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Abstract
Purpose: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized
spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with
the previously reported segmentation techniques in MRI studies.
Procedures: Six NMRI nu/nu mice bearing subcutaneous human glioblastoma U87 MG tumors
were scanned using a dedicated small animal 7T magnetic resonance imaging (MRI) scanner.
The data consisted of T2 weighted images, apparent diffusion coefficient maps, and pre- and
post-contrast T2 and T2* maps. Following each scan, the tumors were excised into 2–3-mm thin
slices parallel to the axial field of view and processed for histological staining. The MRI data
were segmented using SRSC, K-means, fuzzy C-means, and Gaussian mixture modeling to
estimate the fractional population of necrotic, peri-necrotic, and viable regions and validated with
the fractional population obtained from histology.
Results: While the aforementioned methods overestimated peri-necrotic and underestimated
viable fractions, SRSC accurately predicted the fractional population of all three tumor tissue
types and exhibited strong correlations (rnecrotic = 0.92, rperi-necrotic = 0.82 and rviable = 0.98) with
the histology.
Conclusions: The precise identification of necrotic, peri-necrotic and viable areas using SRSC
may greatly assist in cancer treatment planning and add a new dimension to MRI-guided tumor
biopsy procedures.
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Introduction
Targeted cancer therapies have experienced an unprece-
dented increase in approval over the past decade [1], with
most recent approaches utilizing the immune system against
tumors. However, due to their cytostatic effects, in treatment
response evaluation of these therapies, volume- and size-
based descriptors (WHO and RECIST criteria) need to be
complemented with quantitative imaging biomarkers [2].

A plethora of studies have reported the prognostic
value of the multiparametric magnetic resonance imaging
(MRI) derived quantitative biomarkers in oncology [3, 4].
Nonetheless, little effort has been laid out in developing
techniques to quantify the intra-tumoral heterogeneity.
Several investigations have used K-means clustering [5]
or related algorithms to distinguish necrosis from viable
tissue and assess phenotypic variability [6–9]. Kazerooni
et al. [10] combined fuzzy C-means (FCM) with a region
growing algorithm to segment glioblastoma in patients. In
addition to these, a recent study [11] has demonstrated the
application of Gaussian mixture modeling (GMM) [5] on
longitudinal positron emission tomography (PET)/MRI
data to create a spatio-temporal profile of different tumor
tissue populations.

All of the previously mentioned techniques make strong
assumptions about the shape of the clusters and are classified
as partitional clustering algorithms [5]. These methods
perform well as long as the clusters are easily separable
and their underlying assumptions are met. However, due to
highly composite microenvironment and voxel level pertur-
bations, the multidimensional MRI tumor data may contain
mixed and irregularly shaped clusters (in parameter space),
limiting the applicability of the aforementioned algorithms.

In this paper, we propose a robust algorithm, which
overcomes the limitations of the previously described
techniques and accurately characterizes the tumor tissue
variability. We show that spatially regularized spectral
clustering (SRSC) outperforms K-means, FCM, and GMM.
Furthermore, we quantitatively validate the segmentation
results of SRSC on the MRI data (consisting of apparent
diffusion coefficient (ADC) maps, normal and contrast-
enhanced T2 and T2* maps) using tumor histology.

Materials and Methods

Data Acquisition

All the studies were performed in accordance with the German
Animal Welfare Act and protocols were approved by the
Regierungspraesidium in Tuebingen. Human U87MG glioblastoma
tumor cells were subcutaneously inoculated in the right shoulder of
six 11-week-old NMRI/nu-nu mice (1 × 107 in 200 μl of 0.9 %
NaCl). Once injected, the tumors were allowed to grow for 2 weeks,
after which the imaging experiments were carried out.

The MRI scans were acquired using a dedicated small animal
7T ClinScan scanner (Bruker BioSpin, Ettlingen, Germany). The

details of the MRI sequences used for the acquisition of T2-
weighted anatomy, ADC, T2 and T2* images are provided in the
supplementary material. The pre- and post-contrast T2 and T2*
images were obtained before and 2 min after the intravenous
injection of 50 μl of ferumoxytol (Rienso; Takeda Pharmaceuticals,
Glattpark-Opfikon, Switzerland). To avoid motion artifacts, the
animal breathing was tracked (Model 1030; SA Instruments, Stony
Brook, NY, USA) and used for triggering the anatomy and ADC
sequences. Inveon Research Workplace (Siemens, Knoxville,
Tennessee, USA) was utilized to delineate the tumors on the
anatomical images of the mice.

