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The supply of oxygen in sufficient quantity is vital for the correct functioning

of all organs in the human body, in particular for skeletal muscle during exer-

cise. Disease is often associated with both an inhibition of the microvascular

supply capability and is thought to relate to changes in the structure of

blood vessel networks. Different methods exist to investigate the influence

of the microvascular structure on tissue oxygenation, varying over a range

of application areas, i.e. biological in vivo and in vitro experiments, imaging

and mathematical modelling. Ideally, all of these methods should be com-

bined within the same framework in order to fully understand the processes

involved. This review discusses the mathematical models of skeletal muscle

oxygenation currently available that are based upon images taken of the

muscle microvasculature in vivo and ex vivo. Imaging systems suitable for cap-

turing the blood vessel networks are discussed and respective contrasting

methods presented. The review further informs the association between ana-

tomical characteristics in health and disease. With this review we give the

reader a tool to understand and establish the workflow of developing an

image-based model of skeletal muscle oxygenation. Finally, we give an out-

look for improvements needed for measurements and imaging techniques to

adequately investigate the microvascular capability for oxygen exchange.
1. Introduction
Over the last few decades, the number of non-communicable diseases, includ-

ing diabetes, heart disease, renal disease, hypertension and stroke, has

increased dramatically, accounting for 60% of deaths worldwide [1]. The devel-

opment of cardio-metabolic disease is associated with changes in both

macrovascular and microvascular networks in most organ systems of the

body, including liver, heart and skeletal muscle. The microvasculature is

characterized by vessels of diameter smaller than approximately 150 mm,

whose primary function is the delivery of nutrients and oxygen to the tissue.

However, if the vascular structure changes, for instance through vessel rarefica-

tion, peripheral vascular resistance may increase and/or tissue oxygen delivery

may be impaired [2]. To understand the dependence between physiological fac-

tors and disease a large body of research has been conducted using a wide

range of vascular beds and disease models. To assess the importance of ana-

tomical changes, the influence of a number of structural parameters, such as

capillary density, vessel surface area and tortuosity, has been studied.

Tumour networks in particular have been the subject of such investigations

[3,4]. Lang et al. [4] found that tumour networks and healthy/normal networks

differ significantly in capillary diameter, i.e. 8.0+1.1 and 3.9+ 1.1 mm, respect-

ively. The effect of diabetes on the coronary microvasculature was studied by

Jenkins et al. [5]. In a rat model they found that compared with the microvascu-

lature of healthy animals, diabetes resulted in microvasculature with smaller

internal vessel diameters in first to third branching order from the root arteries:

194+15 mm versus 267+ 23 mm in first order, 110+6 mm versus 144+9 mm

in second order and 73+4 mm versus 110+ 17 mm in third order.
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For all research where structural hallmarks of the vascula-

ture are assessed to study structure–function links

(e.g. through image-based modelling) it is important to

capture the microvascular structure within the tissue in a

state as close as possible to the in vivo situation. A number

of different imaging techniques can be used to capture the

vascular network morphology. These differ in many aspects,

such as spatial resolution and tissue penetration depth that

can be achieved. Since the length scales of the relevant ana-

tomical features of microvascular systems range from a few

micrometres in two dimensions (e.g. vessel cross section) to

several hundred micrometres in the third dimension (vessel

length), high spatial resolution of the employed imaging tech-

nique is required as well as the ability to cover a relatively

large field of view. An additional challenge in imaging the

(micro)vasculature is that image contrast for biological soft

tissues is usually very low and/or homogeneous in extended

regions of interest for various imaging techniques. Thus, con-

trast agents are often applied to distinguish between features

of interest [6]. While capturing and analysing the vascular

morphology ex vivo may give good indication of changes in

microvascular anatomy, it provides little information of the

resulting changes in vascular function, in particular capillary

oxygen delivery capability, which is crucial for maintaining

the tissue in a healthy state. However, studying these

structure–function links experimentally in vivo introduces

another layer of complexity. Depending on the imaging tech-

nique employed different limitations may arise, such as the

X-ray radiation dose entailed [7], the accessibility of imaging

facilities [5], a soft tissue image contrast medium that can be

applied for in vivo experiments [8], the accessible field of

view (and hence the required tissue preparation) [3,9] or

limitations in spatial resolution due to animal movements.

Owing to these complexities mathematical modelling is

often used to inform how observed structural changes

might lead to functional differences and it has frequently

been employed to study blood flow and oxygen delivery to

tissue. The mathematical models describing the biological

processes are usually well established [10], but have to date

been employed mainly on artificial and/or restricted geome-

tries [11–14]. Image-based and thus realistic modelling on

actual morphological data from experiments is relatively

novel and has only been made possible by the recent

advances in high-resolution imaging techniques and the

broad availability of high-performance computing.

Image-based mathematical modelling of biological pro-

cesses poses a number of challenges because various

requirements have to be satisfied—at least partially—at the

same time, as summarized in figure 1. In order to analyse

the structure of a microvascular system, an imaging system

should offer spatial resolutions and fields of view that

allow a meaningful and/or relevant part of the tissue to be

captured at sufficient detail. Specimen size, spatial resolution

and field of view are the three factors that are important in

imaging. However, for most imaging techniques, there

exists an intrinsic trade-off between those factors, which

cannot always be optimized independently. Another chal-

lenge is the typically low image contrast between different

soft tissues (e.g. vasculature versus muscle fibres) so that

identification of the different tissues and individual segmen-

tation thereof can become difficult. Therefore, it is often

necessary to draw on contrast agents, which are specific for

certain tissue types in the ideal case. Finally, tissue
contrasting and imaging result in certain costs, both time-

wise and financially. An image-based model can also provide

guidelines to determine which features need to be imaged

and what spatial resolution is necessary to describe the

biological process, e.g. oxygen exchange, with sufficient accu-

racy. Computational modelling is therefore important for

determining the right balance between imaging at sufficiently

high spatial resolution and investing time and financial

resources inadequately, e.g. by imaging at unnecessarily

high spatial resolutions or imaging at spatial resolutions

that are too low and cannot provide meaningful results.

The biological processes need to be modelled correctly, but

too much unnecessary detail may lead to long computing

times to find a numerical solution or even make the

mathematical system too complex to be solved at all. Most

importantly, the results provided by the mathematical

model need to be validated experimentally, which—in

some cases—can be used to provide (refined) parameters

for mathematical modelling. Apart from the geometric

information that is provided by the imaging of the system,

based on which the system will be modelled [15], image

data can supply information on material properties that

feed directly into the mathematical model. The link between

greyscales in computed tomography data and bone mineral-

ization is well established [16], which for example can be

used for modelling of structural mechanics.

When considering the problem of microvascular function

different scales can be investigated, e.g. cellular and whole-

organ scale [17]. Here, we focus on the whole-organ scale

by reviewing mathematical models of oxygen delivery in

skeletal muscle based on ex vivo and in vivo imaging of

the microvasculature to inform the association between

anatomical characteristics and disease or in other words, to

identify and characterize structure–function links that are

important for microvascular systems. More specifically, this

review discusses the different steps within the workflow for

developing an image-based model of skeletal muscle oxygen-

ation. As a result, the equations presented in this work are

considered on the whole-organ scale. It may be beneficial to

use homogenization approaches in this case [18], but these

may not always hold, depending on the distribution of

blood vessels in the muscle.

Skeletal muscle, which makes up almost half of a

(healthy) individual’s body mass [19], is one of the key

tissues investigated in the origin and outcomes of cardio-

metabolic disease. It is one of the most important tissues in

terms of oxygen consumption, in particular during exercise.

