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Abstract

Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the 

progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. 

Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that 

enable increased sensitivity, specificity, and multiplexing capability, all with the compelling 

economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies 

participating in the National Nanotechnology Initiative (NNI) “Nanotechnology for Sensors and 

Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment” 
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Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using 

nanotechnology to advance sensor development and the challenges of developing sensors to keep 

pace with the increasingly widespread use of engineered nanomaterials. This perspective article 

will introduce and provide background on the NNI signature initiative on sensors. Recent efforts 

by the Sensors NSI aimed at promoting the successful development and commercialization of 

nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future 

directions and critical challenges for sensor development will also be discussed.
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SENSING AND THE NANOSCALE: A NATURAL FIT

A sensor produces a measurable signal as a result of physical, chemical, biological, or any 

combination of the aforementioned stimuli.1 This process inherently relies on engineering 

components within the sensor system that can sample, transduce, and analyze a given 

signal.1 Engineered nanomaterials (ENMs) possess unique physiochemical characteristics 

that can fundamentally enhance known measures of sensor performance related to sensitivity 

and specificity by orders of magnitude, while offering unique opportunities to miniaturize 

devices in order to achieve ubiquitous sensing.2–5 First, the high surface-to-volume ratio of 

materials at the nanoscale allows for enhanced chemical reactivity, a feature that can be 

modulated by particle type, shape, and surface topography.4 Second, the ability to precisely 

craft nanomaterials with functional ligands can confer single-molecule sensitivity and 

specificity.6 Third, an important attribute of ENMs is the possibility to engineer them as 

highly integrated systems that can offer more rapid and multiplexed detection of analytes 

using advanced transduction mechanisms.7–9

The ability to synthesize a vast range of nanomaterial types has broadened the sets of tools 

available for researchers to explore a range of sensing application areas, including: 

medicine, workplace safety, environmental monitoring, agriculture and food industries, 

energy, manufacturing, transportation, and defense.1 Several types of ENMs have been 

demonstrated for sensing applications, from carbon-based nanomaterials,10 metallic and 

semiconducting nanoparticles11 and nanowires12 to nanopore13,14 and nucleic acid-based15 

platforms (see Figure 1). Metallic nanoparticles (including metal alloys and oxides) have 

been broadly adopted to detect chemical and biological agents; gold nanoparticles in 

particular have been demonstrated as suitable sensing platforms for the detection of 

pathogens and biomolecules due to their tunable plasmonic properties.16 Variations in ENM 

shape also present an opportunity to further modulate sensing behavior. For instance, 

detection sensitivity in nanowires (and nanotubes) has been shown to vary inversely with 

their radius.17 Nanowires also confer long optical absorption path lengths and strong light 

trapping in higher density arrays,18 which is optimal for photonic-based applications. On the 

other hand, spherical nanoparticles can provide distinctive ligand surface coverage from 

nanowires (up to a certain size in similar chemical conditions) due to differences in the 

radius of curvature.19 In the case of two-dimensional ENMs (e.g., graphene or transition 
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metal dichalcogenides), charge carrier concentrations induced by adsorption or binding 

events can be used for the detection of individual molecules.20

NATIONALLY COORDINATED EFFORT TO SUPPORT THE DEVELOPMENT 

OF NANOTECHNOLOGY FOR SENSORS AND SENSORS FOR 

NANOTECHNOLOGY

In 2012, recognizing the considerable potential for nanotechnology to facilitate the 

development of inexpensive portable devices for the rapid detection, identification, and 

quantification of biological and chemical substances, as well as the need to develop sensors 

to detect nanomaterials in complex media, the U.S. National Nanotechnology Initiative 

(NNI) launched its fifth Nanotechnology Signature Initiative (NSI), entitled Nanotechnology 

for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and 

the Environment (or the Sensors NSI).3 The NSIs place a spotlight on areas that can be more 

quickly advanced through enhanced coordination and collaboration of the participating 

Federal agencies, seed communities of interest, and develop public–private partnerships as 

appropriate.21 The Federal agencies participating in the Sensors NSI include the Consumer 

