
rsif.royalsocietypublishing.org
Headline

review
Cite this article: Sauro HM. 2017 Control and

regulation of pathways via negative feedback.

J. R. Soc. Interface 14: 20160848.

http://dx.doi.org/10.1098/rsif.2016.0848
Received: 22 October 2016

Accepted: 19 January 2017
Subject Category:
Reviews

Subject Areas:
systems biology, biomathematics,

biocomplexity

Keywords:
control, negative feedback, metabolism
Author for correspondence:
Herbert M. Sauro

e-mail: hsauro@u.washington.edu
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.3683158.
& 2017 The Author(s) Published by the Royal Society. All rights reserved.
Control and regulation of pathways via
negative feedback

Herbert M. Sauro

Department of Bioengineering, William H. Foege Building, Box 355061, University of Washington, Seattle,
WA 98195-5061, USA

HMS, 0000-0002-3659-6817

The biochemical networks found in living organisms include a huge variety

of control mechanisms at multiple levels of organization. While the mechan-

istic and molecular details of many of these control mechanisms are

understood, their exact role in driving cellular behaviour is not. For example,

yeast glycolysis has been studied for almost 80 years but it is only recently

that we have come to understand the systemic role of the multitude of feed-

back and feed-forward controls that exist in this pathway. In this article,

control theory is discussed as an approach to dissect the control logic of com-

plex pathways. One of the key issues is distinguishing between the terms

control and regulation and how these concepts are applied to regulated

enzymes such as phosphofructokinase. In doing so, one of the paradoxes

in metabolic regulation can be resolved where enzymes such as phos-

phofructokinase have little control but, nevertheless, possess significant

regulatory influence.
1. Introduction
‘It is apparent that feedback systems theory is becoming of increasing signifi-

cance to most life scientists, . . . ’ This was written in 1973 by Richard Jones in

his unique book Principles of biological regulation [1]. Similar sentiments can be

found in other texts of the period. In reality, feedback systems theory was of

little significance to most life scientists at that time, particularly in the cell

and molecular communities. So it was for the next 40 years. The reason for

the disinterest is difficult to understand but it is likely to be a blend of factors

including the lack of training, cultural resistance to change and the perceived

difficulty in making quantitative measurements. More recently, there has

been a significant groundswell in interest in applying more quantitative

approaches to problems in cell biology, particularly with the influx of expertise

from quantitative disciplines such as computer science, electrical and control

engineering. For example, yeast glycolysis was one of the first pathways to be

studied but it is only in recent years that we have come to understand the sys-

temic role of the multitude of feedback and feed-forward control that exist in

this pathway [2–5].

This article covers some aspects of control of cellular pathways with particu-

lar emphasis on negative feedback and the phosphofructokinase paradox.1
2. Historical context
Historically, we can trace interest in regulated systems back to Ctesibius

(250 BC), a Greek scientist thought to have explored the use of a simple float

system to maintain a constant supply of water to a water clock. This is the

first recorded instance of the use of negative feedback in a man-made device.

Some of this early work was taken up during the golden age of Medieval

Islam between the ninth and twelfth centuries where a great variety of sophis-

ticated clocks and other automata were invented [6]. However, it was not until

the seventeenth century when industrialization began to put pressure on the

need for regulated devices that progress in the field quickened. A series of

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.0848&domain=pdf&date_stamp=2017-02-15
mailto:hsauro@u.washington.edu
https://doi.org/10.6084/m9.figshare.c.3683158
https://doi.org/10.6084/m9.figshare.c.3683158
http://orcid.org/
http://orcid.org/0000-0002-3659-6817


0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

∂u
∂x

eu
x = ∂u

∂x
x
u

eu
x = ∂ ln u

∂ ln x

(a)

x

u

−4 −2 0 2 4
−6

−4

−2

0

2
(b)

ln x

ln
 u

Figure 1. (a) The slope of the reaction rate, v, versus the reactant concentration, x, scaled by both the reactant concentration and reaction rate yields the elasticity,
1v

x . (b) If the log of the reaction rate and log of the reactant concentration are plotted, the elasticity can be read directly from the slope of the curve. Curves were
generated by assuming v ¼ x=ð2þ xÞ. Note that we use the partial derivative notation for the slope, because the reaction rate could potentially be changed by
other factors such as product which we keep constant when measuring the gradient of the response to x. (Online version in colour.)
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smaller developments culminated in the invention by James

Watt in 1788 AD of the governor. Watt repurposed the way

fantails orientated windmills into the wind to regulate the

speed of the newly developed steam engine. It was this

event that ushered in a sustained interest and a clearer under-

standing of systems that could self regulate. In the 1930s,

Harold Black, while travelling to work on a ferry, realized

how he could use negative feedback to build distortion free

amplifiers for the burgeoning telephone industry. This stimu-

lated further theoretical analysis and the rise of modern

control theory. These and other historical insights can be

found in the review by Bennett [7] or the book by Mayr [8].

In 1940, Dische [9,10] discovered the inhibition of hexoki-

nase-mediated glucose phosphorylation in red blood cell

haemolysates by phosphoglyceric acid. However, this discovery

went largely unnoted until Umbarger [11] and Yates &

Pardee [12] published their discovery in 1956 of feedback inhi-

bition in the isoleucine biosynthesis pathway and the inhibition

of aspartate transcarbamylase in Escherichia coli. This ultimately

led to the celebrated work on allosteric enzymes by Monod

et al. in 1965 [13]. It is from this background that various strands

of control theory applied to cellular pathways emerged.

Joseph Higgins in 1959 completed his PhD thesis on

‘A theoretical study of the kinetic properties of sequential

enzyme reactions’ [14], where he introduced the notion of the

reflection coefficient (later to be called the control coeffi-

cient [15]) [16,17]. This measured how much influence a given

input had on a variable in a reaction pathway. This work influ-

enced later developments particularly the work by

Heinrich [18] in Berlin and Kacser [19] in Edinburgh. Each

group derived additional inspiration from other disciplines. In

the case of Heinrich, it was dynamical systems theory [20–23]

and for Kacser it was the role of genetic mutations in influencing

the phenotype and later on the work by Sewall Wright [24] on

the proposed physiological explanation for genetic dominance.