With that, skeletal muscle is an ideal tissue for a proof-

of-concept study for image-based modelling of tissue

oxygenation. The workflow presented in the current work

can be directly translated to other organs, although the

choice of imaging techniques and image processing methods

may vary, as well as the general approach and specific

parameters for computational modelling.

An image-based modelling workflow has been adopted,

for example, by Cooper et al. [20] who created an image-

based model of fluid flow in the lymph node. Measuring

flow within the nodes is difficult, not least because of the

small size of the nodes and their fine structure. However,

through image-based modelling (on light sheet fluorescence

images) Cooper et al. [20] were able to predict the flow path-

ways through the lymph node (direct from afferent to

efferent lymphatics) and—for the first time—to quantify the
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dependency between fluid absorption/filtering through the

blood vessel wall and the efferent lymphatic lumen fluid

pressure. See figure 2 for a generic workflow for image-based

modelling. Following the image acquisition (here by micro-

computed tomography or mCT), the features of interest need

to be segmented, either by hand or (semi-)automatically. For

mathematical modelling of oxygen delivery in skeletal

muscle, skeletal muscle tissue and blood vessels need to be seg-

mented. The different features can now be characterized

through quantitative morphometry and discretized for

numerical modelling. The quantitative measures characteriz-

ing the morphology and the outcomes of the mathematical

model can be correlated and an optimal structural measure

for the description of the muscle oxygenation identified. The

resulting numbers may then have to be validated against

those that can be obtained from gold-standard imaging tech-

niques, if non-standard imaging approaches have been used,

and against biological experiments.

For a general understanding of image-based mathemat-

ical models of oxygen delivery in skeletal muscle, we

briefly explain the biological background of oxygen delivery

to soft tissue in §2. In §3 imaging techniques used to capture

the vasculature are reviewed, along with related methods for

tissue contrasting. In §4, approaches for mathematical model-

ling for oxygen supply in soft tissues are discussed in detail,

with particular focus on image-based models. We further

present validation of such mathematical models in §4.
2. Oxygen delivery to soft tissue
In this section, the biological background of oxygen delivery

to soft tissues is briefly explained, which is necessary to
implement a meaningful mathematical model for tissue oxy-

genation. A schematic of this process is provided in figure 3.

This is followed by an overview of the current gold standards

for the assessment of microvascular function in skeletal

muscle. In this context, the importance of capturing and ana-

lysing the red blood cell distribution within the vascular

system is highlighted.
2.1. Oxygen delivery to soft tissues
Blood is a suspension of red blood cells (RBCs) in an aqu-

eous solution called plasma [22]. The RBCs are present in a

high concentration (approximately 5 � 106 mm23), which

represents about 45% of the plasma volume in a healthy

adult. The ratio of RBC to the whole-blood volume is defined

as the haematocrit. Oxygen is bound to the RBCs by the

protein haemoglobin and one haemoglobin molecule can

bind up to four oxygen molecules [23]. Oxygen is released

and diffuses down its partial pressure (PO2) gradient

towards the muscle tissue. How well a solute is transferred

through the capillary wall is described by the permeability

of the wall to the solute, which in a capillary comprises a

single layer of endothelium and its basement membrane,

and the characteristics of the diffusing substrate (e.g. size,

charge or lipophilicity). This process of diffusion is illus-

trated in figure 3. O2 exchange is very high due to the

small molecular radius and because O2 is lipophilic [24],

and it occurs across both arteriolar and capillary parts of

the vascular tree [25–27].

In skeletal muscle cells the oxygen is utilized by the mito-

chondria (see figure 3) for adenosine triphosphate (ATP)

generation to generate energy used for locomotion or exercise

[28]. Additionally, the released oxygen is bound and stored
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by the protein myoglobin, which is present in the sarcoplasm

of skeletal muscle [24]. Myoglobin can facilitate the oxygen

supply, especially in the case of high demand, by freeing

the stored oxygen into the muscle fibre for ATP generation.

Each myoglobin molecule can bind one oxygen molecule

[13]. Blood flow has a significant effect on oxygen exchange

between blood and muscle tissues in cases where the rate

of diffusion of oxygen is significantly higher than the blood

flow rate [29].

2.2. Assessment of microvascular oxygen exchange
capability

Traditionally, the oxygen exchange capability of microvascu-

lar networks in skeletal muscle is assessed using different
stereological measures on transverse and longitudinal cross

sections of the muscle tissue. The most frequently used

measures are given in table 1. Differences in the resulting

numbers of those measures between healthy and diseased

animals are investigated and assumed to be related to the

disease (see examples in table 1).

The first such measure is the capillary density (CD),

which is the number of capillaries per mm2 of muscle

tissue, derived from a transverse cross section. This

number is assumed to give a good estimate of the oxygen

supply capability and hence aerobic metabolism of a

muscle [30]. However, the capillary density depends strongly

on the diameter of muscle fibres. Namely, a muscle with

larger fibres has a lower CD [31]. The capillary-to-fibre

ratio (C : F) is the mean number of capillaries that are
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adjacent to a single muscle fibre. Similar to the capillary den-

sity, this value is assumed to provide information on the

metabolic activity of the muscle; it does however depend

on the muscle fibre type. For mouse soleus muscle, Poole

et al. [32] found a capillary-to-fibre ratio of 2.17+ 0.06,

Hudlicka [30] indicated 2.3+0.03 and Dapp et al. [33] put

forward a capillary-to-fibre ratio of 1.83+0.04. This shows

that the reported capillary-to-fibre ratio is relatively consist-

ent. As the capillary-to-fibre ratio does not depend on

muscle fibre area it may not immediately yield information

about oxygen supply capability. Other measures are length

and volume density, which in contrast with CD and C : F

consider the three-dimensional (3D) structure of the blood

vessels. They describe the length or volume of capillaries

over the volume of corresponding muscle tissue. Kondo

et al. [34] reported that rats with type 2 diabetes have a

different capillary volume in the soleus muscle when com-

pared with healthy animals (47% lower in diabetic rats). At

the same time, no significant difference in CD was found.
Vessel tortuosity is a measure that is often considered

when studying vasculature of organs and muscles, as it is

assumed that higher tortuosity of vessels—through increase

of surface area and reduction of oxygen diffusion dis-

tances—can be associated with an increased oxygen supply

[35]. There are a number of different methods used for asses-

sing tortuosity, the most common being the vessel segment

length divided by the Euclidian distance between the seg-

ment’s endpoints [36]. However, there is also a hypothesis

that tortuosity is not influenced by oxygen demand and

supply, but is related to the contractile state of the muscle

and therefore the sarcomere length [37–39], which may in

turn improve oxygen supply to the muscle tissue. Poole

et al. [37] found that tortuosity in capillaries increases when

the sarcomere length is reduced below 2.0–2.4 nm. In the

same study, it has been shown that the length of the capillary

network depends on the tortuosity to an extent of 24–38%

[40]. Moreover, Mathieu-Costello et al. [39] and Poole et al.
[32] found no significant link between capillary tortuosity
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and body size, training, athletic ability or aerobic capacity.

Based on these results one can conclude that tortuosity

cannot be the sole indicator for differences between oxygen

exchange capabilities of the microvasculature in skeletal

muscle in health and disease.