Although not included in this paper, during MRI scans, the mice
were also injected with 2-deoxy-2-[18F]fluoro-D-glucose PET tracer
for independent investigations.

Histology

At the end of each scan, the mice were taken out from the MRI
scanner and sacrificed by cervical dislocation, while maintaining
their position on the bed. Prior to dissection, three equidistant
lines (∼2–4 mm apart) were drawn on the skin parallel to the
imaging field of view and the tumors were frozen using a
freezing spray. The frozen tumors were subsequently cut into
four pieces along the parallel lines, and the sectioned parts were
placed into the tissue biopsy baskets while keeping track of the
slice orientation. Thereafter, the tissue baskets were placed in
4.7 % neutral-buffered formaldehyde for 48 h and processed for
paraffin embedding and subsequent cutting in 6-μm sections. An
automated immunostainer (Ventana Medical Systems, Tucson,
AZ, USA) was used to perform the immunohistochemistry with
the following primary antibodies: GLUT-1 (Glucose transporter
1, Abcam Inc., Suite B2304 Cambridge, USA), Ki-67 (Clone
SP6, DCS Innovative Diagnostik-Systeme GmbH u. Co. KG,
Hamburg, Germany), and CD-31 (Abcam plc, 330 Cambridge
Science Park, Cambridge, UK). Positive and negative controls
were included for the immunohistochemical analysis of each
antibody. Additionally, H&E staining was performed. The
stained histology slides were scanned into high-resolution digital
images using a NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu
City, Japan), and different tumor tissue populations were marked
by a seasoned mouse pathologist. Utilizing these markings as
reference, regions of interest were drawn on the histology slices
using NDP.view (Hamamatsu, Hamamatsu City, Japan) and the
fractional population of each tumor tissue type was calculated.
The viable and necrotic tissues were delineated on H&E, while
the peri-necrotic tissue was defined on GLUT-1 immunostain-
ing. The registration (additional details are provided in the
supplemental data) between histology and delineated tumor
images was performed manually using MATLAB (MathWorks,
Natick, MA, USA), as described by Divine et al. [11]. Due to
inadequate registration, one mouse was excluded from further
analyses.

Spatially Regularized Spectral Clustering

Spectral clustering [12, 13] utilizes voxel-wise MRI feature vectors
to create affinity matrix for each tumor. The voxel-wise feature
vectors were obtained by concatenating the co-registered MRI
parameters (ADC, T2 pre-contrast, T2 post-contrast, T2* pre-
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contrast, and T2* post-contrast), and the affinity matrices were
constructed using a radial basis function (RBF) kernel:

Wij ¼ e− ‖xi−x j‖
2
=2σ2 if i≠ j

0 otherwise:

�

Here, σ is the scale parameter of the RBF kernel and ‖xi − xj‖ is
the pairwise Euclidian distance between the MRI feature vectors of
voxel i and j. Unsupervised clustering was performed using
constrained GMM on the eigenvectors of the normalized Laplacian
matrix. Further details about the algorithm can be found in the
supplemental data.

Standard GMM probabilistically assigns observations to differ-
ent clusters and characterizes them using a mean vector and
covariance matrix. We included a spatial regularization (in the
image space) into standard GMM which we will refer to as
constrained GMM. Spatial constraints were imposed by weighing
the tissue class probabilities of each voxel by the average tissue
class probabilities of the 26 connected neighboring voxels during
the optimization process. Thus, the likelihood of a voxel to be
characterized as a certain tissue type is enhanced if the nearby
voxels belong to the same tissue class and vice versa.

The results of SRSC were compared with K-means, FCM, and
standard GMM. All of the methods were implemented in
MATLAB.

Statistical Analysis

The Pearson’s correlation coefficient was computed to evaluate the
linear relationship between the histology and clustering tumor
tissue fractions. The one-sample Kolmogorov-Smirnov test was
used to test whether the distribution was normal. Due to non-
normality, the differences between all of the groups were first
checked using the Kruskal-Wallis non-parametric test. In case of a
significant difference, the individual groups were compared using
the Bonferroni corrected rank-sum tests (a p value less than 0.0167
was considered as statistically significant).