Product Safety Commission (CPSC), Department of Defense (DOD), Environmental 

Protection Agency (EPA), Food and Drug Administration (FDA), National Aeronautics and 

Space Administration (NASA), National Institutes of Health (NIH), National Institute for 

Occupational Safety and Health (NIOSH), National Institute of Standards and Technology 

(NIST), National Science Foundation (NSF), and the United States Department of 

Agriculture (USDA).22

The priorities and goals of the Sensors NSI reflect the interests and activities of the 

participating agencies, which span the sensor development life cycle (Figure 2) from mission 

evaluation and research and development to sensor testing, deployment, and use.3,23 An 

important function of the initiative is to bring together agency representatives to identify 

resources and technologies supported by one agency that can further the objectives of 

another. Enhanced communication between agencies has enabled interactions and 

collaborations in areas such as standards and devices of shared relevance, and facilitated 

development of cross-agency initiatives dedicated to sensors. Beyond interagency activities, 

the Sensors NSI has engaged the sensors community through a targeted Request for 

Information (RFI);24 a sensors web portal;25 workshops and town hall meetings embedded 

in international conferences;26 and webinars.27 The use of these mechanisms and the 

resulting impact on the direction of the initiative are discussed in more detail below.

Over the past several years, significant progress has been made toward the goals of this 

initiative. Sensing devices and capabilities have been developed that are enabled by 

nanotechnology, and that are designed to sense nanomaterials in complex media. A few 

examples are described herein, followed by a discussion of future directions as well as key 

challenges.
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ADVANCING THE SUCCESSFUL DEVELOPMENT AND 

COMMERCIALIZATION OF SENSOR NANOTECHNOLOGIES

The spotlight provided by the signature initiative has resulted in several collaborative 

activities as illustrated in the following examples. Food safety and quality is an area of 

sustained common interest among agency participants of the Sensors NSI. The U.S. FDA 

Center for Veterinary Medicine (CVM) has a long-standing interest in rapid identification of 

species in food samples, to detect both counterfeiting and contamination in the food supply. 

To this end, CVM has pursued the use of DNA barcoding in regulatory science, in which 

short chains of genetic material are used to uniquely identify species.28 CVM was interested 

in collaborating with external partners to develop a hand-held device with the ability to 

extract and amplify DNA to compare to reference libraries for species identification. 

Through the initiative, CVM researchers were connected with a group developing similar 

technologies with support from USDA, and were able to initiate a project to test the 

feasibility of combining FDA’s barcode database with the group’s device.

Another topic of interest to both regulatory and mission-oriented agencies is the appropriate 

use of standards and standardized methods when evaluating nanosensor performance. For 

example, methods for characterizing nanoparticle surface properties in the context of 

biological sensing and the confounding effects of nanoparticles on optical protein assays are 

of interest to both FDA and National Cancer Institute (NCI) representatives. Discussions 

stemming from the Sensors NSI interactions led to the sharing of techniques developed by 

NCI supported researchers and laboratories,29 as well as heightened participation by FDA 

staff members in NCI planning, education, and outreach efforts, such as the caNanoPlan 

2015.30

The Sensors NSI activities intersect with and benefit other Federal efforts such as NSF’s 

recently launched Innovations at the Nexus of Food, Energy and Water Systems (INFEWS) 

program,31 particularly in the areas of precision agriculture and food and water monitoring. 

INFEWS is intended to support both fundamental studies to understand food, energy, and 

water systems and technological approaches to enable sustainable use of natural resources 

for a growing population. Major challenges are being identified and being addressed through 

workshops and Dear Colleague Letters. The development of new sensing modalities and 

field-deployable sensors for real-time monitoring of analytes of interest, such as phosphorus 

and nitrogen containing species, is a priority.32 Representatives of the Sensors NSI are 

actively engaged in these efforts and enable leveraging of these and other agency activities.