All the above measures take into account only the blood

vessels that have been visualized by a specific imaging tech-

nique. Differences in numbers of these measures between

healthy and diseased subjects are then used to associate the

disease with the capillary oxygen exchange capability. Poole

et al. [41] oppose this approach to examine O2 supply and

reviewed the literature to show that impairment of vessel func-

tion has to do with differences in flux, i.e. RBC flux, blood–

myocyte oxygen flux, and haematocrit, rather than number

and volume of perfused capillaries. RBC flux is present in

most capillaries at rest and increases with exercise to meet

the muscle demand [41]. In agreement with this, Maeda et al.
[42] reported that the number of capillaries exchanging

oxygen was 93.0+5.5% of all blood-perfused capillaries in

rat soleus muscle. A higher difference in these numbers was

found by Fraser et al. [43] in rat extensor digitorum longus

muscle (EDL), i.e. around 12% of visible capillaries stayed

unperfused during an observation period of 60 s.

Overall, it remains inconclusive whether or not structural

measures of muscle capillarization can be used as explicit

indicators of oxygen exchange capability. Mathematical mod-

elling can help clarify this question. An association between

metabolic syndrome and skeletal muscle microvascular hae-

matocrit has also been found [11], thus suggesting that for

investigating the impairment of microvascular oxygen

exchange capability, not only the morphology of the blood

vessels has to be taken into account, but also the distribution

of RBCs within the vessels. Therefore, in order to assess

microvascular function meaningfully, the imaging techni-

que adopted should be able to resolve the microvascular

network structure, and simultaneously the distribution

of RBCs within the blood vessels, and if possible, record

changes of the network structure and the RBC distribution

over time. By using mathematical modelling it is possible to

study the muscle tissue oxygenation of different capillary net-

works (i.e. tissue function) and to link the results to the

structural measures of those networks (i.e. tissue structure).

This will increase the understanding of structure–function

relationships for (micro)vascular systems.
3. Imaging systems for vascular networks
An intrinsic problem of the previously presented measures as

indicators for microvascular exchange capability is that they

have only been derived for sections of muscles or small

tissue volumes obtained by light microscopy and confocal

laser scanning microscopy (CLSM, a technique based on

laser excitation and fluorescent emittance by the sample, see

below), respectively. It is unclear whether results of small

sampling volumes can be extended to the whole muscle or

how local differences in microvasculature are taken into

account. Using CLSM, Cebasek et al. [44] reported that they

observed significant differences between results when a two-

dimensional (2D) or 3D imaging technique is employed to

study rat soleus vascularization. Applying a 3D measure, i.e.

length of capillaries over the length of the muscle fibre they sur-

round, they found a capillarization up to 40% higher than that
resulting from C : F measurements. Therefore, there is a need

for high-resolution 3D imaging techniques to assess the micro-

vasculature in health and disease, taking into account a

representative portion of the muscle. These different require-

ments are difficult to meet simultaneously for most imaging

systems. Below, we review imaging techniques for the assess-

ment of microvasculature and we discuss their advantages

and disadvantages, including relevant tissue contrasting

methods.

Different imaging techniques consist of the same two fun-

damental components: a source and a detector. The source

generates an excitation signal. This signal interacts with the

sample lying in the signal path. The interaction of the

signal with the sample either changes the original signal

and/or generates a new signal emitted by the sample. The

detector captures this changed and/or new signal. Excitation

signals include visible light, electron beams, X-rays, magnetic

pulses, positrons or acoustic waves [45]. Different imaging

techniques can be distinguished by their different character-

istics, such as 2D or 3D readouts, excitation mechanism,

capability to penetrate tissue and compatibility for imaging

in vivo or ex vivo. Imaging systems for the visualization of vas-

cular networks have been reviewed extensively, e.g. in the

context of blood flow modelling by Kim et al. [46], angiogen-

esis by Kiessling et al. [47] and systems biology by Kherlopian

et al. [48]. Here, we have created a scatter graph that com-

pares maximum spatial resolution and tissue penetration

depth (figure 4). In table 2, an overview is provided of the

capabilities of the different imaging techniques. These collec-

tively show that while light microscopy is used as a gold

standard for the visualization of the microvasculature

(in 2D), the most suitable imaging techniques for capturing

the structure of the (micro)vascular tree are mCT, synchrotron

radiation-based CT (SR CT), and possibly light sheet fluor-

escence microscopy (LSFM). When attempting to capture

the whole vascular network on an organ level, neither light

microscopy nor CLSM is suitable due to their small tissue

penetration depth (approx. 100 mm). For these techniques,

the tissue usually needs to be physically sectioned, which is

time-consuming and often leads to image artefacts due to

sample distortion and deformation, caused mainly by the

shear stresses resulting from cutting. If the microvascula-

ture within a whole murine skeletal muscle (with typical

dimensions of about 0.2 � 0.2 � 0.8 cm3) is to be imaged

non-destructively, the imaging technique must provide a

sufficient depth of field to penetrate the whole soft tissue

sample. This limit of 0.2 cm is marked by a blue line in

figure 4. Furthermore, only techniques with a spatial resol-

ution of at least about 1–1.5 mm can be considered for the

assessment of microvascular systems. This is the limit when

the finest capillaries of 5 mm diameter will be represented

by 3–5 pixels/voxels, which is necessary to have confidence

when identifying and segmenting structures (due to partial

volume effects) as well as for performing image-based

modelling subsequently in a reliable manner, as recom-

mended for finite-element modelling of trabecular bone

microarchitecture [16] for instance. The dashed red line in

figure 4 marks this limit.
3.1. Light and fluorescence microscopy
Light microscopy (LM) was the first method for biological

imaging, introduced around the seventeenth century as a
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single lens microscope. Since then LM has evolved and

reached its interim maximum spatial resolution of roughly

0.2 mm in the nineteenth century, which is the diffraction

limit at half of the minimal wavelength of visible light.

Recently, methods have been developed to image beyond

this diffraction limit, at so-called super-resolution, i.e. in the

range of tens of nanometres [49]. Different forms of LM

exist, such as polarized, phase-contrast or fluorescence

microscopy. These imaging modalities make use of different

physical principles to make features of interest visible

within the material or tissue to be examined. Fluorescence

microscopy is based on autofluorescence or fluorescence of

a specific tissue stain to highlight features in different colours,

whereas phase-contrast microscopy detects different local

phase shifts of the light wave, induced by different local

material properties of the specimen. Similarly, polarized

microscopy detects the change in light polarization [49].

LM is the gold standard for most imaging techniques. It

has been used extensively in imaging skeletal muscle to

define changes in capillarization due to disease and training

[29, ch. 5], as reviewed by [50].

CLSM is fluorescence microscopy with the advantage that

it has a greater depth of field due to the reduction of out-of-

focus light via a pinhole. The depth of field for CLSM is lim-

ited to about 150 mm, due to a limitation of tissue penetration

of light, while the maximal spatial resolution is roughly

100 nm [47]. Some studies have reported a penetration

depth of up to 1500 mm if the tissue is cleared chemically

prior to imaging [51,52]. CLSM has been used extensively

to image the 3D microvasculature in skeletal muscle

[31,44,53–55]. Samples need to be autofluorescent or

stained with fluorescent markers to be excited and to emit a

response signal.