This meant that each group had a particular flavour to their

approach but mathematically they were identical. A third,

and important strand culminated in the work by Savageau

at Michigan, who developed biochemical systems

theory [25–28]. This had a more direct route from classical con-

trol theory. All three are extremely noteworthy and had a

profound influence on many research groups both experimental

and theoretical, especially in Europe [29–36]. More recently,
researchers such as Ingalls [37] and Rao [38] have reconciled

these approaches with classical control theory and it is now

recognized that metabolic control analysis, biochemical systems

analysis and classical control theory are one and the same thing

but with different emphases.

Much of this work has taken a great deal of time to enter

mainstream cell and molecular biology and only in recent

years have undergraduate textbooks begun to discuss some

of the main results [39] that have emerged from this work.

Still, much remains to be done to infuse even the most

basic aspects of control theory into both our undergraduate

programmes and even our seasoned researchers. It is surpris-

ing that in metabolic engineering circles, particularly in

the USA, intuition is still an important tool to direct the

engineering of metabolic systems.

2.1. Side topic: elasticities
Elasticities (also called kinetic orders in biochemical systems

theory) describe how sensitive a reaction rate is to changes

in reactant, product and effector concentrations. They are

defined by

1v
xi
¼ @v

@xi

xi

v

� �
xj ,sk ,...

¼ @ ln v
@ ln xi

� v%

xi%
: ð2:1Þ

They represent the degree to which changes are transmitted

by factors that directly affect the reaction rate.

All signals are transmitted via elasticities.

Elasticities are central to understanding control and

regulation in a biochemical network.

For a kinetic rate law such as v ¼ kx, where v is the reac-

tion rate, k is the rate constant and x the concentration

of reactant, the elasticity, 1v
x can be derived by taking the

derivative with respect to x and scaling the result:

1v
x ¼

@v
@x

x
v
¼ k

x
kx
¼ 1:

For a generalized irreversible mass-action law such as

v ¼ k
Y

xni
i ,

the elasticity for species xi is ni. For a simple reversible

mass-action reaction rate law such as

v ¼ k1s� k2p, ð2:2Þ



Table 1. Summary of elasticity ranges corresponding to different reaction
orders and behaviour.

situation elasticity

first order 1v
x ¼ 1

saturated enzyme 1v
x � 0

close to equilibrium 1v
x � 1

cooperative enzyme 1v
x � Hill coefficient

control response

regulation

Figure 2. Control and regulation can be differentiated by their mode of
action on and within a system. Control can be considered the ability of a
system to respond to perturbations from outside the system boundary,
whereas regulation is the mechanism by which that response is achieved.
(Online version in colour.)
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where we have used s to represent the concentration of reac-

tant and p the product, the elasticities for the substrate and

product are given by

1v
s ¼

k1s
k1s� k2p

¼ vf

v
ð2:3Þ

and

1v
p ¼ �

k2p
k1s� k2p

¼ � vr

v
, ð2:4Þ

where vf is the forward rate, vr is the reverse rate and v is the

net rate. Note that 1v
s is positive and 1v

p negative. In general,

the elasticity for an effector that results in an increase in reac-

tion rate will be positive and negative if the effector results in

a decrease in the reaction rate.

If we divide equations (2.3) and (2.4) top and bottom by

k1s, and noting that the equilibrium constant Keq is given

by the ratio k1=k2 ¼ Keq, the mass–action ratio by p=s ¼ G

and G=Keq ¼ r, we can express the elasticities in the form

1v
s ¼

1

1� G=Keq
¼ 1

1� r

and 1v
p ¼ �

G=Keq

1� G=Keq
¼ � r

1� r
:

9>>>=
>>>;

ð2:5Þ

These expressions can vary over a wide range of values. Far

from equilibrium (r ≃ 0) 1v
s will lie close to 1.0, whereas 1v

p
will be close to 20.0. When operating close to equilibrium

however (r � 1), the same elasticities will tend to þ1 and

�1, respectively.

For a simple enzyme mechanism governed by the

Briggs–Haldane relationship, v ¼ Vms=ðKm þ sÞ, where Vm

is the maximal velocity, Km is the substrate concentration

at half-maximal rate and s is the substrate concentration,

the elasticity with respect to substrate it given by

1v
s ¼ Km=ðKm þ sÞ. The substrate elasticity shows a range of

values from zero at high substrate concentrations to one at

low substrate concentrations. When the enzyme is near satur-

ation, it is naturally unresponsive to further changes in

substrate concentration, hence the elasticity is near zero. A

summary of behaviours and the corresponding value for

the elasticity is shown in table 1.

The fourth row of table 1 suggests that the elasticity for an

enzyme that shows cooperativity with respect to one of its

reactants will roughly be of the order of the Hill coefficient

of the reactant. This result can be easily show for a reaction

that obeys the Hill equation:

v ¼ Vm xh

xh þ Kd
, ð2:6Þ

where h is called the Hill coefficient, x is the substrate concen-

tration, Vm the maximal rate and Kd the dissociation constant.

If we differentiate this equation with respect to the reactant

concentration x and apply the appropriate scaling, we

obtain the following elasticity coefficient (see electronic sup-

plementary material for derivation [40]):

1v
x ¼

hKd

Kd þ xh
: ð2:7Þ

The maximum value the elasticity can reach is h when x ¼ 0.

Another way to look at this is to examine the relationship

between the elasticity and the degree of saturation by reac-

tant. Note that for many enzymes that show cooperativity

there will be multiple binding sites for reactant molecules.
The degree of saturation is therefore the average number of

binding site occupied by reactant. Expression (2.8) is derived

in the electronic supplementary material:

1v
x ¼ hð1� YÞ, ð2:8Þ

where Y is the fraction of bindings sites occupied by reactant.

The less saturated the enzyme (Y � 0), the closer the elasticity

is to the Hill coefficient. Moreover, at half saturation

(Y ¼ 0:5), the elasticity is given by
1

2
h. For other mechanisms

that can generate cooperativity, for example, the Adair

model [41], the Monod et al. model [13] or the reversible

Hill equation [42], the overall elasticity response will be

different but in each case the elasticity will approach a maxi-

mum of h where h is the equivalent Hill coefficient or number

of binding sites [40].
3. Control and regulation
Two words that are used frequently in the biological litera-

ture are ‘control’ and ‘regulation’ [43]. One of the first

things to clarify is the meaning these words will have in

this article (figure 2). In the vernacular, the word control

usually means the ability to influence, command or to

restrain a situation or process; therefore, we define control

as the ability to direct or command behaviour. Given this

definition, quantifying the degree of control is straightfor-

ward and can be achieved by measuring the effectiveness a

given input has on a particular output of the system.

