

could be determined (S4 and S11 Figs). After careful training, participants showed a good

understanding of the task and good performance (Fig 2A and 2B and S1 Text #2 “Task

description—Training”).

fMRI

In order to quantify value learning, simple computational models have been proposed [31]. A

key component of these models are PEs, the difference between the actual and the expected

outcome, or, in other words, how much better (or worse) than expected the outcome is. Such

PEs then drive learning, i.e., they lead to changes in predictions for the next occasion that a

choice can be taken. It has been shown previously that neural correlates of PEs can be found in

different areas of the human brain using fMRI and that they relate to behavioral markers of

learning [32–37]. We therefore tested whether citalopram affected PEs as the neural substrate

of learning. Later, we examined how these changes translated into behavioral changes. Neural

correlates might be more proximal to the molecular level action of citalopram than behavioral

measures, which are the integrated (and binarized) outputs of many different brain processes.

If citalopram increased synaptic plasticity and therefore induced learning-related changes in

neural activity, then this should manifest in increased PE signals. We found this to be the case

for both reward and effort learning.

crossed out sign over the reward magnitude (hypothetical reward, bottom display). If a reward was real, the

reward was also added to a status bar at the bottom of the screen, which tracked rewards over the course of

the experiment. A reminder of which option had been chosen was shown at the top of the screen. Then, the

reward and effort magnitudes were shown for the unchosen option (1.9–6.9 s). Finally, participants performed

the effort phase (C), in which participants needed to exert a sustained effort by selecting circles that appeared

on the screen using a trackball mouse. The number of targets was equivalent to the chosen effort outcome.

Participants had to perform the effort phase on every trial independently of whether the reward was real or

hypothetical. Participants successfully completed the effort phase on almost every trial. Participants

performed a fixed number of 120 trials per session (thus, selecting options with less effort did not have a lower

opportunity cost, i.e., it did not allow participants to perform more trials for more overall reward). An example

schedule is shown in (D), with both the reward and effort magnitude values of the two options. Figure is

adapted from Figure 1 [27].

doi:10.1371/journal.pbio.2000756.g001
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Fig 2. Task validation and model comparison. (A) The choices of participants in both groups (i, ii), between option one and option two,

were guided by the learnt reward and effort differences between the options (estimated from a Bayesian model). They were more likely to

choose the option with higher reward and lower effort magnitudes. (B) Regression analysis (bGLM1) predicting whether participants

selected the same option again as on the last trial (“stay”) or selected the alternative option (“switch”). Participants took all relevant

features of the task into account: they were more likely to choose options that had a higher displayed probability, higher learnt reward, and

lower effort magnitudes (all p < 10−8; no group differences, all p > 0.2; omnibus ANOVA including regression weights for probability, learnt

reward and effort also revealed no group difference: F(1,27) = 2.3, p = 0.14). Participants were also more likely to choose an option again

if they had received a real reward on the last trial (t(28) = 3.04, p = 0.005). There was no difference between the groups in the overall

amount of money earned. (C) Model comparison using summed Bayesian Information Criterion (BIC) values revealed that models in

Serotonin in reward and effort learning
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Increased serotonin enhances reward and effort prediction errors

(EPEs)

We measured neural learning signals (PEs) at the time of the outcome. The regressors for this

analysis were derived from a Bayesian learning model ([27] and S1 Text #3 “Bayesian model”),

which provided a good fit to our data (Fig 2A–2C). Using a fitted Rescorla—Wagner reinforce-

ment learning model instead produced the same neural and behavioral results.

To test whether citalopram affected neural correlates of reward PEs (RPEs), we first selected

regions of interest (ROIs) that were sensitive to the receipt of reward (i.e., whether reward was

real or hypothetical, analysis fGLM1, Fig 3A, table of coordinates in S2 Table, results cluster-

corrected at p< 0.05, voxel inclusion threshold: z> 2.3) and that had previously been impli-

cated in the processing of rewards or learning [33,34]. These regions included striatum and ven-

tromedial prefrontal cortex (vmPFC). Using the averaged BOLD data from these regions, we

then tested whether citalopram affected the neural RPE signals (i.e., the difference between the

received and the expected reward magnitude, independent of whether reward was real or hypo-

thetical). This analysis was thus statistically independent of any analyses used to establish the

ROIs in the first place. We found (Fig 3B, analysis fGLM2) that in those ROIs, citalopram

strongly enhanced the neural correlates of RPEs for the chosen option (an ANOVA revealed

significant group differences across all areas, i.e., difference in the mean value across all areas: F

(1,27) = 9.21, p = 0.005; an additional analysis [fGLM2reduced] not controlling for reward/effort

outcomes produced the same result: F(1,27) = 7.3, p = 0.012; t tests for each area individually

are as follows: striatum: t(27) = −1.74, p = 0.093; mid cingulate cortex: t(20.24) = −2.12;

p = 0.048, vmPFC: t(27) = −2.88; p = 0.008, parietal cortex: t(27) = −2.64, p = 0.014). Supplemen-

tary analyses confirmed that this result was robust to different RPE modeling choices (S1 Fig).

We next performed an analogous analysis to find neural correlates of EPEs. First, we identi-

fied effort outcome—related brain areas by finding areas that became more active when the

chosen option was associated with more effort than the option that was unchosen (we refer to

this contrast as the relative effort outcome contrast; Fig 3C, S2 Fig, S2 Table, analysis fGLM1).

As the neural correlates of effort processing have received comparatively less attention than

those related to reward processing, there were no strong a priori hypotheses about which

regions might carry EPEs. However, despite the relative absence of specific information about

EPEs, dorsal anterior cingulate cortex (dACC) has been consistently linked to effort processing

in both animals and humans [39–44]. We therefore tested for EPEs in all effort-sensitive

regions, although prior work suggested that dACC should be a focus of particular interest.

Again, note that the EPE contrast is independent from the contrast used to establish the ROIs

in the first place. In all ROIs, we examined whether citalopram increased neural correlates of

EPEs. In all areas, higher EPEs led to a decrease in activity (S2 Fig). An ANOVA across these

areas revealed that in some areas EPEs were stronger (more negative) in the citalopram group

(interaction effect group x area: F(5,135) = 2.45, p = 0.037; main effect of group: F(1,27) = 1.43,

p = 0.24, analysis fGLM2; an additional analysis [fGLM2reduced] not controlling for reward/

effort outcomes suggests a group difference main effect across all tested brain areas: F(1,27) =

4.8, p = 0.037, interaction effect group x area: F(3.8,101.5) = 3.34, p = 0.015). This effect was

which choice utility was computed as a linear sum (i.e., reward + probability − effort, “Add”) provided a far better fit to the data than models

computing choice utility multiplicatively (i.e., reward x probability—effort, “Mult”). Of these models, a Bayesian model (no free parameters

for learning rate, reward/effort predictions are instead derived using Bayes’ rule) provided the best fit to the data (“Bayesian—Add”:

BIC = 4375), closely followed by a model in which there was one free and shared parameter for the reward and effort learning rate

(“Shared learning rate—Add”: BIC = 4378). The regressors for learnt reward and effort magnitudes used in the behavioral and neural

analyses derived from “Bayesian—Add” were highly correlated with regressors derived from “Shared learning rate − Add” (r > 0.99). Error

bars are standard error of the mean. Data for individual participants can be found in S1 Data.

doi:10.1371/journal.pbio.2000756.g002
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particularly striking in dACC (between-subject t test: t(27) = 3.01, p = 0.0056, significance

threshold of Bonferroni correction for six brain areas: p< 0.008; Fig 3D). No significant differ-

ences were found in the other areas (S2 Fig).

In summary, our fMRI results showed strong evidence that repeated administration of cita-

lopram increased neural correlates of learning signals for both reward and effort. This is in

agreement with what would be predicted if an increase in synaptic plasticity in value learning—

related brain regions is induced by repeated citalopram administration.