A relatively recent development of LM is the so-called

light sheet fluorescence microscopy (LSFM), where a laser

is used to create a light sheet, which excites a several micro-

metres thick plane within the sample. The fluorescence
response of the sample is then detected [56]. In contrast

with CLSM it has the advantage of little photobleaching

(fading of the fluorescent dye due to non-specific illumina-

tion), as the fluorescent response is activated only as each

plane is illuminated selectively [57]. LSFM can be employed

to capture sample volumes of up to 1 cm3, without the need

for any physical sectioning. The in-plane resolution of LSFM

is about 1 mm [56]. However, the technique requires the

tissue to be cleared chemically for the laser sheet to be

able to penetrate it, and it depends on the diffusion capa-

bility of fluorescent stains to permeate the tissue. Owing to

these limitations and its general set-up in terms of size

and distances of the components, LSFM has had little appli-

cation in imaging organs of larger animals. Most studies

investigated zebrafish and fruit fly [57], few looked at

brain neuronal activity in the mouse [58,59] and Mayer

et al. [60] used it to study high-endothelial venules in

mouse lymph node. However, to the best of knowledge of

the authors, LSFM has yet to be trialled in mouse skeletal

muscle for visualization of vascularization. Combined with

mCT, LSFM has the potential to yield more conclusive results

as it can visualize features not normally observed in mCT,

e.g. the lymphatic network, nerves and different cellular

structures.
3.2. Micro-computed tomography
mCT is a non-destructive 3D imaging technique that makes

use of variable X-ray absorptions induced by the different

components inside a tissue. 2D radiographies or projections

of a sample are collected for different angular position

(but for at least 1808), which are then reconstructed in 3D to

form a volumetric representation of the sample [61].

The main advantages of mCT are its non-destructive

nature and the high spatial resolution that can be obtained

[47]. Typical maximal spatial resolutions of commercial

mCT systems are just below 1 mm, where synchrotron-based



Table 2. Comparison of imaging techniques for visualization of vascular systems in skeletal muscle.

technique
excitation
signal

maximum
spatial
resolution

2D/
3D

penetration
depth

tissue
preparation

acquisition
time

in vivo/
ex vivo

light microscopy (LM) light 0.2 mm 2D — staining seconds ex vivo

confocal laser scanning

microscopy (CLSM)

light laser 0.1 mm 2D 150 mm fluorescent

staining

minutes ex vivo

light sheet fluorescence

microscopy (LSFM)

light laser 0.2 mm 2D 1 cm fluorescent

staining

hours ex vivo

single photon laser

scanning microscopy

(SPLSM)

light laser 0.2 mm 2D — fluorescent

staining

minutes in vivo

multi-photon laser

scanning microscopy

(MPLSM)

light laser 0.2 mm 2D 1 mm fluorescent

staining

minutes in vivo

optical coherence

tomography (OCT)

light laser 5 mm 3D 2 mm — minutes in vivo

laser speckle contrast

imaging (LS)

light laser 10 mm 2D 1 mm — minutes in vivo

laser Doppler flowmetry

(LDF)

light laser 10 mm 2D 1 mm — minutes in vivo

serial block-face scanning

electron microscopy

(SBF SEM)

electron

beam

2 nm 3D 500 mm heavy metal

staining

hours ex vivo

transmission electron

microscopy (TEM)

electron

beam

0.2 nm 2D 100 nm heavy metal

staining

minutes ex vivo

micro-computed

tomography (mCT)

X-rays 0.7 mm 3D 1 m staining or

perfusion

hours ex vivo

synchrotron radiation-

based computed

tomography (SR CT)

X-rays 0.3 mm 3D 1 m staining or

perfusion

minutes ex vivo

micro-focused magnetic

resonance imaging

(mMRI)

magnetic

pulse

60 mm 3D 1 m contrast agent

perfusion

hours in vivo

positron emission

tomography (PET/

SPECT)

positrons 1 – 2 mm 3D 1 m contrast agent

perfusion

hours in vivo

photoacoustic tomography

(PAT)

acoustic

waves

50 mm 3D 1 mm — hours in vivo
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CT set-ups normally operate down to the diffraction limit of

visible light. One general drawback of mCT is that at high

spatial resolutions the exposure to significant levels of X-ray

radiation is a crucial factor to consider. Hence, the maximal

pixel size is typically limited to around 5 mm for in vivo appli-

cations, resulting in actual spatial resolutions in 3D around

10 mm. Moreover, animal or sample movement during scan-

ning detrimentally affects image quality of the reconstructed

CT data, which becomes critical when high spatial resol-

utions are targeted. Commercial scanners exist for small

animals such as mice, rats or rabbits, where the heart rate
can be monitored for respiratory gating under anaesthetic,

in order to avoid or at least minimize movement artefacts.

Badea et al. [62] and more recently Clark & Badea [63] have

reviewed the suitability of mCT for in vivo imaging of small

animals. A lethal dose for mice (50% of the population die

within 30 days) is estimated to be 5–7.6 Gy [64]. For low-

resolution mCT scans (e.g. 135 mm pixel size) this does not

pose a problem as the reported dose at this level is around

0.25 Gy. By contrast, for high-resolution scans required to

assess microvasculature (5 mm pixel size) the lethal dose

can easily be reached [65]. However, rodents can repair
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damages induced by radiation and die not before a cumu-

lated dose higher than 30 Gy, a threshold six times higher

than the cumulated 5 Gy after a 6-week in vivo imaging

study [66]. Furthermore, modern detector technology pro-

vides more sensitive scintillators and thus higher photon

flux that is recorded by the detector, which results in shorter

scanning times. This way, it may be possible to reduce the

X-ray radiation dose if the detector pixel size can be further

reduced for high-resolution imaging [67]. Also, further

work on optimizing tube current and voltage may help to

decrease dose [68]. In conclusion, mCT has reached a point

where it is commonly used for in vivo imaging of small

rodents.

mCT has been used in many studies on vascular net-

works; some examples include imaging of the ocular and

renal microvasculature [69–71], imaging of scaffold–bone

interaction [72], phenotyping of cardiovascular development

in mouse embryos [73], imaging of remodelled bioactive

glass foam scaffolds [74], functional imaging of rat hearts

[75], studying cavernous haemangioma of the liver [76],

examining neovascularization in tissue-engineered bone con-

structs [77] or computer-aided design of microvasculature

[78,79]. Heinzer et al. [80] used a combination of both mCT

and SR CT to perform a multi-scale analysis of vascular net-

works. Similarly, Schneider et al. [81] studied the murine hind

limb vasculature using corrosion casts with both mCT and SR

CT. Razavi et al. [82] imaged the pulmonary and cardiac cir-

culation using mCT. A review of mCT imaging of vascular

networks can be found in Bentley et al. [83] and more recently

in Zagorchev et al. [84].

As imaging contrast of organic soft tissue is typically

limited for all imaging techniques, it is conventionally con-

sidered necessary to prepare tissues with staining agents.

The choice of staining agent strongly depends on the imaging

technique to be used and the feature of interest to be assessed.

It is necessary to consider several aspects, such as costs, tox-

icity, tissue shrinkage and perfusion range. The methods to

enhance vascular contrast for mCT imaging can be differen-

tiated into methods that stain vessel walls (§3.2.1) and the

lumen of the vessel (§3.2.2).
3.2.1. Staining methods
Metscher [85] and Pauwels et al. [6] have reviewed a number

of different staining agents for soft tissue. The most common

stain used is osmium tetroxide (OsO4), which offers good

imaging contrast for electron microscopy and mCT and

induces low tissue shrinkage. OsO4 is expensive, very toxic

and requires specific disposal, which results in high financial

costs [85,86]. Another frequently used agent is Lugol’s sol-

ution, which is based on iodine. Lugol’s solution yields low

toxicity, leads to low tissue shrinkage and is easy to prepare

[73,85]. However, it is prone to leakage into the interstitial

space. Phosphotungstic acid (PTA) is another agent which

provides high contrast and stability and has low toxicity.