Regulation is more difficult to pin down but can be

thought of as the mechanism or process that allows control

to be achieved. We therefore define regulation as the mechan-

ism that responds to unforseen disturbances or control

actions that result in homeostasis or specific state changes

to a system. Quantifying regulation is however difficult and

various attempts have been made to do so with varying

degrees of effectiveness [44–49].

To put these definitions in context, consider a room temp-

erature thermostat. Control is what allows a user to set the

temperature to a specific level. The sensors, feedback and
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r

4
actuators that make up the regulatory system ensure that the

temperature setting is achieved.
Figure 3. Simple four-step unbranched pathway. (Online version in colour.)
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3.1. Quantifying control
In the control theory of cellular reaction pathways, control

is quantified by measuring the influence a parameter has

on a system variable. Common parameters include enzyme

concentrations, pathway sources and sinks, and various

interventions such as drugs, nutrients such as glucose in

glycolysis or EGF for the MAPK pathway. Common variables

include the fluxes through metabolic pathways and molecu-

lar concentrations in metabolic, signalling and gene

regulatory pathways. Given that cellular systems are highly

nonlinear, we are forced mathematically to consider the

effect of small changes to parameters on variables. Of

course it is experimentally possible to make large changes,

but the theory to help guide researches in these cases is not

yet well developed [50–54].

We describe the control an enzyme has over a steady state

flux, J or concentration, x, by using the control coefficients [18,

55–57] where ei is the concentration of enzyme. These are

defined as follows:

CJ
ei
¼ dJ

dei

ei

J
and Cxj

ei ¼
dxj

dei

ei

xj
:

There are some subtleties with respect to the definition of

these coefficients, and we refer readers to the text by Schuster

& Heinrich [58] for more details. The coefficients are di-

mensionless values that are roughly equal to the ratio of

percentage changes in the variable and parameter. In meta-

bolic research, these are frequently measured as a means to

gauge the influence particular steps have on fluxes and

metabolite concentrations.

More important is the relationship between the control

coefficients and elasticities. Because the elasticities describe

the behaviour of individual reaction steps, describing control

coefficients in terms of elasticities allows us to understand

how particular steps have more control than others in terms

of enzyme kinetic properties. This can give considerable

insights into the workings of a pathway. We see examples

of this in the remainder of the article.
4. Unregulated pathways
Let us first consider the properties of an unregulated path-

way, this will allow us to contrast its behaviour to one that

includes a negative feedback loop. Consider the pathway

shown in figure 3 that includes four reaction steps and

three metabolite species, X1 –X3.

In terms of flux control, the pathway shows some interest-

ing behaviour. The connectivity theorem [18,55] allows us to

express the ratio of adjacent flux control coefficients in terms

of corresponding adjacent elasticity coefficients. For a species,

X, flanked by two steps, i and iþ 1, the flux connectivity

theorem can be written as

CJ
i

CJ
iþ1

¼ � 1iþ1
i

1i
i
:

By taking the ratio of all elasticities along a unbranched unre-

gulated pathway, it is possible to show that the following
statement is true:

CJ
1 : CJ

2 : CJ
3 : CJ

4 ¼ 1 : � 11
2

12
1

: � 11
2

12
1

� 12
2

13
2

� �
:

� 11
2

12
1

� 12
2

13
2

� �
� 13

3

14
3

� �
:

Note that an elasticity term such as 12
1 refers to the elasticity of

reaction two with respect to species one. For a pathway of

arbitrary length, the nth term, corresponding to CJ
n, will equal

Yn

i¼1

� 1i
i

1iþ1
i

 !
:

If we assume that the enzymes are operating below satur-

ation, so that their behaviour can be approximated by the

rate law, vi ¼ ðVmi=KmiÞðxi�1 � xi=KeqiÞ, then we can replace

the substrate elasticities by 1=ð1� riÞ and the product elasti-

cities by �ri=ð1� riÞ (see (2.5)). Using these substitutions, the

ratios of flux control coefficients become [55]

CJ
1 : CJ

2 : CJ
3 : CJ

4 ¼ ð1� r1Þ : r1ð1� r2Þ : r1r2ð1� r3Þ :

r1r2r3ð1� r4Þ, ð4:1Þ

or for an arbitrary length pathway, the nth term, where n . 1,

is equal to

Yn�1

i¼1

ri

 !
ð1� rnÞ, ð4:2Þ

and ð1� r1Þ when n ¼ 1. This is an important result, because

by just knowing the equilibrium constants and the concen-

trations of the intermediate pools, it is possible to obtain an

idea of the relative strengths of the flux control coefficients

across the pathway. Better still, if we invoke the flux sum-

mation theorem [57], we can obtain the absolute values of

the flux control coefficients in terms of the mass-action ratio

terms, r (equations (4.3)). In equation (4.3), k refers to the

kth step and n the number of steps in the pathway:

CJ
1 ¼

1� r1

1�
Qn

i¼1 ri

and CJ
k ¼

Qk�1
i¼1 ri �

Qk
i¼1 ri

1�
Qn

i¼1 ri
:

9>>>>=
>>>>;

ð4:3Þ

This is potentially a very useful expression for metabolic

engineers. Given an unregulated segment of metabolism, and

knowing the equilibrium constants for each reaction together

with the measured metabolites, it is possible to get an approxi-

mate value for the control at each reaction step. Those steps

with the largest control are targets for engineering. Note that

once engineered control will shift to other steps and by remea-

suring the new metabolite levels new targets can be identified.
4.1. Front-loading
Equation (4.3) also suggests a pattern in the distribution of

flux control. Consider the flux control in the first and last

step of a four step pathway:

CJ
1 ¼

1� r1

1� r1r2r3r4

and CJ
4 ¼

r1r2r3 � r1r2r3r4

1� r1r2r3r4

:
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The disequilibrium ratio, r, can be shown [40] to equal the

ratio of the forward and reverse rates of a reaction,

r ¼ vr=vf. Because the forward rate will always be greater

than the reverse rate for a pathway showing a positive net

rate, the disequilibrium ratio will always be less than 1,

r � 1. This means that given two product expressions such

as r1r2 and r1r2r3, the second term will be smaller than the

first. By comparing CJ
1 and CJ

4, we can show that CJ
1 . CJ

4.