Results
The MRI parameters of one of the tumors are shown in
Fig. 1a. The corresponding histology and segmentation
results of SRSC are presented in Fig. 1b, c, respectively.
The affinity matrix (Fig. 1c) depicts the intra- and inter-class
similarity between the identified tissue classes of the tumor.

The clustering comparisons of SRSC with K-means,
FCM, and standard GMM, together with the histological
images of three tumors are shown in Fig. 2. The proposed
method outperformed all three techniques and demonstrated
the best visual correlation with the histology. The SRSC
results of the remaining tumors are shown in Supplementary
Figs. 1 and 2. Both tumors were highly homogeneous and
mostly composed of viable portions. SRSC however also
identified minor amounts of muscle and connective tissue.

The class-wise box plots and the histograms of all the
MRI parameters for the aforementioned tumors are shown in

Fig. 3. The box plots and histograms were generated using
the voxel-wise segmentation results of SRSC. For each MRI
parameter, the distributions of all three tumor tissue classes
significantly differed from each other (Supplementary
Table 1).

Table 1 summarizes the Pearson’s correlation coefficients
(p values are given in Supplementary Table 2) between
histology and clustering tumor tissue fractions for all four
algorithms. Matching scatter plots are shown in Supplemen-
tary Fig. 3. While K-means, FCM, and GMM overestimated
peri-necrotic and underestimated viable fractions, SRSC
accurately predicted the fractional population of all the three
tumor tissue types.

Discussion
We proposed a novel algorithm for the analysis of multi-
parametric MRI data and assessment of the intra-tumoral
heterogeneity. We compared our algorithm with the previ-
ously reported segmentation methods in MRI studies [6–8,
11] and exhibited its efficacy over K-means, FCM, and
standard GMM. We corroborated the segmentation results of
SRSC with different histological stainings and demonstrated
strong correlations between the tissue fractions derived from
immunohistochemistry and SRSC. The precise identification
of the necrotic, peri-necrotic, and viable tissue fractions
using SRSC highlights the strengths of combining novel
image analysis methods with multiparametric imaging and
advocates the potential of the proposed method for clinical
investigations.

Different types of cell death play an important role in
tumor regression and progression. Among others, necrosis is
designated as a lethal form of cell demise, which triggers
inflammation [14]. Moreover, inflammation is a known
regulator of the hallmarks of cancer [15], whose complex
interplay promotes uncontrolled tumor growth. Thus, mea-
suring the amount of necrosis can be pivotal for predicting
the degree of tumor aggressiveness and cancer morbidity
[16]. While all of the models were able to identify necrotic
regions, only SRSC provided precise estimates of viable
(revealed by high mitotic rate in Ki-67 staining) and peri-
necrotic tissue populations. Furthermore, the average ADC
in SRSC segmented necrotic (1252.68 ± 628.48), peri-
necrotic (1132.2 ± 466.72), and viable (598.46 ± 344.67)
regions was also consistent with previous findings [7, 11].
The moderate and relatively low interclass similarity of the
peri-necrotic tissue with the viable and necrotic regions
respectively, shown in Fig. 1c (affinity matrix), might be a
result of metabolic stress, elucidating the gradual transfor-
mation of the peri-necrotic regions from viable to necrotic
tissue. This is also indicated by the higher expression of
GLUT-1 receptor in the peri-necrotic areas in Fig. 1b,
possibly due to induced hypoxia [7]. Although we did not
perform any hypoxia-specific staining, it is well established
that hypoxia leads to an increase in glycolysis, eventually
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Fig. 1. a The acquired MRI parameters of a tumor, left to right: ADC, T2 pre, T2 post, T2* pre, and T2* post maps. b Left to
right: CD-31, GLUT-1, H&E, and Ki-67 stained histology of the tumor from a. c Left to right: SRSC probability map and the
affinity matrix of the tumor. Green, blue, and red colors represent the necrotic, peri-necrotic, and viable tissue, respectively. The
arrows in the histology indicate the corresponding tissue type in the tumor. The affinity matrix was computed using the voxel-
wise feature vectors from the entire tumor volume. The diagonal and off-diagonal matrices in the affinity matrix depict intra- and
inter-class similarities for the labeled tissue clusters, respectively. For example, the high intra-class similarity of viable cluster
indicates the presence of homogeneous viable areas in the tumor.