PTA binds to collagen, fibrin and fibres of connective tissue

[6,85]. Pauwels et al. [6] compared another 27 staining

agents, among others mercury(II) chloride (HgCl2), phos-

phomolybdic acid, PTA and ammonium orthomolybdate

((NH4)2MoO4), concluding that most of these were similarly

suitable for the visualization of soft tissue. However, depend-

ing on the agent, sample size or staining times need to be

adjusted [6]. These methods have also partly been reviewed
for soft tissue staining [87]. Overall staining methods are

rather unsuitable for imaging the microvasculature in skeletal

muscle, as they are largely non-specific, leaving only the

vessel lumen unstained. Thus, even at high spatial resolution

segmentation of capillaries becomes difficult as the vessel

lumen is small and the vessels may easily collapse, making

them difficult or even impossible to detect.
3.2.2. Perfusion methods
Two different sets of perfusion methods exist, firstly per-

fusion with polymers for corrosion casting and secondly

perfusion with nanoparticles. The most commonly used poly-

mer for corrosion casting for mCT is Mercox, commercially

available in its non-hazardous form Mercox II (Ladd

Research, Williston, Vermont, USA). It is used for classical

corrosion casting, i.e. the surrounding organic tissue is

macerated after perfusion and curing [88–90]. Mercox poly-

merizes quickly, which means that perfusion times and

volumes must be relatively small [91]. Mercox has good per-

meability properties within the entire vascular network and

shows minimal shrinkage [91]. However, one of its draw-

backs is its low X-ray absorption. In order to enhance X-ray

absorption, it can be coated with a material of high atomic

number, such as osmium tetroxide [79]. Microfil (Flow Tech

Inc., USA) is a frequently used silicone rubber; a polymer

that is fluid during perfusion and hardens within 30 min

[71,82,92–97]. A problem often encountered with this agent

is that it does not always perfuse all of the microvasculature

[96]. Contrary to that, Ghanavati et al. [98] reported a very

uniform filling of the cerebro-vasculature using Microfil.

Apart from Microfil, other casting agents are common, such

as the polyurethane-based resin PU4ii (vasQtec, Zurich,

Switzerland), for which good perfusion of the cerebral and

the murine hind limb microvasculature was reported

[81,99–101]. It is also possible to perfuse the vasculature

with nanoparticles, which are small particles of a high

atomic number material with dimensions of about 100 nm.

This can be, for example, a suspension of gold nanoparticles

[102,103], liposomal iodine nanoparticles [104] or bismuth

sulfide (Bi2S3) nanoparticles. Nanoparticles can also be used

for in vivo mCT imaging [101]. The nanoparticles used for

mCT require long half-lives, i.e. the time before the half of

the particles have left the body/tissue of interest, because

mCT scans generally take at least a few minutes and up to

a couple of hours, depending on the set-up and experimental

settings [102]. The size of the nanoparticles used can be

varied depending on the vasculature investigated. For

example, as tumour vasculature is leaky, larger particles

may be beneficial or by contrast, smaller particles can be

used in order to determine tumour permeability [102].

Owing to the segmentation difficulties arising from staining

methods, perfusion methods should be the method of

choice for absorption-based mCT of the microvasculature in

skeletal muscle. However, as perfusion with polymers has

proven unreliable, nanoparticles are a viable alternative.
3.3. Phase-enhanced imaging
Another method to gain image contrast using mCT is by

exploiting the fact that X-rays are not only partially absorbed,

but that the X-ray waves are also refracted at the interfaces

between different sample features. This can be seen from
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the complex refractive index, which is given by

n ¼ 1� dþ ib,

where d is the refractive index decrement, related to the phase

shift. b is related to the attenuation coefficient m via the X-ray

wavelength l:

m ¼ 4pb

l
:

For low-absorbing materials the ratio of the phase shift

in comparison to the X-ray absorption is very high, e.g.

d/b ¼ 100 for calcium in bone, whereas it is d/b ¼ 104 for

water, e.g. in soft tissue, at an X-ray energy of 14 keV. The

ratio of d to b increases further with increasing photon

energy [105]. With regard to applications in a clinical setting,

it becomes clear that phase-contrast X-ray CT has a distinct

advantage over traditional CT as the ratio between phase

shift and absorption increases as the X-ray energy increases,

resulting in lower dose and better soft tissue contrast at the

same time.

The simplest phase-contrast CT technique in terms of

implementation is free space propagation, where the X-rays

are allowed to propagate towards the detector in free space.

This makes use of the Fresnel edge diffraction of different

rays of the beam when they are hitting boundaries between

different materials (see figure 5). Propagation-based phase

contrast is especially useful for high-resolution phase-contrast

imaging, as most other phase-contrast techniques cannot

reach a resolution below a few micrometres [107]. As most

other phase-contrasting techniques, free-phase propagation

is mainly used at synchrotron sources, as most laboratory-

based X-ray CT sources cannot provide sufficient beam

coherence. Coherence of the X-ray beam is important for

the interference and hence phase information to be extracted

correctly [105]. Another advantage of synchrotron radiation

includes the fact that the X-ray beam is monochromatic and

is delivered at a high flux, both of which are not essential

for propagation-based phase contrast imaging [108], but

avoid beam hardening effects and reduce scanning time sig-

nificantly, respectively. Phase-contrast mCT has successfully

been used to image sub-micrometre particles in unstained

lung tissue with a voxel size of 370 nm [109].

However, the technique has been used relatively little to

image the vasculature. Lang et al. [4] have been able to ident-

ify tumour vasculature and only recently it was reported that

phase-contrast imaging in conjunction with phase retrieval at

synchrotron facilities enabled simultaneous visualization of

blood vessels and nerve fibres in the spinal cord without
the need for contrast agents [110]. Using state-of-the-art lab-

oratory-based mCT systems that are partially coherent due

to their small spot size, Walton et al. [111] demonstrated

that phase enhancement can also be exploited to some

extent using commercial mCT scanners. Namely, Walton

et al. [111] visualized sub-micrometre structures within skin

and rat artery walls using mCT and they reported that sub-

sequent histological and immunohistochemical staining was

compatible with prior X-ray exposure.

Other phase-contrast techniques include grating interfero-

metry, for which the requirement of coherence is lifted as the

coherence can be created by placing a grating between the

source and the sample [107]. Grating interferometry makes

use of two further gratings placed in between sample and

detector to extract phase-shift information. Using this tech-

nique it was possible to obtain images of rat brain [112],

images of rat testicle at a comparable quality of histological

images [113] and differential phase and dark field images

of a cancerous mastectomy [114], showing the potential of

grating-based interferometry for pre-clinical applications.

All of the mentioned experiments have been carried

out ex vivo. Other experimental set-ups for grating-based

interferometry and other phase-contrast imaging techniques

have been reviewed by Bravin et al. [115]. For ex vivo imaging

with the purpose of providing image datasets for mathe-

matical modelling on the whole-organ scale, phase-contrast

SR CT can be considered as an optimal technique if

access to a synchrotron facility can be obtained, due to the

easy experimental set-up and simple specimen preparation

requirements (fixation and potentially embedding). How-

ever, if one is limited to laboratory equipment, X-ray

absorption-based mCT should be considered, as scanning

times required for phase-contrast imaging can be lengthy.

This is due to significant loss of photon flux, caused by

extended sample-to-detector distances that are required

for free-space propagation and by the absorption of the

source grating.
3.4. Image processing for image-based modelling
As highlighted in figure 2, there are a number of steps

involved before images can be used for modelling of pro-

cesses that occur. In particular, the structures which are

relevant for the biological processes that occur need to be

identified, i.e. in the case of muscle tissue oxygenation the

muscle tissue itself, as well as the features that share inter-

faces with the structure in a way that is significant for the

biological process. In the case of tissue oxygenation these
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are most importantly the blood vessels which are supplying

the oxygen. That is, the flow of oxygen across the boundary

between the blood vessels and the muscle tissue needs to

be described by the mathematical model (see (4) in figure 3)

and therefore the boundary needs to be identified. This

identification and extraction of structures in the images is

called segmentation. At the end of the process of segmenta-

tion an adapted image (or image stack) is obtained that

contains only the structures of interest, which can be

distinguished by their different greyscales in the case of CT.