Neural learning effects are not the result of increased outcome

processing

As control analyses, we tested whether changes in learning with repeated SSRI administration

might be secondary to increases in the coding of appetitive or aversive outcomes per se. This is

Fig 3. Citalopram leads to a widespread increase in reward and effort learning signals. (A) We identified ROIs that were

sensitive to reward type (i.e., whether reward was really received or only hypothetical, analysis fGLM1) at whole-brain level (p < 0.05).

Abbreviations: ventral striatum (striatum), midcingulate cortex (mCC), ventromedial prefrontal cortex (vmPFC), parietal cortex

(Parietal, IPL_E, [38]). (B) Shows the time course of the regression coefficients in these ROIs for the RPE of the chosen option on the

neural BOLD signal for the placebo (light green) and the citalopram (dark green) groups (analysis fGLM2). Citalopram increased the

RPE signal across all ROIs (ANOVA, group difference across all areas, i.e., difference in the mean value across all four areas: F(1,27)

= 9.48, p = 0.005). This effect was driven by the citalopram group showing an activation across all four areas (ANOVA including all

four areas, citalopram group only, activation across all areas: F(1,14) = 7.66, p = 0.015), while the placebo group did not show any

change in BOLD (ANOVA including all four areas, placebo group only, no activation or deactivation across all areas: F(1,13) = 2.20,

p = 0.16). Next, we performed similar analyses for the effort dimension. (C) We first identified dorsal anterior cingulate cortex (dACC)

and other areas (S2 Table and S2 Fig) as being sensitive to the relative effort outcome. (D) Shows the regression coefficient for the

EPE of the chosen option on the neural BOLD signal in dACC for the placebo (light red) and the citalopram (dark red) groups. Again,

citalopram significantly enhanced the EPE signal (t(27) = 3.01, p = 0.006; significance threshold for Bonferroni correction for six brain

areas is p < 0.008), making it more negative like the EPE signal in other brain areas (S2 Fig). The pattern of group differences for

RPEs and EPEs across the whole brain (at a reduced statistical threshold) is shown in S3 Fig. Brain maps and data for individual

participants can be found in S2 and S3 Data.

doi:10.1371/journal.pbio.2000756.g003
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based on theories that suggest that serotonin is involved in the coding of the valence of out-

comes [8,45]. In our paradigm, PEs were sufficiently decorrelated from the outcomes them-

selves (S4 Fig) so that the impact of SSRIs on both could be investigated in the same analysis.

This was possible because participants needed to learn reward and effort magnitudes rather

than probabilities (the reward probabilities associated with the options did not need to be

learned because this information was explicitly cued and provided to the participants on every

trial; Fig 1).

Therefore, we tested whether citalopram also affected the reward magnitude outcome sig-

nals (analysis fGLM2, regressor of reward magnitude outcome). We found that citalopram did

not increase reward magnitude outcome signals in the ROIs that had shown increased RPEs

with citalopram (Fig 4A; ANOVA, group difference across all areas: F(1,27) = 1.19, p = 0.29)

or on a whole-brain level. On the contrary, there was some evidence for reward outcome sig-

nals to be reduced in striatum and vmPFC by citalopram in a relatively late period during the

processing of the outcomes. In other words, although there was no significant difference

between the groups in the hemodynamically convolved signals time-locked to the onset of the

outcome phase, there were statistical differences in the time course of the BOLD signal late

during the outcome phase when using a more lenient statistical approach that did not correct

for multiple comparisons (Fig 4A).

Similarly, we next tested (analysis fGLM2) whether citalopram affected the coding of effort

magnitude outcomes in ROIs sensitive to effort as identified above. Again, this was not the

case in an ANOVA across all six ROIs (ANOVA, testing for a group difference across all areas:

F(1,27) = 0.29, p = 0.60), nor was it the case more specifically in dACC, in which citalopram

had increased EPEs (Fig 4B; t test comparing the effort outcome signals across the two groups:

t(27) = 0.65, p = 0.52) or on a whole-brain level.

In a further control analysis, we tested whether citalopram affected the BOLD response in

general (rather than specifically increasing RPE/EPE signals). This was not the case (S5 Fig).

Together, our fMRI results suggest that citalopram enhanced neural learning signals inde-

pendently of any increases to reward or effort outcome sensitivity per se.

Fig 4. Citalopram does not increase neural signals for reward or effort outcomes. (A) Shows the time course of the regression

coefficients for the relative (chosen minus unchosen option) reward magnitude outcomes on brain activity (analysis fGLM2) for the

placebo (light green) and the citalopram (dark green) groups. We found that citalopram did not increase the relative reward magnitude

outcome signal (ANOVA, testing for a main effect of group across all areas: F(1,27) = 1.19, p = 0.29). On the contrary, a more lenient time

point—by—time point t test analysis of the time courses revealed that in striatum and vmPFC, citalopram, in fact, decreased the relative

reward magnitude outcome signal late in the outcome phase (*p < 0.05 for time point—by—time point two-sided t tests). (B) Similarly, for

dACC, citalopram did not increase the coding of the relative effort outcome signal (t(27) = 0.65, p = 0.52). Abbreviations: ventral striatum

(striatum), midcingulate cortex (mCC), ventromedial prefrontal cortex (vmPFC), parietal cortex (Parietal, IPL_E [38]), dorsal anterior

cingulate cortex (dACC). Data for individual participants can be found in S4 Data.

doi:10.1371/journal.pbio.2000756.g004
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Citalopram makes reward learning more robust against interference

Having found that citalopram increased neural learning signals, we next tested whether it also

affected behavioral markers of learning. The analogous behavioral test is to measure the impact

of PEs on behavior, as has been done previously [29,37,46,47] (learning can also be measured

using alternative methods, S7 Fig). In short, this approach assesses to what extent PEs on one

trial have an impact on participants’ choices on the next trial. For example, one would expect

that if there is a positive RPE on one trial (i.e., the option is better than expected) then this

should make participants more likely to select the option again on the next trial. The approach

is thus very related to the neural regression analyses, in which we measured the impact of PEs

on brain activity, rather than choices: a regressor that is “chosen” in the outcome phase of one

trial (fMRI), is a regressor favoring “stay” (i.e., choosing again the same option) on the next

trial (behavioral analysis).

Improved neural PE signals could translate into different kinds of behavioral learning

improvements. They might result in a general overall improvement in using PEs to drive

behavior. This was not the case (all p> 0.26, S7 Fig). This was probably because participants in

the placebo group were already generally very good at learning, making it difficult to measure

further general improvements. However, even if it is the case that a general, overall improve-

ment is not observable, there may still be evidence of improvements if we focus on situations

in which learning is particularly challenging. In the present task, participants needed to simul-

taneously learn about reward and effort; furthermore, reward was only hypothetical (rather

than real) on some trials. Learning in these trials is particularly challenging. Optimally, partici-

pants should learn similarly from both real and hypothetical reward outcomes; even if the lat-

ter have less intrinsic value, they should still be equally informative for learning. Similarly,

learning about reward magnitudes should be independent from learning about effort magni-

tudes. We therefore hypothesized more specifically that learning might be subject to some

degree of interference from irrelevant factors and that this might be remedied by citalopram:

learning about one dimension (e.g., reward) might be interfered with to some degree by the

absence of real reward experience (i.e., when rewards were only hypothetical) and/or having to

learn about the other dimension simultaneously. For example, a surprisingly high effort out-

come might attract processing resources so much that reward learning is impaired. Citalo-

pram’s enhancing effect on neural learning signals in general might then manifest in the

behavior as more robust learning specifically in the face of interference.