Fig. 2. a CD-31, b GLUT-1, c H&E, and d Ki-67 stained histology of three different tumors and corresponding segmentation
maps obtained using e SRSC, f GMM, g FCM, and h K-means. Green, blue, and red colors represent the necrotic, peri-
necrotic, and viable tissue, respectively. The arrows in the histology indicate the corresponding tissue type in the tumor.

394 Katiyar P. et al.: Multiparametric MRI Tumor Segmentation



resulting into a higher GLUT-1 expression [17]. Similar
characteristics are exemplified in Supplementary Fig. 4.

In this study, the histology was manually co-registered
with the in vivo MRI images. The confounding challenges
faced in the registration process [18] were mitigated by the

careful sectioning and fixation of the tumor. Due to the
difficulties encountered in one-to-one (histology to imaging)
registration, tissue labels from histology are hard to obtain,
limiting the application of supervised algorithms. Recently,
one investigation has improved this by using a two-step

Fig. 3. The distributions of the acquired MRI parameters for each tumor tissue type. The boxes depict the interquartile range
and the whiskers extend to the 5th and 95th percent value of the parameter. The line in the box shows the median of the
distribution.

Table 1. Pearson’s correlation coefficients for the tissue fractions obtained from histology and clustering algorithms

Tissue type Pearson’s correlation coefficient (r)

SRSC K-means FCM GMM

Viable 0.98 0.66 0.33 0.59
Necrotic 0.92 0.76 0.79 0.88
Peri-necrotic 0.82 −0.84 −0.80 −0.72
All 0.99 0.64 0.69 0.68
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registration process, involving digital photographs of the
specimen and later performing a linear discriminant analysis
on the multiparametric MRI data [19]. Another way to
circumvent the registration challenges is by using the
unsupervised and supervised techniques in a cascaded
manner. Specifically, tissue labels can be obtained by
clustering the multiparametric MRI data using SRSC and
labeled voxels with a probabilistic confidence score can be
used to train a supervised classifier, thereby allowing the
development of phenotype specific mathematical models.

Biopsies are routinely used in modern cancer diagnostics
and tumor phenotyping. As tumors exhibit frequent spatial
and temporal heterogeneity, the limited spatial extent of the
invasive procedure can severely underestimate the disease
complexity, resulting in a misleading prognosis or an
unsuccessful therapy [20]. Imaging techniques on the other
hand provide a complete view of the patient, allowing a
comprehensive inspection of the spatio-temporal variations.
Therefore, the combination of imaging diagnostics with
tissue biopsy procedures could not only assist in lesion
localization and selective tissue sampling, but could also
deliver an extensive phenotypic and genotypic profile of the
tumor, potentially uncovering the causal relationships
between the two [21].

Since the acquired MRI parameters (ADC, T2 and T2*
maps) in this investigation are standard protocols in the
clinic, SRSC can be translated into clinical examinations.
One major limitation of this study, however, is the use of a
single xenograft tumor model and the small sample size.
Evaluating SRSC on several tumor types along with a
combination of different cancer therapies and imaging
parameters could reveal the versatility of the suggested
method and bring additional insights about the most robust
and informative in vivo imaging biomarkers.

In multifaceted tumor microenvironment, it is highly
probable that the neighboring cells exhibit similar functional
and anatomical characteristics and there is a smooth
transition from one tissue type to another. MRI measure-
ments, however, can be corrupted by subject motion and
magnetic field in-homogeneities, giving rise to voxel level
uncertainties. We addressed these textural irregularities by
imposing spatial constraints and achieved accurate intra-
tumor segmentation results. As opposed to commonly used
partitional clustering algorithms, SRSC makes no a priori
assumptions about cluster shapes; hence, it is likely to
perform better on multidimensional data sets. Such methods
of region-wise analyses are of high significance for multi-
parametric imaging, as they can facilitate biomarker selec-
tion and treatment planning by providing a reliable quanti-
fication of imaging measures probing inter- and intra-tumor
heterogeneity [22].

Conclusion
In conclusion, through quantitative histological validation
and one-to-one algorithmic comparison, we demonstrated

the efficacy of SRSC on multiparametric MRI data and
delivered an accurate segmentation of the intra-tumoral
heterogeneity. Multiparametric imaging in combination with
image analysis tools has the ability to probe tumor
heterogeneity beyond currently utilized volume- and size-
based measures, which might be of great value for selective
treatment planning and reliable response evaluation of
personalized cancer therapies.
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