For image segmentation a range of different software

packages are available depending on the specific require-

ments and characteristics of the images. For instance, these

are Fiji/ImageJ [116], which is freeware, and a range of

commercial image processing softwares, such as Avizo (FEI,

USA), VGStudio (Volume Graphics GmbH, Germany) or

ScanIP (Simpleware, Synopsis Inc., USA). Prior to segmenta-

tion it is advantageous to pre-process the images to facilitate

segmentation. In particular, filters of different kinds can be

applied to reduce noise, sharpen the images, highlight

edges or remove artefacts that can vary between different

imaging techniques. For example, it is often necessary to

apply a ring removal algorithm after mCT/SR CT imaging,

where ring artefacts are due to defect or wrongly calibrated

detector elements. For an overview of image filters and

automated feature segmentation approaches, see Nixon

and Aguado [117]. After pre-processing and depending

on the quality of the images as well as on the image contrast

the segmentation of features of interest can be performed

automatically, semi-automatically or by hand, for instance

by using greyscale thresholding or a region-growing algor-

ithm (possible for blood vessels perfused with a polymer

for corrosion casting) or by a combination of manual seg-

mentation and automated methods [118,119]. For manual

segmentation, the expenditure of time to segment blood

vessels in an image stack containing a whole muscle, recorded

at micrometre resolution, can amount to several days or even

weeks. In contrast with this, region-growing segmentation

will require only a number of hours, depending on the

computing power, while segmentation based on global thresh-

olding is a matter of seconds. The accuracy of the segmentation

results is largely dependent on user expertise in the case of

semi-automatic and manual segmentation.

Based on the segmented blood vessel network the struc-

tural parameters commonly used for characterization of

microvascular oxygen exchange capability, e.g. capillary den-

sity or vessel tortuosity, can be computed. This task can often

be performed using the same software package that has been

used for segmentation. For ImageJ in particular a plugin has

been developed for characterizing bone structure, called

BoneJ [120], which can also be used to study the morphology

of the microvasculature. In some cases, filters or algorithms

need to be applied prior to the actual computation, to deter-

mine capillary number and tortuosity for instance. Namely, a

skeletonization algorithm can be used (available for example

in Fiji [116]), which reduces a tubular structure to its geo-

metric centre line. The resulting points of the skeleton per

image and muscle slice can then be counted, for example,

to determine the capillary density through voxel counting

or the tortuosity by dividing the Euclidian length and

actual length of a vessel segment’s skeleton, which are both

outputs provided by the skeletonization plugin within Fiji

[116]. While being able to provide structural information,
images of muscles and their microvasculature do not

immediately reveal information of muscle functionality, in

particular of the vasculature’s ability to supply the muscle

with sufficient oxygen throughout. Morphometric measures,

such as capillary density, give a first insight into this, but it is

only with mathematical modelling of oxygen perfusion that it

becomes possible to relate such structural information to the

actual ability of the microvascular network to meet the tissue

oxygen demand.

To this end, it is necessary to discretize all extracted

features after segmentation. Clearly, the voxelized represen-

tation of the data is one form of discretization; however,

it is often preferred to create a smoother representation of

the geometry. Discretization approaches include the finite

element [119,121], finite cell [122], finite volume [123] or a

finite difference method. One can differentiate also into

approaches that discretize by defining image voxels as

finite elements and by creating a mesh that approximates

the realistic shape of the vascular structure with smaller

elements [121]. For 3D datasets the finite-element method is

most commonly used. In this case a polygonal volume

mesh of the data is created, e.g. a tetrahedral representation.

Smoothing of the image data prior to meshing is sometimes

required to create a suitable mesh with sufficiently large

and no intersecting elements. For example, single voxels

need to be removed by despeckling (e.g. by component

labelling) or boundaries have to be smoothed (e.g. by apply-

ing dilation and erosion operations). Many of the commercial

software packages introduced above include modules

capable of generating surface or volume meshes, the former

of which can be imported into many modelling packages

and re-meshed into a volume mesh (OpenFOAM, OpenCFD

Ltd, ESI Group, Paris, France; COMSOL Multiphysics,

Comsol Ltd, Cambridge, UK). Freeware meshing software

is also available, such as the tool MeshLab. In some cases,

it is also possible that the software package used for math-

ematical modelling allows for meshing an imported

geometry (COMSOL Multiphysics, Comsol Ltd, Cambridge,

UK; Ansys, Ansys Inc., Canonsburg, PA, USA; Abaqus, Das-

sault Systèmes SE, Vélizy-Villacoublay, France). Meshing of

specific and particularly complex biological geometries is a

challenging task, which often requires large computational

power and memory.

Another important aspect involved in image-based mod-

elling of biological processes is the formatting of the image

data. Images are often provided in a specific file format,

depending on the image acquisition system, such as raw,

TIFF or DICOM, but also file formats that are proprietary

to the software and/or hardware of the imaging device

manufacturer. To import these original images into specific

image processing and/or meshing software, they might

need reformatting. It is advisable to keep to a universal,

non-compressed file format, such as raw or TIFF, as datasets

of this type will usually be compatible with most software

packages. In case that a large contrast resolution is not

needed for segmentation, for example, when heavily and con-

sistently stained tissue is distinguished from a homogeneous

background, the dynamic range of the images can be reduced

to save data storage and reduce network load and computing

time for image pre-processing and segmentation. Depending

on the meshing technique and software the output file format

can vary, but most commercial software packages offer a

range of output file formats, which are compatible with
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most of the (commercially) available modelling software

packages. It is important that the dataset returned by the

meshing software contains all domains and boundaries that

are necessary for subsequent computational modelling. In

addition to the formatting of the data, the availability of

image and modelling data to the greater research community

needs to be considered. It is important to make the data freely

available to others so that they can reproduce results and

build upon them. Furthermore, if research groups with a

focus on experimental and imaging expertise provide ima-

ging data for other groups experienced in mathematical

modelling, we believe that additional knowledge can be gen-

erated, which is out of reach for both individual groups

alone. Moreover, research councils are increasingly asking

to make experimental data available as a condition of

future funding. However, image data and output of math-

ematical models, especially in a 3D context, can exceed

several gigabytes and terabytes in size, which can be an

obstacle for simple upload to a storage server. The Materials

Data Centre (MDC) funded by the UK Government (JISC)

[124] and the German Helmholtz Association project ‘Large

Scale Data Management and Analysis’ (LSDMA) [125–127]

are addressing the problem known as ‘Big Data’ and propose

solutions suiting different research communities.
4. Mathematical modelling of tissue oxygen
supply

We review here models of the oxygen supply to soft tissues

with a particular focus on image-based models. The

equations and parameters needed for modelling of tissue

oxygenation are given in appendix A. While the oxygen

delivery to skeletal muscle does partly depend on blood

flow, models of blood flow have been reviewed previously

in [46] and to some extent in [28] in the context of

oxygen transport and regulation. The main outputs of

blood flow modelling, used for further modelling of tissue

oxygen perfusion, are the partial pressure of oxygen in

blood and its oxygen saturation. Partial oxygen pressure

and oxygen saturation are directly related to the blood hae-

matocrit. Most models of molecule transport in and across

blood vessels use parameters and equations reviewed in

the Handbook of Physiology [29]. The theory of oxygen trans-

port to tissue was also presented and reviewed by Popel

[10]. Jain [128,129] reviewed the transport of molecules

(including oxygen) in the tumour interstitium and across

the tumour vasculature, while [130] reviewed theoretical

models of oxygen transport to tissue. In the review of

[131] models of tumour oxygenation are discussed, which

are similar to oxygenation of other soft tissues. This

review focuses on the whole-organ scale of muscle tissue

oxygenation and is thus only describing models that are

relevant to this context.