To test the impact of citalopram on such learning, we performed a regression analysis

(bGLM2) that assessed how much participants’ decisions on each trial to “stay” (i.e., to select

again the same option as on the last trial) or to “switch” to the alternative option took the PE

into account differently in the face of interfering factors (either the fact that the RPE involved a

reward that was just hypothetical or the fact that the RPE occurred in the context of a high

EPE). In this regression, interference was measured as an interaction between the interfering

factors (reward type [i.e., real reward versus hypothetical reward] and EPEs) and the RPEs (see

Methods for list of additional confound regressors included). Significant positive interaction

terms between RPE and reward type (real versus hypothetical) or EPEs would then mean that

participants were not as efficient at using the RPEs when reward was hypothetical compared to

real or when effort was surprisingly high. However, if the interaction terms were not different

from zero, then it would mean that participants were equally efficient at using RPEs whether

rewards were real or hypothetical and regardless of whether the EPE was high. The analysis

showed (Fig 5A) that the reward learning of participants in the placebo group was more sub-

ject to interference than that of participants taking citalopram (the placebo participants had

larger regression weights for the interaction terms: ANOVA, measuring the average
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interference effect across both interaction term regression weights, comparing the two groups:

F(1,27) = 7.00, p = 0.013). This effect is illustrated in Fig 5B and 5C (analyses bGLM3a and b):

When there was no interference, because rewards were real and EPEs were low, the two groups

did not differ in how much they could use RPEs on one trial for making decisions on the next

trial (between-subject t tests for group differences: when reward was real [bGLM3a]: t(27) =

−0.47, p = 0.64; when EPEs were favorable [bGLM3b]: t(27) = −0.32, p = 0.75). However, when

Fig 5. Citalopram protects reward learning from interference. (A) A regression analysis (bGLM2)

assessed interference in reward learning (impact of relative RPEs) by effort learning (relative EPEs) and

reward type (receiving a real or only a hypothetical reward). Larger regression weights indicate larger

interference. While the placebo group’s learning was affected by interfering factors (ANOVA, testing the

average size of the two interference factors against zero in the placebo group: F(1,13) = 5.39, p = 0.033), this

was remedied by citalopram (ANOVA, testing the average size of the two interference factors against zero in

the citalopram group: F(1,14) = 1.04, p = 0.32; ANOVA, testing whether the two groups differed in the average

size of the two interference factors: F(1,27) = 7.00, p = 0.013). This effect can be illustrated more directly by

comparing how much participants could take RPEs into account for making decisions on the next trial when

there was interference or when there was not (analyses bGLM3a and b). (B) When reward was real, the two

groups did not differ in how well they could use RPEs (t(27) = −0.47, p = 0.64). However, when reward was

only hypothetical, the citalopram group was better at using RPEs (t(27) = −2.21, p = 0.036). (C) Similarly,

when EPEs were favorable, the two groups did not differ in how well they could use RPEs (t(27) = −0.32,

p = 0.75), but when EPEs were unfavorable, the citalopram group was better at using RPEs (t(27) = −2.69,

p = 0.012). Error bars show standard error of the mean, *p < 0.05. Data for individual participants can be

found in S5 Data.

doi:10.1371/journal.pbio.2000756.g005
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there was potential for interference, because rewards were hypothetical or EPEs were surpris-

ingly high, only the citalopram group still used RPEs for decisions on the next trial (between-

subject t tests for group differences: when reward was hypothetical: t(27) = −2.21, p = 0.036;

when EPEs were unfavorable: t(27) = −2.69, p = 0.012; one-sample t tests within each group

testing whether RPEs significantly affected decisions: when reward was hypothetical: placebo: t

(13) = 0.38, p = 0.71; citalopram: t(14) = 4.23, p = 0.001; when EPEs were unfavorable: placebo:

t(13) = −0.43, p = 0.68; citalopram: t(14) = 3.13, p = 0.007).

This effect was specific to learning about the reward dimension (S8 Fig). This was poten-

tially so because effort was always real (it had to be exerted on every trial) and, therefore,

potentially easier to learn about. We also note that while the behavioral learning effects were

selective for situations of interference, neural learning signal improvements were always pres-

ent rather than specific to situations of interference (S9 Fig).

As a last behavioral finding, we also noted that citalopram did not affect how participants

exerted effort, nor did it disrupt how motivation affected effort exertion (S10 Fig). Thus, just

as citalopram did not affect neural responses to reward and effort outcomes per se, so it had no

impact on the effect of reward or effort outcomes per se on different behavioral measures.

In summary, we found that citalopram not only enhanced PE coding at a neural level, but it

also enhanced the impact of PEs at a behavioral level. Citalopram made RPE-based learning

more robust against interference.

Discussion

This study examined the role of serotonin in value learning by looking at the effects of a

repeated administration of the selective serotonin reuptake inhibitor (SSRI) citalopram on

reward and effort learning in human participants. Participants performed a multidimensional

learning task in which it was necessary to learn about both reward and effort. Neurally, we

found that citalopram increased learning signals, i.e., PEs, for both reward and effort. RPEs

were increased in a widespread network of brain regions, including vmPFC. At the same time,

EPEs were increased in dACC. This increase in learning signals occurred in the absence of

increases to the overall outcome signals for reward or effort. Behaviorally, we found that citalo-

pram made reward learning more robust or resilient to negative interference.

SSRIs enhance neural measures of learning

Citalopram enhanced neural learning signals for both pleasant and unpleasant outcomes

across many brain areas. This general and widespread effect is in agreement with a general

increase in learning and plasticity after repeated SSRI administration [48], rather than a spe-

cific effect on only either appetitive or aversive learning.

One brain area that we identified as having increased RPE signals was the vmPFC. This

area has repeatedly been identified as being involved with reward-guided reversal learning

[49]. Furthermore, it has been shown that depletion of serotonin levels in adjacent prefrontal

areas impaired reversal learning in marmosets [50–52]. While our results further support the

claim that serotonin affects the role of vmPFC in reversal learning, we also note that our results

point to an effect of SSRIs on learning that is not selective to vmPFC, as we found changes in

the RPE signals in a wide range of areas. This is unsurprising given the systemic administration

of citalopram used here.

EPEs were also enhanced, particularly in dACC. Although less is known about the neural

mechanisms of effort processing, compared to reward processing, the dACC has been linked

to aspects of effort processing in both animal models and humans [28,39–43]. Arguably, in the

present paradigm, reward learning was more challenging than the more straightforward effort
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learning; while some level of effort exertion was constantly required on every trial, knowledge

of the changes in reward magnitudes that the participants learned had to be integrated with

information about reward probabilities presented on each trial, and the potentially distracting

fact of whether or not a reward was real or hypothetical had to be ignored. The more wide-

spread impact of the SSRI we studied on RPEs than EPEs may, therefore, simply reflect the

more challenging nature of reward learning in this task.

Our results thus suggest an important role for serotonin in the control of value-guided

learning from both pleasant and unpleasant outcomes. This is in agreement with findings

that in patients with obsessive-compulsive disorder (OCD), who were given SSRIs as part of

their treatment, performance in a learning task with monetary wins and losses was improved

[53]. These learning effects may relate to changes in synaptic plasticity. SSRIs have been

shown to lead to plasticity changes in the brain when administered repeatedly, and other

studies have found that serotonin levels naturally increase in situations in which new learn-

ing occurs [16]. Furthermore, when SSRIs are administered for a prolonged time in animal

models, there have been reports of an impact on basic forms of learning, such as visual adap-

tation and fear extinction [16,18,19]. This has been linked to changes in synaptic plasticity

[16], synapse remodeling [17], and neurogenesis in the hippocampus [54] in animals. In

other words, when serotonin levels are changed for a prolonged time, a series of adaptive

downstream changes occur, which ultimately lead to increased learning and plasticity. This

is in contrast to studies reporting shorter timescale serotonin manipulations in humans, for

example, through tryptophan depletion, that have found no effect on reward learning [3,11–

15,55–58], but see also [10] and [9]. While the present results reveal that sustained serotonin

manipulation has a causal influence on the neural correlates of RPEs and EPEs and on learn-

ing, it was not possible to identify the various downstream changes that mediated the impact

of serotonin, and it is possible that these included other neurotransmitter changes [59] or

might produce other independent effects on behavior beyond improvements in learning.

For example, studies have found SSRI administration to reduce GABA levels [18], to make

certain forms of long-term potentiation easier to induce [18,19,60], to increase markers of

LTP [16], to increase neurogenesis, and to change the morphology of neural dendrites [17].