In addition to enhancing communication between representatives of member agencies, the 

Sensors NSI has provided a means for agencies to reach out to the research community and 

provide information about resources and opportunities in nanosensor development. The 

initiative has participated in the annual TechConnect World Innovation Conference each year 

since 2013,33 hosting symposia and Town Hall sessions, primarily as a means to share 

information about funding opportunities, facilities, and resources hosted or supported by 

agencies that are available for external researchers.34
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As the initiative progressed, it became clear from interactions with sensor and device 

developers as well as participating agency representatives that numerous areas of uncertainty 

and debate exist in sensor development, particularly in the later stages of the development 

life cycle. To get feedback from the community regarding the state of the field, a Request for 

Information (RFI) centered on five crucial areas to sensor development and 

commercialization—standards, testing, manufacturing, commercialization, and regulation—

was released.24 Questions were aimed at elucidating the purpose-built protocols and 

practices being used by the nanosensor community as well as the community’s sense of the 

usefulness of sanctioned standards, protocols, and facilities.

Common themes emerged from the wide variety of responses, representing constituents 

from industry and standards organizations to academic centers.35 These themes included the 

centrality of sensors to the emerging IoT, and the associated importance of data security for 

acceptance of ubiquitous sensing. This indicates an important role for regulators and a need 

to understand the implications of potentially wide access to data from personal or 

commercially hosted sensors. A paucity of realistic test beds was noted in order to create 

conditions beyond standard lab capabilities or provide access to expensive and highly 

specialized testing equipment for device specification. One of the most serious challenges 

noted was the lack of reproducibility in the synthesis and packaging of nanomaterials, a 

concern with relevance to both nanotechnology enabled chemical and biological sensors and 

sensors for nanomaterials. Respondents also noted a need for better communication and 

collaboration between stakeholders, and for assistance in identifying contacts and 

appropriate guidance in regulatory agencies.

Beyond the common themes noted, specific concerns of significant relevance to the initiative 

were also identified.35 These included a general lack of sanctioned standards for important 

measurements in sensor performance, such as the unit of measurement of sensitivity, and 

well-defined nanomaterial properties. Measurement protocols and disposal procedures are 

also missing or ad hoc for nanomaterials. Related to the oncoming era of widespread, 

distributed sensing, there is no clear distinction in standards for individual sensors versus 

networks of sensors and a lack of standards for interoperability and data security. This last 

issue exists both up and down the supply chain and laterally, as complementary applications 

and devices are linked to provide distributed sensing capability.

The results of the RFI were used to plan a Sensor Fabrication, Integration and 

Commercialization Workshop for September 11–12, 2014.36 The findings of this workshop, 

which brought together representatives from funding and regulatory agencies, large industry, 

small companies, venture capital, and academic researchers interested in sensor 

development, were published in a report in June 2015.37 Workshop participants identified a 

number of needs that must be met to accelerate the development and commercialization of 

nanosensors. These needs included facilities for device testing and manufacture, and better 

information regarding resources available for these tasks. It was clear from the workshop 

discussions that the community was not aware of the vast array of available resources 

supported by the Federal government and that there was considerable confusion over 

regulatory requirements, especially regarding use of nanomaterials in commercial devices.
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In response to community feedback from the RFI and workshop, participants in the Sensors 

NSI worked with the NNCO to gather information and resources for sensor development 

into a sensors web portal.25 The web portal is a dynamic resource for the sensor 

development community, with frequent updates of news related to sensor research and 

commercialization and up-to-date information on federal funding opportunities and 

facilities. The portal hosts extensive information on existing regulatory guidance for sensor 

development (e.g., for medical diagnostics) and use of nanomaterials in devices, 

international standards for sensor performance, reference nanomaterials, and federal 

programs and private organizations supporting sensor development. Links are also provided 

to user facilities that can be used to design, characterize, and prototype sensor devices, such 

as the Center for Nanoscale Science and Technology at NIST,38 as well as privately owned 

facilities for fabrication of devices on small and medium scales. Databases of nanoparticle 

information and potential federal partners for studying nanomaterials are also accessible 

through this portal.