4.1. Modelling of artificial networks
Many models of oxygen diffusion in soft tissue are

implemented on artificial vascular networks, which are

based on observations by imaging or theoretical approaches.

The first model of oxygen transport from the capillaries to

muscle tissue was developed nearly hundred years ago by

Krogh in 1919. Krogh determined diffusion coefficients of
oxygen through different tissues, e.g. the abdominal wall of

the frog, or the number and distribution of capillaries in the

horse gastrocnemius, and Krogh studied the contraction

and opening of capillaries in resting and stimulated muscle

[132–134].

As the capillaries appear to be hexagonally packed in

skeletal muscle (if viewed in 2D light microscopy cross

sections), Krogh assumed in [133] that for each capillary the

2D region of oxygen supply could be described as a circular

area, thus resulting in a so-called Krogh cylinder when

viewed in 3D. This averaged area was calculated by counting

the number of capillaries within the total muscle area using

light microscopy on histological sections. For this geometric

limitation imposed by the Krogh model, i.e. a circular

region with capillary radius r and cylinder radius R and an

oxygen partial pressure P(x) at a point x and under the

assumption of a steady state (@P/@t ¼ 0), where diffusion

in longitudinal direction (orthogonal to the capillary cross-

section) is neglected (@2P/@z2 ¼ 0) and consumption is

constant (MP(P) ¼ p), the diffusion equation (A.1) in

appendix A can be solved analytically. The relation between

oxygen pressure difference in the capillary (P0) and at a cer-

tain point with distance x in the circular region P(x) is then

described [133] as

P0 � PðxÞ ¼ p
D

1

2
R2ln

x
r
� x2 � r2

4

� �
,

with the diffusion rate D. By setting x ¼ R, the maximum

pressure difference necessary to supply the whole muscle is

calculated.

Krogh’s model was a first useful approximation to the

regions of oxygen supply of the capillaries, leading to inves-

tigations of the influence of relevant anatomical factors for

tissue oxygenation, such as tortuosity and capillary distri-

bution [11–14]. However, studies have found that Krogh’s

cylinder model is insufficient to describe oxygen supply

accurately as it results in non-physiological gaps or overlaps

and large regions of unperfused tissue when capillary rare-

faction is present [25]. Nevertheless, Krogh’s model is still

used as a simple approach to model oxygen supply to

tissue, for instance recently by Jung et al. [135]. Modification

of the no-flux boundary condition at the outer border of the

Krogh cylinder into an infinite-domain boundary condition

(permitting flux with zero net exchange) leads to a decrease

in the axial tissue PO2 gradient [136]. Results of such altered

model however remain to be validated by experimental data.

Thus, Krogh’s model can be used for a first assessment of

tissue oxygenation, but more complex models need to be

considered, as presented in the following.
4.2. Image-based modelling
The advantage of image-based modelling—in contrast with

modelling using simplified and/or artificial geometries—is

that the model input represents the actual microvasculature

in a realistic fashion. For microvascular networks that have

a complex 3D structure, it is difficult to get valid predic-

tions from simple artificial networks. This is even more

pronounced in pathological cases such as tumour networks.

To achieve a more physiological description of capillary

oxygen supply in comparison to the Krogh cylinder, the con-

cept of ‘domains of influence’ has been introduced. Here, the

region of interest is tessellated, i.e. by using Voronoi polygons,



Figure 6. Voronoi tessellations versus trapping regions to mark regions of
oxygenation. Voronoi polygons are marked black and streamlines in red flow-
ing from capillaries. The trapping regions are defined as the limits of the
streamlines. The centres of the Voronoi polygons were defined as the geo-
metric centres of the capillaries. It can be seen that Voronoi polygons and
trapping regions match well. Inspired by [139]. (Online version in colour.)
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which account for heterogeneity of the capillary spacing

[137,138]. A Voronoi polygon Vi is defined as the set of

points in an area/volume that are closest to a capillary with

centre at point xi and farther from any other capillary in the

area/volume. Figure 6 shows an example of the Voronoi tes-

sellation (black lines) of a mouse soleus muscle. For tissue

tessellated by such supply domains Vi with areas Ai, Hoofd

[140] has generalized the Krogh cylinder solution for the

oxygen diffusion to determine tissue oxygen partial pressure

at location r to

PðrÞ ¼ p
4d

FðrÞ �
XN

i¼1

Ai

p

jrij2

r2
ci

 ! !
,

with ri the location of the ith capillary and rci the non-dimen-

sionalization distance, e.g. the capillary radius [140]. V(r) is a

so-called background function, which depends on the geome-

try of the oxygen demand domain or domains of influence,

such as the Voronoi polygons, and satisfies Green’s theorem.

Intuitively, the description of the capillary oxygenation

regions by Voronoi polygons seems straightforward; under

the assumption of an isotropic/homogeneous muscle (diffu-

sion and consumption equal everywhere) and equal and

constant PO2 in all capillaries. At all times the oxygen

would diffuse across the muscle at the same speed every-

where, thus supplying the regions closest to each capillary

and no other, and thus describing Voronoi polygons. Al-

Shammari et al. [139] showed that the description of supply

domains using Voronoi polygons is indeed sufficient in

most cases. An important exception are pathological cases,

where the number of capillaries is greatly reduced (capillary

rarefaction), which are not packed quasi-hexagonally within

the muscle. By solving the diffusion equation for the 2D

steady-state case with constant consumption, Al-Shammari

et al. [139] proved that the areas enclosed by the Voronoi

polygons matched the so-called trapping regions well. The

trapping regions are defined as those regions where there is

no oxygen partial pressure difference across the region
boundaries, i.e. the regions supplied with oxygen by a certain

capillary, delimiting the streamlines initiating from each

capillary. Figure 6 shows the comparison between stream-

lines (red) and Voronoi polygons (black). The streamlines

were generated from the numerical solution to the image-

based model (in 2D). The centres of the Voronoi polygons

were defined as the geometric centres of the capillaries. In

the perfect case, where the Voronoi polygons match the trap-

ping regions (Al-Shammari’s hypothesis), no streamlines

would cross over the lines of the Voronoi polygons. Al-Sham-

mari’s hypothesis was further supported by examining the

difference between Voronoi and trapping regions when

taking fibre type, size, distribution and varying oxygen

demand into account [141]. It was found that the difference

in Voronoi and trapping regions was small in most pathologi-

cal cases, thus making Voronoi tessellations the best and most

easily computable representation of capillary oxygen supply

regions. However, an investigation and verification of the

usefulness of Voronoi tessellations to describe oxygenation

volumes in 3D problems has not yet been conducted and

remains to be shown.