Further work in animals will be needed to elucidate how these mechanisms relate to value

learning.

Learning signal increases are not secondary to increases to reward/

effort receipt coding

Importantly, beyond demonstrating increased neural learning signals, our neural data also

allowed us to rule out the possibility that the effects of SSRIs on learning were secondary to an

effect on the coding of positive or negative outcomes per se. If this were the case, we would

have expected SSRIs to increase signals for reward and effort receipts (“outcomes”) at the same

time as increasing learning signals. However, we instead found that SSRIs did not increase

neural reward or effort outcome signals, and, if anything, at a lower statistical threshold, we

found that in vmPFC and striatum, reward outcome signals were decreased. This is similar to

previous studies that found decreases in brain activity to rewarding stimuli with prolonged

SSRI administration [61–63]. This is also in agreement with optogenetic studies that failed to

find evidence for serotonergic activity per se being reinforcing or aversive [1,4].

While our longer-term manipulation of serotonin did not reveal effects on the processing

of aversive outcomes that could explain the learning effects, we note that previous studies, par-

ticularly looking at the function of serotonin at shorter timescales or through genetic varia-

tions in serotonin transporter polymorphisms, have found evidence for a role of serotonin in
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(aversive) outcome processing or inhibition [2,6,7,10,14,15,55,58,64–68]. Rather, what our

study suggests is that, over the longer term, serotonin additionally plays an independent role

in value-guided learning by modulating learning capability directly, rather than just as an indi-

rect consequence of any impact it has on appetitive or aversive outcome signals over shorter

timescales.

SSRIs enhance behavioral measures of learning and plasticity

Beyond changes to neural markers of learning, we also found, at a behavioral level that

repeated administration of SSRIs increased learning. A priori, there are several ways in which

improved neural learning signals could translate into improved learning behaviorally. Firstly,

in classic theories [31], learning is about establishing expectation about mean magnitudes or

probabilities. In such a scenario, learning can be influenced by a general change in the speed of

learning this expectation, i.e., by changing the learning rate. Secondly, learning can also be

improved by changing the precision of the representation of the learnt information, i.e., by

increasing the signal-to-noise ratio. Importantly, in the second scenario, better learning can

mean being able to use the learnt information more consistently in situations in which learn-

ing is particularly challenging, for example, because of interference from other outcome value

dimensions. Neurally, a more precise estimate of learning would be reflected in stronger PE

signals. Our findings thus align best with the second scenario: neural PEs were increased by

the SSRI, but learning speed per se was not changed. Additionally, the SSRI had a protective

effect on learning in challenging situations in which negative interference would normally

have drawn resources away from the processing of key reward-related contingencies. Neuro-

physiologically, increased signal-to-noise could be achieved by SSRIs changing the properties

of individual synapses, the number of synapses in a state that allows learning [17], or by allow-

ing better integration between the predictions and the outcomes. Such cellular changes could

either increase the signal itself or reduce the noise—both possibilities would improve how the

information for learning is represented in the brain.

Clinical relevance

The results of our study might shed light onto the mechanism by which SSRIs work as treat-

ments for psychological illnesses, such as depression. Early clinical effects have been reported

with the same dosage and duration at which we administered citalopram to our participants

[26,48]. In fact, our results might suggest that SSRIs exert part of their clinical effect by enhanc-

ing how well patients can learn about positive relationships in complex environments even in

the presence of negative interfering information, which otherwise could prevent such learning.

This effect may occur in addition to, or even underlie, previous reports that SSRIs shift the pro-

cessing of social cues so that they are perceived as more positive [69]. In fact, these two effects,

relating to learning and attentional biases, might interact with each other, resulting in patients

perceiving the world as more positive and learning more reliably about positive aspects of the

world. In this context, it is noteworthy that our behavioral results are in agreement with other

studies that found that changes in serotonin levels affect how much negative stimuli can bias

behavior [70,71].

Limitations

In the fMRI data, we noted that while the citalopram group showed strong overall RPEs, the

placebo group did not. This is in contrast to previous reports of PEs in healthy participants

performing probabilistic reward tasks. There were, however, some differences in our task and

analyses: our participants learned about changing reward magnitudes rather than changing
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reward probabilities, and our analysis carefully dissociated RPE responses from responses to

reward delivery per se. Nevertheless, it is important not to over-interpret the lack of strong

RPEs in the placebo group as evidence of absence; it is quite possible that the placebo groups’

brains carried overall RPE signals that were simply below our threshold for detection. How-

ever, and most importantly, we can conclude from our data that the citalopram group had

stronger overall RPE signals than the placebo group.

Furthermore, while the neural PE effects we found were not reflected in general changes in

all aspects of PE-based behavioral learning, we did observe some more specific changes in

aspects of PE-based behavioral learning. Namely, we observed improved RPE-based learning

in situations of interference. This may be so because the serotonergic manipulation acted

directly on the brain, but those neural changes only impacted behavior in certain situations in

which learning was particularly challenging (because of interfering factors) and, therefore,

most likely to be subject to disruption. We do not want to rule out the possibility of finding

more general effects in future studies using larger participant samples or other tests of RPE-

based learning.

Conclusion

We found that repeated administration of an SSRI increased neural PE signals during reward

and effort learning. Concomitantly, behavioral measures of reward learning in the face of neg-

ative interference were improved. Thus, prolonged administration of SSRIs can strengthen

learning signals for both appetitive and aversive outcomes in a manner that is consistent with

previous demonstrations of the impact of serotonin manipulation on neural plasticity. These

results are also of clinical relevance, supporting theories that SSRIs’ treatment effects on, for

example, depression may be related to increases in neural plasticity and learning.

Methods

Ethics statement

Participants gave written informed consent to take part in the study, which was approved by

the NRES Committee South Central—Portsmouth (12/SC/0276).

fMRI analyses

All analyses were performed in FSL, Matlab, and SPSS. Greenhouse—Geisser corrections for

violations of sphericity and nonparametric tests were used where appropriate.

MRI data acquisition and preprocessing

Structural MRI and fMRI measurements were taken using a Siemens 3 Tesla MRI scanner (see

S1 Text #5, “MRI” and [27]). In short, we used a Deichmann echo-planar imaging sequence

[72]. We used FMRIB’s Software Library (FSL) [73] for image preprocessing and analysis. All

main effect images shown are cluster-corrected (p< 0.05) with the standard voxel inclusion

threshold of z = 2.3. We also analyzed data in ROIs, extracted from spheres with a three-voxel

(or two, for small brain structures, i.e., striatum) radius, identified in MNI standard space on

the basis of orthogonal whole-group contrasts.

Whole-brain

In the first fMRI analysis, we investigated whether citalopram affected neural learning signals

and, more broadly, which brain areas were sensitive to reward and effort information (analysis

fGLM1, similar design as previously described [27]). The regressors used in this design were as
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follows (all correlations between regressors were r< 0.44, S4 Fig): We used three boxcar

regressors, indicating the onset and duration of the decision phase (from the beginning of the

trial until participants made a choice), the onset and duration of the outcome phase (from the

appearance of the chosen outcome until the chosen and the unchosen outcomes disappeared

from the screen), and, lastly, the effort exertion phase (from the appearance of the first effort

target until participants had removed the last target). We included the following parametric

regressors in the decision phase: whether the reward of the chosen option had been real or

hypothetical on the last trial, reward and effort magnitude predictions (derived from a Bayes-

ian learning model as described previously [27,74], see S1 Text #3 “Bayesian model” for addi-

tional details), and the reward probabilities that were displayed on the screen. In the outcome

phase, we included the following parametric regressors: the reward type (real versus hypotheti-

cal) delivered for the chosen option, the reward probability for the chosen option, the reward

and effort magnitude outcomes for the chosen and the unchosen option, and the RPEs and

EPEs for the chosen and the unchosen option. The onset of all regressors for the chosen option

was time-locked to the onset of the outcome phase; the onset and duration of the regressors

for the unchosen option were time-locked to their display. In each case, separate regressors for

the chosen and the unchosen option were used; they were later combined to derive relative

(i.e., chosen minus unchosen option) values at the contrast level. In the effort execution phase,

we included the clicking rate as a parametric regressor. Finally, we included, as confound

regressors, six movement regressors and a regressor indexing when additional visual stimuli

were presented to warn participants that they had not clicked the targets on time and that the

halfway point of the experiment had been reached. We used FSL’s FLAME [75] to perform

higher-level analysis; the two groups were modeled as separate groups with shared variance;

outlier de-weighting was used. To identify ROIs (see below and also S1 Text #5 “MRI”), both

groups were combined at the contrast level, i.e., we identified areas that showed activations (or

deactivations) across both groups.