Furthermore, the Sensors NSI also conducted a series of webinars, in coordination with the 

Nanotechnology Knowledge Infrastructure (NKI) NSI, to provide technical and regulatory 

guidance on the development of nanosensors, along with information on data resources for 

nanomaterials. Nanosensors webinars focused on “Nanotechnology Sensors and 

Applications,” (October 16, 2015, Dr. Meyya Meyyappan, NASA) and “A Regulatory Case 

Study for the Development of Nanosensors,” (November 3, 2015, Dr. Kim Sapsford, FDA) 

along with a joint webinar with the NKI NSI, “All Hands on Deck for Data Quality” 

(December 11, 2015). Archived versions of these webinars are available on nano.gov.27

The Sensors NSI will continue to work together and engage with the community to advance 

the commercialization of nanosensors. The collaborative activities described above illustrate 

the ability of the signature initiative mechanism to bring together representatives to leverage 

agency programs, and respond to and support the needs of the sensors community.

EXAMPLES OF RESEARCH EFFORTS AIMED AT DEVELOPING 

NANOTECHNOLOGY-ENABLED SENSORS AND SENSORS FOR 

NANOTECHNOLOGY

Nanotechnology-Enabled Sensors

The attractive properties of ENMs have enabled the development of chemical and biosensors 

with superior sensitivity and other figures of merit relative to the state-of-the-art sensors. 

Commercial sensors for gas sensing are based on tin oxide thin films or conducting 

polymers; most ENMs can offer better sensitivity and lower power consumption in addition 

to smaller size and weight due to their large surface area and excellent electronic properties.4 

Recent work from Mulchandani and colleagues have exploited the large surface area of 

single-walled carbon nanotubes (SWCNTs) to detect the presence of volatile organic 

compounds,39 in this case by functionalizing SWCNTs with iron tetraphenyl porphyrin40 or 

with a conducting polymer.41 Several other examples of nanosensor arrays for environmental 

monitoring and aided by pattern recognition tools have been shown to detect gases such as 

CH4, CO, H2S, Cl2, NH3, or landfill gas.42–44 More recently, some research efforts have 
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focused on exploiting the unique physiochemical properties of graphene and other two-

dimensional nanomaterials for sensing applications. For example, boron-doped graphene 

sensors have been reported with the ability to detect NO2 and NH3 at parts per billion levels 

or lower.45

Often, sensor construction has been on silicon substrates using conventional 

microfabrication techniques with the nanomaterials serving as the sensing medium. 

Recently, flexible substrates such as paper, plastic, and textiles have been considered for 

sensor fabrication. Inkjet printing and other unconventional techniques have been developed 

to deposit the nanomaterial on soft substrates in order to allow large scale manufacturing 

(for example, roll-to-toll) of sensors and reduce the fabrication costs. Figure 3a depicts a 

chemical sensor platform printed on poly(ethylene) naphthalate (PEN) foil for the detection 

of methane leaks from natural gas wells. Other constituents in the leaks may include small 

quantities of ethane, propane, butane, and H2S. SWCNTs functionalized with COOH groups 

and coated with polyaniline respond well to methane with a change in conductivity as seen 

in Figure 3b. The sensor foil consists of interdigitated electrodes covered with the above two 

nanosensing materials and attempts to mimic the performance of an earlier generation 

methane sensor constructed on a silicon wafer.46

The need for biosensors is ubiquitous in clinical diagnostics and point-of-care health 

services.12,47,48 Significant progress has been achieved in the development of sensing 

platforms that can reliably detect protein analyte for applications in gene-sequencing,49 

cancer therapy,50 and neuroscience.51 Over the past two decades, the Mirkin laboratory has 

developed a broad set of ultrasensitive methods based on deoxyribonucleic acid (DNA) gold 

nanoparticle conjugates.52–54 These studies have led to the launch of the Verigene system, 

which is now commercially used for molecular diagnostics applications.55 Research by 

Lieber and colleagues has enabled the development of nanowire-based sensor systems for 

electrophysiological applications.12 This includes nanowire-based field-effect transistors that 

can record potentials from single cells56 to multiplexed local field potentials in vivo.57 For 