In general, given the assumptions that have been made,

namely enzymes working below saturation, we can state that

CJ
1 . CJ

2 . CJ
3 . � � �CJ

k:

This means that in a unbranched pathway control will tend to

be concentrated upstream, a behaviour that can be called

front-loading. To understand why this should be the case,

we must consider how the control coefficients are expressed

in terms of elasticities.

For a pathway with n steps where n is even (if n is odd

there are sign changes but the general form stays the same,

see electronic supplementary material), the flux control coef-

ficient equations are given by the following general

equations [59]:

CJ
1 ¼ 12

1 . 13
2 . 14

3 . 15
4 . � � � . 1n

n�1=D

..

.

CJ
m ¼

Qk¼m�1

1

1k
k

Qn
k¼mþ1

1k
k�1=D

..

.

and CJ
n ¼ 11

1 . 12
2 . 13

3 . 14
4 . � � � . 1n�1

n�1=D,

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:4Þ

where D is the common denominator in the expressions (see

electronic supplementary material for more details). If we

look carefully at CJ
1, then we see that the numerator is the pro-

duct of all the reactant elasticities. This implies that a

perturbation in E1 ‘hops’ from one enzyme to the next until

it reaches the end of the pathway. Conversely, the control

coefficient of the last enzyme, CJ
n, includes all the product

elasticities, that is the perturbation ‘hops’ from one enzyme

to the next until it reaches the beginning of the pathway.

Hofmeyr called this a ‘chain of local effects’ [60].

If we look at any intermediate enzyme step we find two

groups of elasticities, one group representing the pertur-

bation travelling downstream via the substrate elasticities

and the other representing the perturbation travelling

upstream via product elasticities. The numerators in the

flux control equations therefore indicate the routes taken by

a disturbance [60,61].

Given a reversible mass-action rate law, such as k1s� k2p,

the elasticities are given by

1v
s ¼

1

1� r

and 1v
p ¼ �

r

1� r
:

From these equations and assuming that r < 1, we can state that

1v
s

�� �� � 1v
p

��� ���:
That is, the absolute value of the substrate elasticity is always

greater than the product elasticity. Given that the control coeffi-

cient of an upstream enzyme will have more numerator

substrate elasticities than product elasticities, it follows that the

numerator will be larger when compared with an enzyme
further downstream which will have more of the smaller value

product elasticities. What this means is that perturbations at a

downstream enzyme will be attenuated compared with a similar

perturbation at an upstream step. Hence the control coefficients

upstream will on average be larger.

The origins of the asymmetry between the substrate and

product elasticities is a thermodynamic one. If the thermodyn-

amic gradient were to be reversed, so that the pathway flux

travelled ‘upstream’, the elasticity values exchange so that

now the front loading occurs downstream, although ‘down-

stream’ is now ‘upstream’ because the flux has reversed.
4.2. Rate-limiting steps
How do the control coefficients relate to the concept of the

rate-limiting step? Although the definition of a rate-limiting

step varies in the literature, one common interpretation is

that the rate-limiting—also called the rate-determining

step—in a metabolic pathway is the slowest step and thereby

determines the overall rate of the pathway [62]. The term

‘slowest’ is not always defined but in chemistry it is often

the step with the smallest rate constant. In a metabolic path-

way, one could imagine it to be the step with the smallest

maximal velocity, Vm. This implies that increasing the

amount of enzyme that catalyses the rate-limiting step will

increase the overall rate through the pathway. This gives a

direct connection between the flux control coefficient and

the rate-limitingness of a step. A high flux control coefficient

means that the step is rate-limiting.
4.2.1. Why is not there just one rate-limiting step?
The classic view of metabolic regulation is that there is one rate-

limiting step in a pathway. This is sometimes even stated as a

definition, because there can only be one slowest step in a path-

way and hence one rate-limiting step. What is meant by the

slowest step is not often specified but is usually considered

the step with the smallest forward maximal rate (Vm). Other

terms that are widely used in the literature to describe pathway

control include pacemaker, choke point, rate-determining and

probably the least meaningful, the key step.

The idea of a slowest step dictating the overall rate is

appealing and there are many everyday precedents that sup-

port this view. Examples include traffic flow or customer

lines at cashpoint tills in a supermarket. In both cases, the

rate at which cars or customers are ‘processed’ is independent

of the number of customers in the line or the length of the

backup in the traffic. This behaviour means that both the

road congestion and the limited number of cashiers makes

these steps limit the overall rate of processing. In a biochemi-

cal pathway, the rate of a process is a function of the

concentration of substrate and product. In the analogy with

traffic congestion, it is as if the flow of cars is a function of

how many cars are backed up. Because biochemical path-

ways do not work the same way as traffic flow, the analogy

breaks down. The degree to which a particular reaction step

limits flow is a function of many factors and not just the

step in question.

Traffic congestion and the customer line are rate-limiting

because the only way to increase the flow is to either widen

the road or increase the number of cash tills. This means

there is a single factor that determines the rate of flow. This

is not the case in a biochemical pathway.
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of the output
from the input
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Figure 4. In the engineering community, negative feedback systems are
often depicted in a way that attempts to separate the problem away from
the specific implementation details. This diagram illustrates a typical example
used by engineers and strips the problem down to its essentials, so that a
common analysis can be applied no matter what the actual device
implementation might be. Although perhaps not obvious at this stage, it
is possible to map each of the indicated components in the figure to equiv-
alent parts in a biological control system. This mapping is described in more
detail in a later section. (Online version in colour.)
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Figure 5. Simplest pathway with negative feedback. Species X inhibits the
reaction rate v1. (Online version in colour.)
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5. A simple feedback model
Now that we have looked at the distribution of flux control in a

unbranched pathway we can now turn our attention to path-

ways that include negative feedback loops. Negative feedback

is widespread in biochemical and physiological systems. On

the face of it, negative feedback is a simple process that involves

subtracting a portion of the output from the input (figure 4).