Time course analyses

We used analysis fGLM1 to identify regions for time course analyses. Specifically, we used the

contrast of reward type to identify ROIs for analyses of RPEs and reward outcomes and we

used the contrast of relative effort outcomes to identify ROIs for analyses of EPEs and effort

outcomes (Figs 3 and 4). The ROIs were identified on the basis of the peaks of the relevant

whole-brain cluster-corrected activations. The aim of theses analyses was to test whether cita-

lopram affected PE and/or outcome signals. We therefore tested whether the two groups dif-

fered in reward/effort PEs and in the coding of the reward/effort outcomes (analysis fGLM2).

Please note that these analyses were orthogonal to how the ROIs were identified. All time

courses were extracted, regressed, and statistically tested as described in Scholl et al. [27] and

similar to previous studies [49,76,77] (S6 Fig).

In analysis fGLM2, we included as regressors of interest the RPEs and EPEs (separately for

the chosen and the unchosen option) as well as the relative (chosen minus unchosen option)

reward and effort magnitude outcomes. As regressors of no interest, we included the reward

type (real versus hypothetical) PE (i.e., the reward type of the trial minus the probability of the

chosen option that had been shown at the time of choice):

YfGLM2 ¼ b0 þ b1RPEchosen þ b2RPEunchosen þ b3EPEchosen þ b4EPEunchosen

þb5RewardOutcomechosen� unchosen
þb6EffortOutcomechosen� unchosen þ b7RewardTypePEchosen
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PEs were included as separate regressors for chosen and unchosen options, as previous work

[78] suggested that different areas might carry signals for chosen and unchosen PEs. In contrast,

chosen and unchosen outcome signals have been found to be present in the same areas with

opposite signs [27,49] and were, therefore, included as a relative value regressor. Analysis

fGLM2 was time-locked to the onset of the outcome phase. In this, as in all other regressions, all

regressors were z-score normalized. We tested whether RPEs, EPEs, reward, or effort outcomes

were affected by citalopram using repeated-measures ANOVAs within the sets of ROIs. Signifi-

cant group differences (omnibus main effects or interactions) were then followed up using t
tests to assess whether these effects were driven by group differences in specific regions. For

example, for EPEs, we performed an ANOVA across the neural data from all ROIs identified in

the effort outcomes contrast. Follow-up t tests then examined group differences separately in all

ROIs. To look at reward and effort PEs, it is also possible to construct a variant of fGLM2 in

which no regressors for reward and effort outcomes, or, in other words, fewer nuisance regres-

sors, are included (“fGLM2reduced”). Note that in this case, PE regressors are not just the orthog-

onal component left after parceling out outcomes and may also capture signal variation due to

outcomes per se. This is because PEs and outcomes are not completely uncorrelated (S4 Fig).

Behavioral analyses

Task validation. To assess whether participants took all features of the task into account

when making their choices, we performed a logistic regression analysis (bGLM1). We pre-

dicted participants’ decisions to “stay” (choose the same option again as on the last trial) or

“switch” (choose the alternative option compared to the last trial); as regressors we included

the relative probabilities (i.e., the probability in favor of the “stay” minus the probability in

favor of the “switch” option) shown at the time of choice, the relative learnt reward and effort

magnitude predictions (derived from the Bayesian model see S1 Text #3 “Bayesian model”),

and the reward type of the previous trial (whether a reward had been real or hypothetical). All

regressors were z-score normalized.

YbGLM1 ¼ b0 þ b1RewardProbabilityt þ b2RewardMagnitudePredictiont

þb3EffortMagnitudePredictiont þ b4RewardTypet� 1

Model fitting and comparison

Instead of using an a priori Bayesian model (see S1 Text #3 “Bayesian model”) to generate

regressors of reward/effort predictions for the behavioral and neural regression analysis, it is

also possible to derive these from reinforcement-learning models that are fitted to participants’

choice data (similar to analyses that we described previously [27,79]). We also fitted this class

of models to ensure that our Bayesian model was appropriate, i.e., that it at least provided an

equally good fit to the data. In short, the model consisted of three main components: firstly,

the model had predictions of the mean reward/effort magnitudes underlying both outcomes.

These were updated on every trial using a reinforcement-learning algorithm:

Predictiont ¼ Predictiont� 1 þ a � PEt� 1

with

PEt� 1 ¼ Outcomet� 1 � Predictiont� 1

where α was the learning rate. Thus, the learning rate was a measure of how much participants

updated their reward/effort magnitude prediction when the reward/effort magnitude outcome
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differed from their expectation (i.e., depending on the PE). We fitted models that differed in

their number of learning rates: they either shared the same learning rate for reward and effort,

or they had separate learning rates. Finally, we also used a model with no fitted learning rate

that instead used the predictions for reward and effort derived from the Bayesian model.

Secondly, the model then combined these reward/effort magnitude predictions together

with the reward probabilities (explicitly shown to participants on each trial on the screen) to

calculate how valuable each option was (i.e., their utility). Similar to [79], we considered differ-

ent ways in which utility could be computed: optimally, probability and reward should be inte-

grated multiplicatively:

UtilityOptionA ¼
1

k
� ProbabilityReward �MagPredictionReward �

l

k
�MagPredictionEffort

in which k was a normalization constant with k = 1+λ, and λ was the effort magnitude decision

weight. Alternatively, participants might use a heuristic strategy in which they instead integrate

probability and reward linearly (we previously found this to provide a better fit to similar data

[79]):

UtilityOptionA ¼
1

k
� ProbabilityReward þ

g

k
�MagPredictionReward �

l

k
�MagPredictionEffort

in which k was a normalization constant with k = 1+γ+λ, γ was the reward magnitude decision

weight, and λ was the effort magnitude decision weight. The Utility for option B was computed

in the same way.

Thirdly, the model then compared the utility of the two options to predict how likely partic-

ipants would be to choose either, using a standard soft-max decision rule:

PðOptionAÞ ¼
eb�UtilityA

eb�UtilityA þ eb�UtilityB

in which β reflected participants’ ability to pick the option with the higher utility (i.e., the

inverse temperature).

The data from each participant were fitted individually using Matlab’s fminsearch routine,

which adjusted the free parameters to minimize the difference between the predicted choice

and the actual choice. To compare how well each model fitted the data, we performed model

comparison using the Bayesian Information Criterion (BIC) summed across all participants.

As this model comparison revealed the Bayesian model to provide the best fit to the data, we

used it to generate regressors for all regression analyses (fMRI and behavior). However, we

note that all findings and conclusions from the regression analyses remain the same when

regressors are instead derived from the best-fitting Rescorla—Wagner model. This is due to

the very high correlations between the regressors derived from the Bayesian and the best fitting

Rescorla—Wagner model (r> 0.99).