DNA and protein analysis, significant attention has been placed on graphene-based sensors 

thanks to their atomic thickness and unique electrochemical properties.58 Next-generation 

nanopores using graphene, for instance, have been under development at Oxford Nanopore 

Technologies.59 These “solid-state” nanopore sensors aim to improve on the performance of 

commercially used protein nanopores by optimizing spatial resolution and reliability.59–61

More recently, applications of biosensors have been geared toward the detection of 

infectious disease. In response to the 2014–2015 Ebola outbreak, the U.S. FDA authorized 

the emergency use of the Corgenix ReEBOV Antigen Rapid Test for the presumptive 

detection of Ebola Zaire virus infection in whole blood, plasma, or serum from individuals 

with signs and symptoms of Ebola virus infection.62 The test kit uses antigens conjugated to 

gold nanoparticles to detect the virus.63 In 2014, FDA also cleared two T2 Biosystems, Inc., 

products—T2Candida Panel and the T2Dx Instrument—for the direct detection of Candida 

species in human whole blood specimens from patients with symptoms of, or medical 

conditions predisposing the patient to, invasive fungal infections.64 The technology utilizes 

magnetic biosensor nanotechnology designed to enable detection of nucleic acids.65
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Due to the extensive range of societal applications, chemical and biological sensors have 

received much attention from the nanotechnology community. In contrast, the utility of 

nanomaterials for radiation sensing has not been extensively investigated. Interest in 

radiation sensors ranges from threat detection to monitoring radiation levels in crew cabins 

in planetary exploration. Properties of some inorganic nanowires are modified when exposed 

to energetic radiation,66,67 and this behavior can be exploited in developing radiation 

sensors. Bulk single crystal CdZnTe (CZT) is currently used in commercial gamma ray 

detectors. High detection efficiency requires a large volume of material with low defect 

density, which makes the manufacturing expensive. Preliminary results show that 

electrodeposited CZT nanowires can be used as radiation detector material at room 

temperature with a low bias (below 2 V).67 Metal oxide semiconductor field effect 

transistors (MOSFETs) are typically used as radiation detectors with semiconductor thin or 

thick films.

Sensors for the Detection and Monitoring of Engineered Nanomaterials

As applications for ENMs continue to rise and nanomaterial production scales up, the need 

to directly monitor nanoscale materials across their entire life cycle becomes greater. Direct 

monitoring of ENMs throughout the full cradle-to-grave life cycle, including the material 

manufacturing process, product integration, application, and disposal, will require precise 

detection strategies and advanced sensor platforms to fully meet environmental, health, and 

safety (EHS) standards. The multifaceted nature of this problem is exemplified by the wide 

variety of ENM types (e.g., varying compositions, morphologies, surface functional groups, 

etc.), complex sampling media (e.g., air, biological fluids, wastewater, soil, etc.), and 

unknown reactivity/aggregation dynamics during the materials life cycle that can alter the 

material’s structure/signature.68 As such, no single detection strategy will be viable for all 

situations, and multiple sensor platforms/methodologies will need to be employed to span 

the ENM life cycle.

From an exposure viewpoint, NIOSH has developed Recommended Exposure Limits 

(RELs) for select ENMs including CNTs (<1.0 μg/m3, 8 h TWA)69 and nanoscale TiO2 

(<0.3 mg/m3, 10 h TWA).70 It is important to note that exposure limits for many ENM 

compositions and morphologies have yet to be fully developed. The National Institute of 

Environmental Health Science (NIEHS) of the NIH has developed a keen focus on gaining 

fundamental understanding of the interactions of ENMs within biological systems, to better 

understand the potential health risks associated with ENM exposure through the 

Nanotechnology Environmental Health and Safety program and NIEHS Centers for 

Nanotechnology Health Implications Research consortium. Knowledge gained through 

programs such as these is archived in the NIH-led nanomaterials registry,71 where research 

data on ENMs and their biological and environmental implications can be found to guide the 

safe use of nanomaterials and highlight unique properties that can be leveraged toward new 

ENM sensor designs.