To understand the behaviour of a system with negative

feedback, let us first consider a graphical method. Consider

a very simple two step pathway with a negative feedback

loop (figure 5). This is an idealized diagram that is not

meant to imply a specific mechanism.

Figure 6 shows two plots, one with strong and the other

with weak feedback. The plots show the reaction rates v1

and v2 as a function of the intermediate species, X. We

assume that the second step follows first-order kinetics, so

that the v2 is a straight line. The feedback–response curve

shows a decline from high to low as X increases. For strong

feedback, the decline is steep (left plot). If we change the rate

constant for the second step, this changes the slope of v2;

this is equivalent to applying a perturbation in the system.

In the case of weak feedback, changes in v2 result in significant

changes to X, this is because the feedback response is shallow.

In contrast, when we have strong feedback (left panel), where

the slope is very steep, any changes in v2 results in only small

changes in X. The effect of negative feedback is to buffer the

concentration of X in the face of changes to v2.

The graphical explanation is very instructive but we can

get a better appreciation of how effective negative feedback

is by taking an algebraic approach via a thought experiment.

Consider that reaction rates v1 and v2 are determined by two

enzymes E1 and E2, respectively. Changing either enzyme

will result in a change to the steady-state level of X and the

steady-state reaction rates v. Consider a small change in E1

of magnitude de1. This will have a number of effects, it will

increase v1 which in turn will increase X which in turn will

increase v2. We can represent this using a perturbation

path: " e1 " v1 " x " v2. Eventually, the system will settle to

a new steady state. We can describe these changes by focus-

ing on the change in v1 and v2. The change in v2, which we

designate dv2, came about as a result of the change dx.

Because we are only considering small changes, we can

express the change dv2 in terms of dx using the relation

dv2 �
@v2

@x
dx, ð5:1Þ
where the derivative @v2=@x measures how responsive v2 is to

changes in X. The relationship at this point is approximate,

because we are considering finite though small changes to X.

The derivative can be computed if we know the rate law for

v2. For example, if we assume that the rate law is v2 ¼ k2x,

then the derivative is k2. We can also use a similar strategy to

compute the change in v1 as a result of the change de1. This

time the change in v1 is a result of two changes, the change in

E1 itself and the change in X. We can express these changes

by summing the two individual contributions:

dv1 �
@v1

@e1
de1 þ

@v1

@x
dx: ð5:2Þ

We have two equations, one describing the change in v1 (5.2)

and the other in v2 (5.1). Because we allowed the system to

settle to a new steady state, we can also state that the change

in reaction rates must be the same (otherwise it would not be

at steady state). That is we can assert that dv1 ¼ dv2. With

this in mind, we equate the two equations and write

@v2

@x
dx � @v1

@e1
de1 þ

@v1

@x
dx:

Solving for the ratio dx=de1, we obtain

dx
de1
� @v1=@e1

ð@v2=@xÞ � ð@v1=@xÞ :

In the limit, as we make the change de1 smaller and smaller, the

left-hand side converges to the derivative dx=de1 and we can

replace the approximation by an exact equality:

lim
de1!0

dx
de1
¼ dx

de1
¼ @v1=@e1

ð@v2=@xÞ � ð@v1=@xÞ :

We can go one step further and scale the derivatives to elimin-

ate units. Multiplying both sides by e1 and dividing both sides

by x yields the scaled derivatives:

dx
de1

e1

x
¼ ð@v1=@e1Þðe1=v1Þ
ð@v2=@xÞðx=v2Þ � ð@v1=@xÞðx=v1Þ

:

The scaled derivatives on the right-hand side are the elasticities,

1v
x and the scaled left-hand term is the scaled sensitivity coeffi-

cient or concentration control coefficient, Cx
e . Replacing the right-

hand derivatives with the corresponding elasticities leads to

Cx
e1
¼

11
e1

12
x � 11

x
:

We can simplify this expression further. The reaction rate v1

is usually a linear function of e1. For example, in the

Briggs–Haldane equation, the reaction rate is given by

v ¼ e1kcatx=ðKm þ xÞ. Differentiating this rate law with respect

to e1 and scaling yields: 11
e1
¼ 1. Using this result gives

Cx
e1
¼ 1

12
x � 11

x
: ð5:3Þ

A similar analysis can be done where e2 is perturbed (see elec-

tronic supplementary material). In this case, we obtain the
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sensitivity of X with respect to e2:

Cx
e2
¼ � 1

12
x � 11

x
: ð5:4Þ

Expressions (5.3) and (5.4) measure how much enzymes E1 and

E2 control the steady state concentration of intermediate X. We

can also consider how the steady state reaction rates v1 and v2

are affected by perturbations in E1 and E2. This is often of

importance to metabolic engineers who are interested in

increasing rates of production. At steady state, the reaction

rates are often called the fluxes and abbreviated to J1 and J2.

For a unbranched pathway such as this example, both fluxes

are equal at steady state, so that the flux through the pathway

is simply referred to as J. Expressing the change in flux as a

result of a perturbations to the enzymes levels can be derived

using a similar approach (see electronic supplementary

material) to yield two flux control coefficient equations for E1

and E2:

CJ
e1
¼ 12

x

12
x � 11

x
and CJ

e2
¼ �11

x

12
x � 11

x
: ð5:5Þ

Expressions (5.5) tell us how much enzymes E1 and E2 control

the steady state flux. The key point here is that changes in

enzyme concentration, or equivalently enzyme activity, must

be brought about by an external action.

The approach taken can be applied to pathways of any

length and complexity but becomes more tedious for larger

systems. In addition to indicating how much control a par-

ticular reaction step has over concentrations and fluxes, the

expressions tell us one more thing. The right-hand sides are

in terms of elasticities and indicate how the control is brought

about. In equations (5.5), 11
x represents the strength of the

feedback. The value will be negative, because we are dealing

with negative feedback, that is increases in X will decrease v1.

We can investigate how the magnitude of the feedback affects

the ability of e1 and e2 to control the concentration and flux

through the pathway.