Reward learning interference

To assess whether citalopram protected reward learning from interference, we performed a

logistic regression analysis assessing how well information to be learnt from one trial (in the

form of PEs) was used in the next trial when there was interference or when there was no

interference (analysis bGLM2, see S11 Fig for correlations between the regressors). The

regression predicted participant’s decisions to “stay” (choose the same option again as on

the last trial) or “switch” (choose the alternative option compared to the last trial). Coding

decision as “stay/switch” makes the behavioral analyses similar to the neural analyses: a
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regressor that is “chosen” in the outcome phase of one trial (fMRI) is a regressor favoring

“stay” on the next trial (behavioral analysis). Equally an “unchosen” regressors favors

“switch” on the next trial. As main regressors of interest to measure interference, we

included interaction terms between the last trial’s relative (“stay” minus “switch”) RPEs and

the two factors that could produce interference: the relative EPEs (positive values indicating

higher, i.e., less favorable EPEs) and whether reward was real (coded as +1) or hypothetical

(coded as −1). For this, we z-score normalized each regressor separately and then multiplied

each interfering factor with the relative RPEs. As regressors of no interest, we included the

explicitly shown (at the time of choice) relative probabilities, the relative reward and effort

magnitude predictions, the relative reward and effort PEs, and the reward type (real versus

hypothetical):

YbGLM2 ¼ b0 þ b1RPEt� 1 � RewardTypet� 1 þ b2RPEt� 1 � EPEt� 1

þb3RewardProbabilityt þ b4RewardMagnitudePredictiont� 1

þb5EffortMagnitudePredictiont� 1 þ b6RewardTypet� 1

þb7RPEt� 1 þ b8EPEt� 1

β1 and β2 were the two regression weights of interest, measuring the interference effects of

reward type and effort learning on reward learning. If there is no interference by reward

type, the regression weights should be (on average) zero, while if there is interference, β1

should be positive (if reward learning is worse when reward is only hypothetical).

Similarly, for interference by EPE, if there is no interference, β2 should be (on average) zero.

While if there is interference (i.e., if reward learning is worse when EPEs are high), β2

should be negative (as EPE increases the probability of switch rather than stay decisions).

For Fig 5A, β2 has been sign reversed for illustration purposes so that for both β1 and β2,

positive values indicate more interference. PEs and predictions were again obtained from

the same Bayesian learning model as described for the analysis of the neural data; also, note

that very similar results were found using regressors derived from a fitted learning model

instead.

To further illustrate the results of analysis bGLM2 more intuitively, we compared to what

extent participants could use RPEs on trials when reward was real or hypothetical using a

regression analysis (bGLM3a). We included as our two regressors of interest relative RPEs

(in favor of “stay” minus in favor of “switch”) separately on trials when reward was real or

hypothetical. As regressors of no interest, we also included the relative reward probabilities

(which were displayed to participants on each trial), the relative reward and effort predic-

tions, the relative EPEs (also split into trials where reward was real or hypothetical), and

reward type (real versus hypothetical):

YbGLM3a ¼ b0 þ b1RPEwhenRealRewardt� 1 þ b2RPEwhenHypoth:Rewardt� 1

þb3EPEwhenRealRewardt� 1 þ b4EPEwhenHypoth:Rewardt� 1

þb5RewardProbabilityt þ b6RewardMagnitudePredictiont� 1

þb7EffortMagnitudePredictiont� 1 þ b8RewardTypet� 1

To assess whether RPEs were used differently by the two groups when reward was real or

hypothetical, we compared β1 and β2 using t tests. To assess whether EPEs were used differ-

ently when reward was real or hypothetical (S8 Fig), we compared β3 and β4 using t tests.

Similarly, we tested to what extent participants could use RPEs on trials when EPEs were

particularly favorable or unfavorable (i.e., surprisingly high effort) in analysis bGLM3b. For
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this, we included as our two regressors of interest relative RPEs separately on the quartile of tri-

als with most favorable and the quartile of trials with most unfavorable EPEs (the split into

quartiles was necessary as the relative EPE regressor was continuous, rather than categorical).

As regressors of no interest, we also included the relative RPEs in the remaining trials (i.e., the

half of trials when relative EPE was neither high nor low), the relative reward probabilities, the

relative reward and effort predictions, the relative EPE, and the reward type.

YBGLM3b ¼ b0 þ b1RPEwhenhighEPEquartilet� 1

þb2RPEwhenlowEPEquartilet� 1 þ b3RPEwhenmidEPEhalft� 1

þb4EPEt� 1 þ b5RewardProbabilityt
þb6RewardMagnitudePredictiont� 1

þb7EffortMagnitudePredictiont� 1 þ b8RewardTypet� 1

We compared the resulting regression weights of the two groups for RPEs when EPEs were

particularly high or low (β1 and β2) using t tests.

Supporting information

S1 Fig. RPE group differences are robust to modeling choices. Regressors for reward predic-

tion errors (RPEs) used in the main text were derived from a Bayesian optimal observer

model. Alternatively, regressors could be generated from a fitted reinforcement-learning

model. The best fitting model of this type (see Fig 2 in main text) produced regressors that

were very similar to the ones from the Bayesian model (r>0.99). Here, we instead simulated

regressors based on learning rates between 0.1 and 0.6 (for comparison, the fitted learning

rates for model M1 were: placebo = 0.38, citalopram = 0.31, see S7 Fig). This allowed us to test

whether our results could be explained away by a mismatch between the learning rates of the

Bayesian learner and the true learning rates of the placebo group. A consequence of such a

mismatch would be that while the placebo group only appears to have very weak or no RPEs

with the regressors derived from the Bayesian model, it might show stronger RPEs with regres-

sors generated using a different learning rate. We do not find this to be the case: A-D show

plots of time courses of the regression coefficients of RPEs (on BOLD activity) at different sim-

ulated learning rates. At all learning rates from 0.1 to 0.6, we always observe the same pattern

of the citalopram group (dark green) showing stronger RPEs than the placebo group (light

green): ANOVA, omnibus main effect of group, A (alpha = 0.1): F(1,27) = 7.9, p = 0.009; B

(alpha = 0.2): F(1,27) = 10.0, p = 0.004; C (alpha = 0.4): F(1,27) = 7.6, p = 0.01; D (alpha = 0.6):

F(1,27) = 7.6, p = 0.01). Data for individual participants can be found in S7 Data.

(TIFF)

S2 Fig. Effort prediction error signals in regions that activated with relative effort magni-

tude outcomes. A) We identified areas in the outcome phase that increased in activity with

the relative (chosen minus unchosen option) effort magnitude outcomes (analysis fGLM1).

We identified a total of six areas in this contrast (for table of coordinates see S2B Table). The

relative effort magnitude outcome signal (from analysis fGLM2) did not differ between the

two groups (ANOVA, testing for a group difference across all areas: F(1,27) = 0.29, p = 0.60).

B) Shows the time course of the correlations in these ROIs between the effort prediction error

(EPE) of the chosen option and the neural BOLD signal for the placebo (light red) and the cita-

lopram (dark red) groups (analysis fGLM2). Across areas, EPE led to a significant decrease in

BOLD activity (ANOVA, main effect of EPE on BOLD across all six areas, including all partici-

pants: F(1,27) = 17.70, p<0.001). While there was no group difference across all of these areas
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(ANOVA, group difference across all areas: F(1,27) = 1.43, p = 0.24), there was a stronger EPE

in some areas (ANOVA, interaction area x group F(5,135) = 2.45, p = 0.037). Follow-up t-tests

revealed that citalopram enhanced EPEs selectively in dACC (t(27) = 3.01, p = 0.006). The ven-

tral striatum is also shown for illustration as this area has been of general interest in studies

looking at learning. There were again no group differences (t(27) = -0.087, p = 0.93). All results

in A) are cluster-corrected at p<0.05. Abbreviations: dorsal anterior cingulate cortex (dACC),

anterior insula/ frontal operculum (aIns), anterior prefrontal cortex (aPFC), parietal cortex

(Parietal, IPL_C [79]), ventral striatum (striatum). Data for individual participants can be

found in S7 Data.