To date, multiple ENM detection strategies have been employed depending on the targeted 

material and environmental conditions. Standard approaches commonly involve analytical 

techniques such as aerosol mass spectrometry, size-exclusion chromatography, electron 
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microscopy, dynamic light scattering, X-ray crystallography, UV–vis-nIR absorption/

fluorescence, Raman, and atomic force microscopy. These methodologies have 

demonstrated a great deal of efficacy but may not be amenable for wide deployment due to 

the requirement for advanced scientific instrumentation operated by highly skilled 

technicians, the time-consuming nature of the measurements, the large dependence on 

sample preparation/collection procedures, and the inability to perform target detection in real 

time. Currently the EPA has yet to approve any standardized methods for sampling, 

detecting, or quantifying nanomaterials in aqueous media, indicating the critical need for 

new sensor designs and approaches.72

In the case of CNTs, for example, a new detection scheme is emerging that holds the 

potential to detect and quantify CNT exposure/contamination across the material’s entire life 

cycle. Harnessing the sharp thermal signature of microwave-irradiated single and 

multiwalled CNTs, quantifiable detection at levels below 0.1 μg has been demonstrated.73 

The simple setup, as schematically represented in Figure 4, has been shown to be amenable 

to directly detect the presence of CNTs and quantify material loading in complex, 

heterogeneous structures including plant roots73 and bioaccumulation levels in earthworm 

models.74 Current efforts to validate CNT detection/quantification in air collection samples 

could further demonstrate the viability of microwave-based CNT detection across the 

material life cycle.

All Hands on Deck to Improve Data Quality

A challenge across the entire sensor life cycle is how to define and confirm data quality in a 

manner that is mission-relevant.Figure 5 illustrates an activity in response to that challenge, 

which the Sensors NSI is pursuing in collaboration with the NKI.75 The goal is to define the 

concept of “Data Readiness Levels (DRLs)” in a manner that conveys the maturity of the 

data and the suitability of the data for a specific purpose. This approach has similarities to 

the method used widely in the government to assign Technology Readiness Levels for 

equipment and devices.

The conceptual levels of data readiness range from invalid data at the DRL 0 level (which 

have little to no value, and should be flagged so they can be avoided) to standards-quality 

data at the DRL 6 level (which have a quality that merits their use for the refinement of 

theories and the validation of methods). The obvious challenge is that the assignment of data 

readiness levels is intrinsically application dependent. For example, sensor data from 

materials science studies of the durability of carbon nanotubes under various pH conditions 

might be of standards quality, i.e., DRL 6, for structural applications but of a lower, or even 

indeterminate, quality for biological applications. An overarching informatics framework for 

concepts such as DRLs is illustrated in Figure 6. The interactive network of nodes and 

interfaces describes roles and responsibilities for a data customer, a data creator, a data 

curator, or a data analyst. Credible actions are required within each of the four nodes and 

across each of the six interfaces (twelve interfaces, taking into account the fact that each 

interface must work in both directions). For example, clear articulation by an analyst of the 

data needs for running an applicable model does not ensure that the data creators or the data 

curators are able to appropriately translate and respond to those data needs.
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FUTURE DIRECTIONS FOR THE DEVELOPMENT OF NANOSENSORS

Looking ahead, it is important to recognize that ongoing progress in the development of 

nanosensors hinges on the miniaturization and decrease in cost of electronic components, 

advances in characterizing the effects of nanomaterials in biological and environmental 

media, and improved manufacturing processes for nanomaterials and their integration into 

various sensor components.37 In the private sector, research investments are shifting toward 

the development of data-driven processes that aim to improve decision-making and 

productivity. For reference, the McKinsey Global Institute recently predicted that 

technologies associated with the IoT will create up to $11 trillion in economic benefits 

globally in the year 2025.76 Yet, current processes have not been engineered to exploit the 

full potential of connected, interoperable sensor networks.76 Rather, nanosensing platforms 

have aimed to deliver on expectations of high sensitivity, selectivity, and minimal power 

consumption.77–79 On the research side, a notable example is the development of arrays of 

complementary metal oxide semiconductor (CMOS) nanocapacitors that can sense beyond 

the Debye screening length (the distance over which a charge can be sensed in liquid 

media).80 Commercially, a successful nanosensing tool is Veridex’s CellSearch platform, 

which utilizes a ferrofluid reagent that consists of targeted, polymer-coated magnetic 

nanoparticles that can detect as little as five circulating tumor cells per 7.5 mL of blood.81