5.1. Engineering control theory
There is an enormous body of knowledge related to control

theory [63–65] that arose as a result of the need to include

regulating devices in areas ranging from steam engines,
space flight and the Internet. In the last section, a simple

analysis was made of a feedback system using approaches

developed from metabolic control analysis (MCA) and bio-

chemical systems theory (BST). How does this analysis and

the broader literature on MCA and BST relate to the existing

body of engineering control theory? This has been covered in

detail by Ingalls [37] and Rao et al. [38]; here we give a flavour

of the connection particularly in relation to negative feed-

back. Not all effects of negative feedback will be discussed

here and the reader is referred to some recent articles for

additional details [66,67].

The classic diagram often used to depict negative feed-

back in control theory is that shown in figure 4. In this

diagram, K is the fraction of output that is fed back to the

summing junction. The summing junction computes the

difference between the input (also called the set-point

depending on the application), and the signal fed back

from the output. The output is a function of the error, often

a simple proportional relationship (hence called proportional

control). To put it in more concrete terms, the A block might

be a heater in a room and the output the room’s temperature.

The input is the desired temperature. If the room is hotter

than the desired temperature, the error signal will be nega-

tive, so that the heater is turned down. The opposite

happens if the room is cooler than the desired temperature.

We can derive the relationship between the input and

output in figure 4 by noting the following relationships.

The error signal can be written as the difference between

the input and the return loop: error ¼ input� output� K.

The output can be written in terms of the gain A and the

error: output ¼ A� error. We can combine both equations

and solve for the output in terms of the input (see electronic

supplementary material for details):

output ¼ input� A
1þ AK

:

In control theory, this is called the closed-loop transfer func-

tion. In practice, it is often expressed in the frequency

domain but this need not concern us here. What is more inter-

esting is that the control coefficient equations (5.3)–(5.5) are

related directly to the closed-loop transfer function [37]. The

only difference is that whereas the full transfer function is
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defined over a range of input frequencies the control coeffi-

cients are defined only at a single frequency of zero, the so-

called DC response. We therefore state the following equival-

ence [37,57]:

Cx
e1
¼

11
e1

12
x � 11

x
¼ input� A

1þ AK
:

The input in the close-loop transfer function matches the

enzyme elasticity, 1v1
e1

, but could be any input into v1 by substi-

tuting 1v1
e1

with the elasticity of the input of interest. The other

terms need rearranging. If we divide top and bottom by 12
x,

we obtain

Cx
e1
¼

11
e1
=12

x

1� 11
x=1

2
x
¼ input A

1þ AK
:

From this we can determine that

A ¼ 1

12
x

and K ¼ �11
x:

This generalizes to any length feedback loop. The feedback

term, K will always be equal to the negative of the feedback

elasticity. The expression for A, 1=12
x is the control coefficient-

Cx
e1

, when there is no feedback. It is the control coefficient for the

unregulated system (set 11
x to zero in Cx

e1
) and is the gain of the

system without feedback assuming everything else being

equal. Figure 7 overlays the generalized feedback diagram

with the equivalent elasticity terms. The error computed

from the set point and feedback is the difference between the

two elasticities 11
e1
þ 11

x (recall that 11
x is negative).

The product AK has a special meaning in control theory

and is called the loop gain. It is one of the factors that deter-

mines the stability of a system with negative feedback and

general performance of the system. In the reaction pathway,

11
x=1

2
x is the loop gain. For the unregulated pathway, 11

x will

be absent and under these conditions the control coefficient

equals 1=12
x. We can therefore rewrite the loop gain as

loop gain ¼ �11
xCx

e1
,

where Cx
e1

is computed for the unregulated pathway. The minus

signs comes from the observation that K is equal to the negative

of the feedback elasticity. This generalizes to any length path-

way with feedback. For example, for the four step pathway

where X3 is the return signal (figure 9), the loop gain equals

loop gain ¼ �11
3Cx3

e1
, ð5:6Þ

where Cx3
e1

is the control coefficient for the unregulated but

equivalent system and 11
3 is the elasticity of the feedback

loop. The control coefficient for the unregulated equivalent

system can be easily determined by simply setting the nega-

tive feedback elasticity to zero in the control coefficient for the

regulated pathway.
5.2. Control and negative feedback
Let us now consider what factors influence the degree of con-

trol that enzymes have in a pathway with negative feedback.

Using the simple negative feedback pathway in figure 5, we

can construct a table (table 2) that shows the different combi-

nations for the elasticities and the corresponding values for

the control coefficients. Of particular interest are the first

two rows.

When the feedback is strong, 11
x � 0, most influence

is found on the second step, the first step, v1 has virtually
no influence. This is very typical of a pathway with

negative feedback.

The switch over as the strength of the feedback increases

can be seen in figure 10.

The flux control summation theorem states that the sum

of all the flux control coefficients in a pathway must sum to

one [55,56]. This means that control is conserved so that if

control disappears from one part of a pathway it must
reappear elsewhere. This is a fundamental constraint on the

control of flux in biochemical pathways. When there is a
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lack of control on the regulated step, v1, control will move to

the second step, v2. This behaviour is the basis for the

supply/demand metabolic architecture put forward by

Hofmeyr and co-workers [68–70]. This control pattern

ensures that the pathway flux is determined by demand

(which has the higher flux control coefficient) rather than

by supply (figure 8).

In this sense, E1, under negative feedback, has very little

influence over either the flux or the signal molecule X. This

implies that the regulated step will be a poor target for

manipulating the pathway.

The analysis on the two-step pathway can be extended to

larger pathways with negative feedback and the conclusions

from the two step study apply equally. For example, consider

the four step pathway shown in figure 9. There are standard

methods for deriving the control expressions [34,71] which

will not be described here, but tools such as Mathematica or

open source specialized tools such as SymCA [72] can be used.

In total, there will be four flux control coefficients and 12

concentration control coefficients corresponding to the three

species, X1, X2 and X3 and the four enzyme catalysed reac-

tions, E1–E4. The denominator for each control equation is

the same and is given by equation (5.7).

D ¼ 11
11

2
21

4
3 � 11

11
2
21

3
3

� 11
11

3
21

4
3 þ 12

11
3
21

4
3 � 12

11
3
2 1fd,

ð5:7Þ

where 1fd is the feedback elasticity. 1fd is equivalent to 11
3. The

symbol 1fd is used to help the reader identify the feedback

elasticity more easily. Here we focus on four of the control

coefficients shown in table 3.