(TIFF)

S3 Fig. Non-cluster corrected results for group differences. To illustrate the pattern of group

differences for reward and effort prediction errors (Fig 3, panels B and D) across the whole

brain, this figure shows non-cluster corrected group difference activation maps (voxel thresh-

old: p<0.05). A) Areas (in red) in which the citalopram group had stronger (i.e. more positive,

compare Fig 3, panel B) reward prediction errors (chosen option) than the placebo group. We

note that in addition to the areas discussed in the main text, the cluster in posterior cingulate

was also significant using whole-brain cluster-correction. B) Areas (in blue) in which the cita-

lopram group had stronger (i.e. more negative, compare Fig 3, panel D) effort prediction

errors than the placebo group. Cross hairs show location of vmPFC (A) and dACC (B) ROIs

used in to extract data for the analyses in the main manuscript (Figs 3 and 4). Brain maps can

be found in S2 Data.

(TIFF)

S4 Fig. Correlations of regressors used in the fMRI analysis fGLM1. The values are the

mean of the absolute correlation values (r-values) across all participants. No r-values exceeded

0.44. Abbreviations: predicted reward/effort magnitude (PredRewMag, PredEffMag), reward

type on the last trial before the current decision phase (Last reward typet-1), reward/effort pre-

diction error (RPE, EPE), reward/effort magnitude outcome (RewMagOutcome, EffMagOut-

come), option that was chosen by the participant (C), option that was not chosen, or

‘unchosen’ (UC). Data for individual participants can be found in S7 Data.

(TIFF)

S5 Fig. Citalopram does not affect generic BOLD responses. In a control analysis (like

fGLM2, with an additional constant regressor for the outcome phase in each trial, which is

shown here), we tested whether citalopram might have increased general BOLD responses

during the outcome phase. This was not the case (ANOVA, main effect of group: F(1,27) =

1.07, p = 0.31; area x group interaction: F(5.19,140.01) = 0.63, p = 0.69). This suggests that

the increase in RPE/EPE (Fig 3, main text) was indeed very specific and not secondary to an

effect of citalopram on the vasculature. Data for individual participants can be found in S7

Data.

(TIFF)

S6 Fig. Procedure for time course analyses. In the following, we will illustrate the procedure

used for time course analyses by looking at the impact of the mathematical reward prediction

error (RPE) on brain activity in the ventromedial prefrontal cortex (vmPFC). A) Behavioral

regressors. A Bayesian model (see S1 Text #3) was applied to the reward outcome values of

each option shown in (1). In this way, reward predictions for each trial were created and these

were sorted by which option was ‘chosen’ or ‘unchosen’ (i.e. the alternative option). The RPE

was then computed by subtracting the reward prediction (expected reward) from the reward

outcome on each trial (3). B) Neural data. We extracted neural data (BOLD) from a spherical
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region of interested ((4), ROI in white, here placed in vmPFC) based on the peak of an orthog-

onal activation contrast (here: main effect of activating more with real compared to hypotheti-

cal reward). As can be seen in the figure, there were sometimes large activation clusters

spanning several different brain regions. If this was the case, we selected an activation peak

that was well within the brain area of interest. The data from all voxels in the ROI was

extracted and averaged (after standard pre-processing, see S1 Text #5 ‘MRI’). For illustration,

we show the (normalized) BOLD samples recorded in the first 600s (time along the y-axis) of

the experiment (black circles) for one participant, together with indicators (blue triangles)

when the outcome phases of the first 6 trials of the experiment occurred. The data was then

up-sampled tenfold and cut into epochs starting at the beginning of the outcome phase (5). C)

Correlations between RPE regressor and BOLD. Each time-point of this up-sampled time

course was then subjected to a GLM including for example the RPE as main regressor of inter-

est (6), in addition to other confound regressors (see for example fGLM2 in Methods of main

text). Thus we obtained a regression weight for each time point indicating the impact of RPE

on brain activity. This was repeated for each participant and the resulting data was averaged

across participants ((7), data shown here is from the citalopram group only). To test whether

for example the two groups differed in the impact of RPE on BOLD in vmPFC, we employed a

leave-one-out procedure in order to find the best alignment of the hemodynamic response

function (hrf, 8), as described previously [27]. Specifically, for each participant, we used the

data from all but that participant of his/her group (placebo or citalopram) to determine the

absolute peak (i.e. either the strongest peak or trough) of the time course in a window between

6s and 12s. We then aligned the peak of a canonical hrf (grey) to this peak (black). The hrf was

made using gammapdf in matlab, with values α = 72/32, β = 7/32. We then multiplied the

aligned hrf with the omitted participant’s time course and summed up the resulting values to

obtain one value per participant for each regressor of interest (here RPE). The reason for

employing the leave-one-out procedure, rather than employing a fixed delay of the hrf of e.g.

6s, was that it has been shown previously that hrf delays can vary strongly between different

brain regions [33], so that a generic delay of 6s might not capture activity well in some brain

areas. A leave-one-out procedure can correct for this in a non-biased way. This step was then

repeated for each participant (9). Finally, we compared values between the groups using t-tests

or ANOVAs as appropriate.

(TIFF)

S7 Fig. Additional measures of behavioral learning. A) To obtain behavioral measures of

overall learning, i.e. independent of interference effects (Fig 5), we performed a regression

analysis (bGLM4, see S1 Text #4 ‘Behavioral supplementary regression analyses’) predicting

whether participants repeated the same choice as on the previous trial (‘stay’) or ‘switched’ to

the alternative choice. Here, learning was captured in the form of prediction errors (compare

Fig 5). Participants in both groups were influenced by the relative (in favor of the ‘stay’ minus

in favor of the ‘switch’ choice, st-sw) reward and effort prediction errors (both p<0.001),

which we used therefore as a measure of learning. However, the groups did not differ (RPE: t

(27) = -1.15, p = 0.26; EPE: t(27) = 0.23, p = 0.82). Additionally, and similarly to the neural

results (Fig 3), the groups did not differ in their reward or effort sensitivity, i.e. in how much

past rewards or effort influenced their choices (Reward predictiont-1: t(27) = -1.23, p = 0.23;

Effort predictiont-1: t(27) = 1.14, p = 0.27). B) Next, we texted whether this measure of learning

correlated with neural learning related activity (S1 Text #6 ‘Correlations between neural and

behavioral prediction errors’). Across all participants in the two groups, the behavioral regres-

sion weight of the relative EPE correlated with the neural regression weight of relative EPE in

several areas, including dorsal anterior cingulate cortex, dACC (Bi, Z = 3.93, MNI x = -2,
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y = 30, z = 38) and dorsolateral prefrontal cortex (Z = 3.46, x = 30, y = 40, z = 30, extending to

anterior prefrontal cortex); results are whole-brain cluster-corrected (p<0.05). For illustration,

Bii) shows a scatter plot of the same results from dACC. These results suggests that between-

participant variations in the representation of effort learning signals (at the time of learning)

in various brain areas relate to differences in how much participants use these learning signals

when making decisions. We did however not find the same correlations between relative

behavioral and neural RPEs on a whole-brain level. This is potentially because, as discussed at

length in the main text, reward learning was subject to various kinds of interference when

reward outcomes were hypothetical as opposed to real and when reward outcomes were

accompanied by high EPEs. These important differences between different outcomes were not

examined in this analysis although they are the focus of analyses in the main text. An alterna-

tive way of measuring learning is shown in C): Instead of including reward or effort PEs in a

logistic regression to estimate learning, it is also possible to fit computational learning models

(model ‘Rew/Eff LRs—Add’, see Fig 2C). From these models, learning is measured in the form

of learning rates. We found that the learning rates estimated from the Rescorla-Wagner model

correlated strongly with the regression weights for reward and effort PEs (from bGLM4

above): Ci) The regression weights for relative RPEs correlated with the estimated reward

learning rates (r = 0.35, p = 0.007, nonparametric test). This effect remained significant after

controlling for general sensitivity to reward, estimated by the regression weight for relative

reward magnitude prediction (r = 0.43, p = 0.021). In contrast, the regression weights for rela-

tive RPEs did not correlate with the learning rate for effort (r = 0.19, p = 0.16, nonparametric

test). Cii) The regression weights for relative EPEs correlated with the estimated effort learning

rates (r = -0.47, p<0.001, nonparametric test). This effect remained significant after control-

ling for general sensitivity to effort, estimated by the regression weight for relative effort mag-

nitude (r = -0.64, p<0.001). Again, the regression weights for relative EPEs did not correlate

with the learning rate for reward (r = -0.01, p = 0.96, nonparametric test). This shows that our

measures of learning in the form of regression weights for reward and effort PEs are strongly

related to measures of learning in the form of the more commonly used learning rates. The

parameters obtained from the Rescorla-Wagner model for the two groups were: inverse tem-

perature: placebo: 0.04, citalopram: 0.05, p = 0.22; relative reward magnitude decision weight:

placebo: 0.37, citalopram: 0.42, p = 0.51; relative effort magnitude decision weight: pla-

cebo:0.35, citalopram:0.27, p = 0.28; learning rate for reward: placebo = 0.38, citalopram = 0.31,

p = 0.50; learning rate for effort: placebo = 0.47, citalopram = 0.41, p = 0.58. Data for individual

participants can be found in S7 Data.