Achieving robust, data-driven processes relies on nanosensors that are not only sensitive, 

selective, and energy-efficient, but also distributed via seamless integration in a wide range 

of platforms (Figure 7). In the U.S., an emerging resource for the development and 

manufacturing of next-generation sensors has been the National Network for Manufacturing 

Innovation (NNMI), which provides a manufacturing research infrastructure where U.S. 

industry, government laboratories, and academia collaborate to solve industry-relevant 

problems.82 In 2015, three Manufacturing Innovation Institutes (MIIs) with particular 

relevance to sensor deployment were announced: the Revolutionary Fibers and Textiles MII, 

which serves as a platform for the development and scaling of technical textile technologies; 

the Flexible Hybrid Electronics MII, which is focused on developing a new era in hybrid 

electronics manufacturing—including domestic foundry access, integrated design tools, 

automated packaging, assembly and test, and workforce development;83 and the MII on 

Smart Manufacturing, which aims to reduce the cost of deployments of advanced sensors, 

controls, platforms, and modeling for manufacturing by as much as 50%.84 Together, these 

three MIIs have accumulated so far over $390 million of allocated public–private funding. 

Ultimately, future research efforts should continue to broaden the “application footprint” of 

nanosensors and respond to current and projected data needs for the agricultural (food and 

water), energy, environmental, and clinical sectors in order to fulfill the needs of an IoT-

based society.

As nanomaterials become broadly available in commercial products and processes, an 

important need remains in the development of methods and devices that can detect and 

identify engineered nanomaterials across their life cycles.85 Detection strategies should hone 

in on multiple methodologies that span the ENM life cycle. Such activities would not only 

inform researchers about the potential exposure to nanomaterials from commercial products, 

but also link sensor measurements to toxicological data where harmful exposure levels are 
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known. For example, NIOSH has developed RELs for certain nanomaterials including CNTs 

as mentioned above.69 These recommendations were supported by several rounds of 

toxicology studies on exposure and dose responses in mice.86 The development of reliable 

sensing methods for detecting nanomaterials could also leverage parallel activities in 

metrology, including tools for characterizing nanomaterials in physiological and 

environmental media. A notable example is the use of hyperspectral microscopes (e.g., 

CytoViva) for real-time optical imaging and spectral characterization of nanomaterials. 

Although this method was originally intended for imaging of nonfluorescent plasmonic 

nanoparticles, it has now been successfully adapted as a tool for detecting nanoparticles in 

complex media for biomedical and environmental applications.87

CHALLENGES AHEAD

Advancing Nanosensors from Potential to Practice

Although there has been significant progress, nanosensor development is still in its early 

stages. There has been an accumulation of strong experimental evidence supporting the 

advantages of nanomaterials in sensor construction. However, much needs to be done before 

realizing the promise of nanosensors and navigating these platforms through the 

developmental “valley of death” funding gap that hinders nanotechnology advancements 

beyond laboratory-scale prototypes.88

Achieving Relevant and Reliable Performance

The challenges for achieving relevant and reliable sensor performance can be best described 

for each type of sensors. In the case of gas/vapor sensors, the correlation between sensitivity 

or detection limit and nanomaterial properties such as type, geometry, size, purity, and 

preparation technique is well established by now. However, demonstration of selective 

identification of an analyte needs greater attention to enable implementation of sensors in 

practical scenarios. There are numerous other sensor metrics that also need to be addressed 

such as sensor drift, accuracy (through calibration against a standard), stability, repeatability, 

and reproducibility.