CJ
e1

is reduced by the presence of the feedback term

�12
11

3
21fd in the denominator. As with the simple two step

pathway, increasing the strength of the negative feedback

reduces the flux control coefficient for regulated step e1. At

the same time, the influence of the last step, CJ
e4

, tends to

increase (to a maximum of one, figure 10).

Likewise, the concentration control coefficient, Cx3
e4

tends

to zero as the feedback strength increases. The negative feed-

back locks X3 into a narrow range. These results illustrate

again the partition of the pathway into a supply block

between X1 and X3 and a demand block downstream from

X3. In general, all steps within the signal loop will have

little influence on either the flux or the level of X3 though

the actual degree will be influenced by the elasticities inside

the loop. From these studies, we conclude the following

general statement:
Regulated steps have low flux control coefficients and are there-
fore not rate-limiting.
What is troubling for many is that the regulated step, CJ
e1

has

little in the way of flux control, that is, it is not rate-

limiting. This would seem to raise a paradox. On the one

hand, the regulated step must be important, and yet this

importance is not reflected in the degree of influence the

step has on the flux. How do we resolve this?
5.3. Regulation and negative feedback
Most textbooks and online sites such as Wikipedia refer to

phosphofructokinase as the rate-limiting or pacemaker step

of glycolysis. There are many reasons why this is considered

so. Phosphofructokinase is one of the earliest steps of glycoly-

sis, in vivo it is a non-equilibrium reaction and, most
convincing of all, it is regulated by many effectors. What

are the effectors there other than to control the glycolytic

flux? Many allosteric enzymes such as phosphofructokinase

are considered flux controllers by the same reasoning.

From the last section, however, we saw that regulated

enzymes in unbranched pathways with end-product inhi-

bition are in fact very poor flux controllers. When

determined experimentally the flux control coefficient for

phosphofructokinase is found to be invariable small [73–

82] and therefore phosphofructokinase is not rate-limiting

in many situations. This matches the theoretical expectation

even though intuitively it seems suspect.

We therefore have a paradox (sometimes called ‘The PFK

paradox’ [83]). Intuition suggests that phosphofructokinase

should be controlling glycolytic flux particularly given the

multitude of effectors that regulate it. On the other hand,

experimental evidence and theory suggest the opposite. The

question is how to reconcile these two opposite views?
5.3.1. The phosphofructokinase paradox
We first restate that phosphofructokinase in not rate-limiting

when operating in situ. This has been shown experimentally

many times [73–82] as well as being consistent with theory.

This cannot be easily disputed. And yet the literature, textbooks

and online resources still claim that phosphofructokinase is

rate-limiting [84]. To reconcile this difference we must introduce

a different measure that describes the strength of the regulated

step and its ability to throttle flux.

Consider two configurations for the four-step pathway

with negative feedback (figure 11).

The closed loop configuration has the negative feedback

loop connected to v1. The open loop configuration is an

equivalent system (or a controlled comparison [85]), but

with the negative feedback loop disconnected. Note however

that we still have a regulator on v1, except it is now an

external regulator rather than an internal one.
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For a controlled comparison [85], the two configuration in

figure 11 will be equivalent. Given the steady-state concen-

trations and flux for the closed loop pathway, let us break

the negative feedback loop. With the loop broken, the repres-

sion on the first step is released. This means that the steady

state flux and concentrations will rise. We now make the

system equivalent by reducing the concentration of the first

enzyme until the steady-state concentrations are back to

where they were before the break. This also means that the

flux is restored. With the concentrations and flux the same

in both configurations, we can safely assume that the elastici-

ties will be the same in each configuration. The only

difference is that the feedback elasticity is an external effector

in the open loop configuration and means that the feedback

elasticity will not appear in the control equations.

We can now ask the question, what are the relative values for

the flux control coefficients in step one? We can derive the ratio of

the flux control of the regulated step of the open configuration,

CJ
e1

to the closed configuration, nCJ
e1

. This can be shown as

CJ
e1

nCJ
e1

¼ 1� 12
11

3
21fd

11
11

2
21

4
3 � 11

11
2
21

3
3 � 11

11
3
21

4
3 þ 12

11
3
21

4
3

:

The numerator term, 12
11

3
21fd, is negative and the denominator

positive. The ratio is therefore negative. However, we are sub-

tracting this negative value from 1. This means that overall the

expression, CJ
e1
=nCJ

e1
must be .1. In other words, the flux control

exerted by the open configuration will be greater than the control

exerted by the closed configuration. This shows that the regu-

lated step has the ability to throttle the flux. In the closed

configuration, this property is hidden and operates silently by

actively adjusting the flux so that the end product, X3 is

stabilized.

Is there someway to easily measure the regulatory

strength of the regulated step and thereby recognize its

importance? One clear possibility is to look at the loop

gain [65]. As described before, the loop gain is the overall

gain around the feedback loop. It was shown previously

that the loop gain is the product of the forward gain, A,

and the feedback gain, K, that is A K. In terms of elasticities,

the loop gain is the product of the feedback elasticity, 1fd, and

the concentration control coefficient, Cx3
e1

, for the unregulated

pathway. In this case, this equals the product of the forward

elasticities, 12
11

3
2 divided by the denominator, D, of the unre-

gulated pathway, equation (5.6)

loop gain ¼ � 12
11

3
21fd

D
: ð5:8Þ

We can illustrate the use of this measure with an example. Using

the four step pathway with negative feedback, the elasticities are

set to the following values. All substrate elasticities (12
1,13

2,14
3) are

set to 0.5. This corresponds to substrate levels set to the Km of

each enzyme. The product inhibition elasticities (11
1,12

2,13
3) are

assumed to be small but not negligible and are set to �0:1.

Lastly, the feedback inhibition elasticity, 1fd is set to �4:0.