(TIFF)

S8 Fig. Interference on behavioral effort learning. In analyses bGLM3a+bGLM5, we assessed

whether the extent to which effort prediction errors (EPEs) affected participants decisions to

‘stay’ (i.e. chose the option again as on the previous trial) or ‘switch’ to the alternative option

varied as a function of potential interfering factors. Shown are the regression weights for how

much relative (in favor of the ‘stay’ minus in favor of the ‘switch’ option) EPEs on one trial

impacted decisions to stay or switch on the next trial. Negative regression weights mean that

when EPEs are high for the option that has been chosen compared to the alternative, partici-

pants are more likely to switch to the alternative on the next trial. We found that, in contrast to

RPEs (Fig 5), EPEs were not affected by either interference from reward type or RPEs: A) The

two groups could use EPEs equally well when rewards were real (group difference: t(27) =

-0.03, p = 0.98) or hypothetical (group difference: t(27) = 0.41, p = 0.69). B) When EPEs were

examined separately for when RPEs were favorable (i.e. the quartile of trials with most positive

relative RPEs), the groups could use EPEs equally well (group difference: t(27) = -1.7,
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p = 0.10). Similarly, when RPEs were unfavorable (i.e. the quartile of trials with the most nega-

tive relative RPEs), both groups could use EPEs and did not differ in their use of EPEs (group

difference: t(27) = 0.44, p = 0.66). Data for individual participants can be found in S7 Data.

(TIFF)

S9 Fig. Influence of citalopram on RPEs is general. We tested whether effects of citalopram

on neural learning signals were always present or only found in situations of interferences. For

this, we added to the regression analysis fGLM2, analogous to behavioral regression bGLM2

(Fig 5), interaction terms between RPE a reward type (B) and between RPE and EPE (C). We

found that, as before (Fig 3B), the citalopram group had a larger RPE signal (A, F(1,27) = 7.8,

p = 0.009). However, we did not find neural learning signals (RPEs) to be affected by interfer-

ing factors, i.e. reward being only hypothetical (B, F(1,27) = 0.55, p = 0.47) or EPEs being par-

ticularly salient (C, F(1,27) = 0.35, p = 0.56). Data for individual participants can be found in

S7 Data.

(TIFF)

S10 Fig. Effort exertion. As behavioral measure in the effort phase, we collected participants’

rates of clicking with the trackball mouse on each trial. Effort exertion behavior did not differ

between the groups. First, they did not differ in their average clicking rates (t(27) = -0.01,

p = 1.00). Second, we tested whether the different reward factors influenced the clicking rate

using a regression analysis (eGLM1). We found that the reward of the option that was chosen

(one-sample t-test on combined data from both groups: t(28) = 3.23, p = 0.003) and the irrele-

vant reward information (i.e. the average of the regression weights for the reward of the option

that was not chosen and the reward type, real vs. hypothetical, one-sample t-test on combined

data from both groups: t(28) = 2.46, p = 0.02) increased the clicking rate across both groups.

However, this did not differ between the groups (both p>0.5). Furthermore, both groups also

almost always completed the effort phase: the placebo group failed to complete the effort phase

on 0.6±0.3% of trials inside and on 0.2±0.1% of trials outside the scanner, while the citalopram

group failed to complete the effort phase on 0.7±0.3% of trials inside and on 0% of trials out-

side the scanner. Data for individual participants can be found in S7 Data.

(TIFF)

S11 Fig. Correlations of regressors used in the behavioral regression analysis (analysis

bGLM1). The values are the mean of the absolute correlation values (r-values) across all partic-

ipants. No r-values exceeded 0.38. Abbreviations: In favor of the ‘stay’ option (St, i.e. in favor

of repeating the last trial’s choice), in favor of the ‘switch’ option (Sw, i.e. in favor of selecting

the alternative option compared to the last trial), predicted effort/reward magnitude on trial t-

1 (PredEffMagt-1, PredRewMagt-1), effort/reward prediction error on trial t-1 (RPEt-1, EPEt-1),

interaction between relative reward prediction error and effort prediction error on trial t-1

(RPEt-1(St-Sw) x EPEt-1(St-Sw)), interaction between reward prediction error and reward type

on trial t-1 (RPEt-1(St-Sw) x Reward typet-1). Data for individual participants can be found in

S7 Data.

(TIFF)

S1 Table. Participant demographics and questionnaire scores. Tables show baseline mea-

surements (A), measurements at the time of the test, i.e. after two weeks of citalopram or pla-

cebo (B) and difference scores between the time of test and baseline (C). The number of

participants for who measures were available is given for each measurement (# Subjects),

together with the mean value and standard error of the mean of each group and the resulting

p-values of two-tailed t-tests comparing the two groups. Abbreviations and questionnaires

used: Beck’s Depression Inventory (BDI, Beck et al. [80]), State-trait anxiety inventory [81],
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Positive and negative affect schedule (Panas, Watson et al. [82]), Cloninger scale [83], Bond-

Lader scale (BL, Bond and Lader [84]. Blinding of participants to the drug condition was

assessed by asking them informally which group they believed to be in (positive values indicate

citalopram, negative values placebo) and how certain they were (10 = very certain, 0 = very

uncertain). P-values are the results of two-sample two-tailed t-tests, not corrected for multiple

comparisons. While we note that the groups differed in the contentedness measure of the BL

scale at the ‘test’ time point, this would not be significant after correction for multiple compari-

sons. Also note that inclusion of the questionnaire measures does not affect any of the results

reported in the main paper. Data for individual participants can be found in S6 Data.

(XLSX)

S2 Table. Brain activity in the outcome phase. A) Areas activating more to real than hypo-

thetical reward (i.e. reward type). B) Areas activating with the relative effort magnitude out-

come (chose minus unchosen option). All results were obtained from analysis fGLM1 and

were significant with whole-brain cluster-correction p<0.05 (voxel inclusion threshold:

z>2.3). Where relevant references for area labels are: (1):[79], (2):[85], (3):[86].

(XLSX)

S1 Text. Supporting methods.

(DOCX)

S1 Data. Table with individual participants’ regression weights (Fig 2B) and model fits

(Fig 2C).

(XLSX)

S2 Data. This folder contains all MRI contrast maps (Figs 3+4, S2 and S3 Figs), both thre-

sholded (i.e., corrected for multiple comparison using cluster correction) and non-thre-

sholded. The maps are in NIfTI format and can be opened with freely available data viewers

such as FSLView or MRIcron.

(ZIP)

S3 Data. Table with FMRI time courses for individual participants for reward prediction

errors (Fig 3B) and effort prediction errors (Fig 3D).

(XLSX)

S4 Data. Table with FMRI time courses for individual participants for reward magnitude

outcomes (Fig 4A) and effort magnitude outcomes (Fig 4B).

(XLSX)

S5 Data. Table with individual participants’ regression coefficients (Fig 5A–5C).

(XLSX)

S6 Data. Table with individual participants’ questionnaire scores, measured before admin-

istration of drug/placebo and after two weeks of drug/placebo (S1 Table).

(XLSX)
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