Sensor performance is tightly tied to nanomaterial quality including impurities and defect 

levels. Commercial supplies of nanomaterials, especially SWCNTs, continue to have batch-

to-batch variability, which will have a significant impact on sensor reliability. In addition, 

the electronic nose construction relies on the ability to transfer the training data from a 

limited number of “test sensors” to a large batch of manufactured sensors, and this will be 

difficult with material quality issues.

Biosensors, while facing some of the same issues as above, have other unique challenges. 

Probe lifetime is a serious consideration in all types of biosensors. Large-scale fabrication, 

integration with microfluidics, demonstration with clinical samples, reliability, and 

multiplexing for multiple targets or biomarkers are other significant issues. The sensor signal 

should be reproducible and immune from parasitic effects to ensure reliability. As the size of 

the individual sensor decreases in an array, immobilization of different receptors in adjacent 
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sensors becomes increasingly complex. Finally, capturing efficiency becomes a concern as 

the sensing area becomes smaller.

CONCLUSION

Advances in nanoscience could enhance the development of inexpensive, portable devices 

for the broad detection, identification, and quantification of biological and chemical 

substances. Translating nanosensors from a mere “opportunity” to common practice should 

consider manufacturability and seamless integration early on in the product development 

cycle. A focus on data quality is paramount in order to address issues related to sensor drift, 

accuracy, stability, repeatability, and reproducibility. Methods to detect nanomaterials across 

their life cycle could also leverage parallel activities in other sciences to broaden the set of 

detection and characterization tools. Federal agencies will continue to participate in all 

stages of the sensor development life cycle as they work together toward achieving the goals 

of the Sensors NSI for the responsible development of sensor nanotechnologies.
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Figure 1. 
Examples of nanomaterials used by transduction mechanism and application area, including 

surface plasmon resonance (SPR) spectroscopy,89 DNA sequencing,90 pathogen detection,91 

and atomic force (AFM) microscopy.92 (*) The nanoparticle types described in this figure 

can be used for other type(s) of transduction mechanisms (e.g., CNTs can be used for 

spectroscopic sensors). Reprinted (Adapted or Reprinted in part) with permission from 

Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on 

Technology. Nanotechnology-Enabled Sensing: Report of the National Nanotechnology 

Initiative Workshop; National Science and Technology Council: Washington, District of 

Columbia, 2010. Copyright 2010/NNCO.
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Figure 2. 
Life cycle approach to development and application of sensor sampling methods and 

instrumentation.3,23 Reprinted (Adapted or Reprinted in part) with permission from 

Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on 

Technology. Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and 

Protecting Health, Safety, and the Environment; National Science and Technology Council: 

Washington, District of Columbia, 2012. Copyright 2012/NNCO.
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Figure 3. 
(a) Image of a chemical sensor platform printed on poly(ethylene) naphthalate (PEN) foil for 

the detection of methane leaks from natural gas wells. (b) Sensor calibration data using the 

chemical sensor for methane detection. Material 1 is SWCNTs coated with polyaniline and 

material 2 is COOH-functionalized SWCNTs. Figure courtesy of Xerox PARC.
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Figure 4. 
Schematic of microwave-based CNT detection scheme and corresponding thermal heating 

within biological samples.73 Reprinted (Adapted or Reprinted in part) with permission from 

Irin, F.; Shrestha, B.; Cañas, J. E.; Saed, M. A.; Green, M. J. Detection of Carbon Nanotubes 

in Biological Samples through Microwave-Induced Heating. Carbon 2012, 50, 4441–4449. 

Copyright 2012/Elsevier.
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Figure 5. 
Conceptual approach to “Data Readiness Level” as a measure of data maturity.75 Reprinted 

(Adapted or Reprinted in part) with permission from The Nanotechnology Knowledge 

Infrastructure (NKI) Signature Initiative: Enabling National Leadership in Sustainable 

Design. Data Readiness Levels: Draft Discussion Document, 2013. Copyright 2013/NNCO.
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Figure 6. 
Roles and responsibilities for data customers, creators, curators, and analysts in a 

nanoinformatics life cycle.93
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Figure 7. 
Illustration of next-generation, distributed sensing devices enabled by nanotechnology.
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