Given these values, we can compute the flux control coefficient

for the regulated step using the expressions in table 3:

CJ
e1
¼ 0:11:

This tells us that from the perspective of the flux control coeffi-

cient, the reaction is not rate-limiting. However, we can

compute the loop gain using equation (5.8), this yields

loop gain ¼ 6:4:
Note that that loop gain is significantly higher than the flux con-

trol coefficient. It means that changes to the regulator, X3, will

have a significant effect on throttling the pathway. We can com-

pare these calculations to the same pathway but where the

negative feedback strength is weak. If we set 1fd to a small

value such as �0:1, we obtain the following values for the flux

control and loop gain:

CJ
e1
¼ 0:8

and loop gain ¼ 0:16:

The flux control has increased about eightfold and is now rate-

limiting with respect to an external perturbation. What is more

interesting is that the loop gain has been reduced 40-fold, indicat-

ing little or no regulation from the feedback loop. We can access

the degree to which a regulated enzyme is actually regulating by

looking at the loop gain. The higher the loop gain the stronger the

degree of regulation.

It is worth noting that there are two contributions to the

loop gain (5.8), the action of the signal on the regulated

step, 1fd, and the transmission of that signal to cause a

change (figure 12), �12
11

3
2=D. The effectiveness of the overall

regulation is therefore not just a function of the regulated

step but of the entire loop. If the transmission elasticities, in

this case 12
1 and 13

2, are small then the loop gain could be sig-

nificantly reduced. An examination of the elasticity of the

regulated step is therefore insufficient to ascertain the effec-

tiveness of the regulation, and it is quite possible that with

weak signal transmission, even in the presence of a strongly

regulated step, effective regulation could be minimal.

It would seem that we can resolve the phospho-

fructokinase paradox. Control is measured by the flux or

concentration control coefficients and tells us how much

influence an external agent has over the system. How that

system reacts is governed by regulatory mechanisms, for

example negative feedback where the regulation locks the

end product and flux into a narrow range. We can measure

the strength of the regulation by looking at the loop gain.

The regulation of glycolysis is more subtle than implied here.

Although ATP is a negative regulator of phosphofructokinase, it

is also a reactant. This means that increases in ATP levels can acti-

vate and inhibit at the same time which would appear to reduce

the effectiveness of the ATP feedback. Instead evolution has furn-

ished phosphofructokinase with a more powerful regulator in

the form of AMP. There are two interesting aspects related to

AMP regulation. The first is that AMP activates phosphofructo-

kinase, the second is that via adenylate kinase, ATP, ADP and

AMP are equilibrated via the reaction

ATPþAMPSPADP:

The adenylate reaction means that increases in ATP result in

decreases in AMP (and vice versa). Therefore, the activation of
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phosphofructokinase as a result of AMP makes sense in the light

of adenylate kinase. When ATP increases, phosphofructokinase

activity is reduced owing to a lowering of AMP. Equally interest-

ing is the amplifying effect of adenylate kinase on the levels of

AMP. We can see this by examining the sensitivities of AMP to

changes in ATP [34]. At any given instant, the total sum of the

nucleotide concentrations is fixed, because we can assume that

the net synthesis and degradation of nucleotides is small. We

also assume that the adenylate kinase reaction that equilibrates

the nucleotide pools is fast, so that any changes in one or more

of the nucleotide concentrations results in rapid equilibration

with the others. Given these assumptions, we can write

ATPþADPþAMP ¼ c

and
ATP �AMP

ADP2
¼ K,

where K is the equilibrium constant for the adenylate kinase reac-

tion. Let us now consider the sensitivity of changes in AMP to

changes in ATP. Combining the equations and doing implicit

differentiation, we obtain

dAMP

dATP
¼ �AMPþ 2KADP

ATPþ 2KADP
:

The expression can be scaled by multiplying by ATP and divid-

ing by AMP on both sides and eliminating K by substituting

ATP �AMP=ADP2 yields

dAMP

dATP

ATP

AMP
� AMP%

ATP%
¼ � ADPþ 2ATP

ADPþ 2AMP
:

To illustrate the effect of changes in ATP on AMP concentration,

we can use the measured concentrations obtained from the litera-

ture. For example, Chassagnole et al. [86] reported the following

measured concentrations of ATP, ADP and AMP in E. coli K-12

grown under glucose limiting conditions in a stirred-tank bio-

reactor: ATP, 4.27; ADP, 0.595; and AMP, 0.955 mM. Given

these values we can compute the sensitivity to be 23.65. That

is a 1% increase in ATP results in a 3.65% decrease in AMP.

This shows that AMP can be a more potent indicator of changes

in ATP than ATP alone.
6. Discussion
It is a truism to say that biological cells are complicated [87,88]

and yet our approach to dealing with such complex systems
has historically been largely qualitative. Part of the problem

has been obtaining enough data on cell behaviour to begin

to formulate quantitative theories. In the last decade or so,

the lack of data has largely disappeared and we have now

entered the era of ‘big data’ [89,90] where the emphasis is

on identifying patterns, trends and associations without

reference to any underlying theory. However, data in the

absence of theory are limited as was clearly pointed out by

Pigliucci [91]. Control theory and its sister domain dynamical

systems theory has much to contribute to providing a frame-

work around which data and new hypotheses can be

organized. The synthetic biology community serves as a

good example of the interplay between theory, computation

and experiment [92,93].

Metabolic engineering, in particular, could benefit con-

siderably from testing and refining the current theories of

metabolic regulation and control. As already implied, meta-

bolic engineering is still on the whole a discipline that relies

on anecdotal evidence to accomplish specific objectives.

A renewed emphasis on how control theory can help engin-

eers could deliver not only more success stories but also a

better understanding of how metabolism operates.
Competing interests. I have no competing interests.

Funding. Research reported in this publication was partly supported by
NIGMS of the National Institutes of Health under award number
R01-GM081070 as well as the National Science Foundation under
grants nos. MCB-1158573, MCB-1515280, EF-0827592 and DBI-
1355909. The content is solely the responsibility of the author and
does not necessarily represent the official views of the National Insti-
tutes of Health or National Science Foundation.

Acknowledgments. I am indebted to the three reviewers who very care-
fully read and corrected the manuscript. They efforts significantly
improved the final draft.
Endnote
1In accordance with standard biochemical notation, an uppercase
Roman letter such as X will be used to denote the name of a molecu-
lar species, whereas the lower case x will be used to denote the
concentration of the species X. This means that the standard practice
of using of square brackets to indicate concentration, as in [X ], can be
avoided to limit syntactic clutter.
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