Most image-based models of tissue oxygen perfusion are

based on 2D image data, and namely on histological images

[65,139,142]. This is mainly due to the lack of relevant 3D

datasets and/or efforts to reduce computing time. 2D

models generally come along with the assumption that

oxygen diffusion in the longitudinal direction (z-direction)

of the muscle can be neglected, to simplify the diffusion pro-

cess into a 2D problem [139,140,143]. This is a valid

assumption for straight vessels along the muscle’s main

axis in z-direction with parallel cross sections in the xy-plane

of the tissue, as the drop of capillary oxygen partial pressure

is very low compared with the gradient perpendicular to the

vessel. A 3D description can then be obtained by stacking the

2D solutions for all values of z [143]. However, if tortuosity of

the vessel is high, i.e. the vessel is sometimes perpendicular

to the muscle’s main axis, diffusion in the z-direction takes

place and can no longer be neglected. An example for this

situation was analysed by Penta & Ambrosi [144]. They cre-

ated a 3D multi-scale model, i.e. capillary intersection

(40 mm) versus whole network (1 cm), for drug delivery in

tortuous tumour networks, to investigate the influence of

capillary tortuosity for drug delivery. Capillary tortuosity

was introduced by a sinusoid wave making up the centre

line of the capillary, while frequency and amplitude of the

wave were varied to increase tortuosity. Hydraulic conduc-

tivity and surface area were determined for a microscale

cell and then fed into the macroscale problem, which has

been solved assuming local periodicity of the microscale

cell. In reality, this assumption may not apply, especially

for irregular networks like tumour networks. However, the

research performed by Penta and Ambrosi shows that tortu-

osity has a significant impact on drug concentration within

the tissue. They showed that the drug concentration in the

tortuous network was decreased by more than 50% in com-

parison to the straight network and that it was below 10%

of the injected drug concentration, thus leaving only a

small amount to reach the tumour. While only an example

case was presented in [144], this research underlines the

importance of treating a vascular network as a 3D structure,

and the necessity to take into account the resulting complex-

ity of molecular convection and diffusion. In [144] the studied

network was artificially created and in order to obtain
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realistic predictions of concentration distributions (here of the

drug; in our case oxygen) the computation would ideally be

performed on experimentally derived images of tumour vas-

culature, and the results would need to be validated against

experimental data. In a novel approach, Grimes et al. [145]

investigated tumour oxygenation by deriving an oxygenation

kernel model, allowing straight vessel segments to diffuse

oxygen in a spherical fashion as an array of discrete point

sources. Two spherical, scalable kernels were computed;

one for a well-perfused tumour network and one for a

poorly perfused one, i.e. best and worst case scenarios. The

model is inspired by other similar problems, e.g. traffic

flow, and is applied to 3D images of tumour vasculature

obtained using two-photon microscopy. Validation using flu-

orescence microscopy was attempted, staining for hypoxia in

tumours of the same mouse model. The relative areas of

hypoxia resulting from the two kernel models covered a

broad range: 37.2+9.8% for high vessel perfusion versus

53.5+ 13.2% for low perfusion. While the experimentally

determined area was in that range (39.6+ 9.1%) it remains

inconclusive how well the kernel model approximates

tissue oxygenation as the vessel perfusion level is unknown.

The authors argue that validation using 2D methods may be

insufficient, but it is also the case that the z-resolution of the

applied 3D imaging method was too low to capture all blood

vessels and therefore tissue oxygenation may be underesti-

mated. It will be interesting to test the presented approach

on a more regular vessel network (e.g. in healthy muscle)

captured at higher spatial resolution and using a 3D imaging

method, such as light sheet fluorescence microscopy, for vali-

dation. Furthermore, while some initial analysis has been

provided by Grimes et al., additional analysis needs to be

performed to examine the difference between the kernel

method and a full computation of tissue oxygenation using

a finite-element model.

The works of Goldman and colleagues [12,13,146–148]

are based on histological images of the capillaries in hamster

cheek pouch retractor muscle, which was subsequently

adapted to rat EDL muscle. To obtain a 3D network the

2D information was extrapolated into 3D. The effect of

anastomoses and tortuosity was investigated by overlay-

ing straight tissue segments with a sinusoidal wave and

adding a physiological number of anastomoses in a

random fashion [13]. The authors argue that tortuosity

with the addition of anastomoses significantly increased

tissue oxygen heterogeneity; however, no tests of statistical

significance were provided, thus leaving the results inconclu-

sive. Goldman et al. investigated tissue oxygenation during

sepsis [146,147] and it was predicted that pathological con-

ditions were influenced by heterogeneous shunting of

blood flow between capillaries. More recently, the same

group also compared the oxygen delivery of a 3D recon-

structed microvascular volume from intra-vital video

microscopy against that of parallel capillary arrays and

found significant differences in resulting tissue PO2 [11]. In

the healthy and resting case the parallel network has over-

estimated the PO2 by around 7%, yet, this starkly increased

to 18% in hypoxia and 37% during exercise. This demon-

strates the importance of realistic 3D microvascular

networks over artificially created ones.

Overall, while the mathematics of oxygen diffusion in

skeletal muscle tissue are well established and frequently

used as in the models presented above, to the best of our
knowledge, no image-based studies exist where conclusions

have been drawn about links between modelling results

and structural parameters of the imaged vasculature. Further-

more, most models include two major limitations: neglecting

the influence of the haematocrit and lacking validation

against experimental data.

4.3. Limitation 1: role of the haematocrit
Many 2D image-based models of oxygen delivery in skeletal

models do not take into account the haematocrit distribution,

since they are lacking the structural information of the net-

work of the blood vessels present in the experimentally

derived image datasets. Instead, a fixed tube haematocrit is

assumed and the discharge haematocrit computed using an

empirically derived formula [147]. In addition, the blood

oxygen level is kept constant [139], which is another con-

straint. Furthermore, it is common to neglect the fact that

not all capillaries contain RBCs and thus do not deliver

oxygen to the tissue. In other words, the presence of a capil-

lary is equated to the presence of an oxygen-supplying RBC

[139], although the presence of a capillary is only a necessary

but not a sufficient condition for oxygen supply. In theoreti-

cal mathematical modelling the important role of the RBCs

has long been taken into account; some models consider

RBCs as point-like oxygen sources [14], while others

assume separate homogeneous flowing regions of plasma

and RBCs [149,150]. Gould & Linninger [65] reviewed such

existing models against morphological data of vascular

trees and as a result, presented a working model of haemato-

crit distribution. For image-based modelling of oxygen

supply in tissue, this leaves two alternatives: firstly, to

image the blood vessel structure and to employ a haematocrit

distribution model to correctly predict oxygen delivery; or

secondly, in addition to imaging the vascular structure,

using an imaging technique capable of identifying RBCs

within the vasculature. Tateishi et al. [151] have imaged the

RBCs in an isolated mesenteric blood vessel using an inverted

light microscope. They were able to simultaneously measure

oxygen saturation and distribution of RBCs within the blood

vessel. However, this approach was limited to 2D and to an

isolated environment. For 3D imaging in vivo of RBCs,

Kamoun et al. [9] proposed the use of CLSM or multi-

photon laser scanning microscopy (a method similar to

CLSM, however not using a pinhole aperture but the laser

beam itself for optical sectioning of the sample) to capture

fluorescently labelled RBCs. Phase-contrast SR CT can also

be extended to image the RBC distribution within a 3D

tissue sample; however, the information will then still be

intrinsically ex vivo, but closer to the in vivo case than in

any existing image-based tissue oxygenation model. We

have recently trialled imaging of RBCs in mouse soleus

muscle using SR phase-contrast CT. Slices of the recon-

structed volume are shown in figure 7. For a small cubic

region of interest the tissue oxygenation in resting mouse

muscle, based on the present RBCs, was computed, see

figure 8. Figure 9 shows an excerpt of the 3D visualization

of the segmented RBCs and bigger blood vessels.

4.4. Limitation 2: validation of results
The validation of computational modelling results is often not

properly addressed. The only mathematical model presented

in this section, validated against experimental data, is the
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Figure 7. Comparison of edge enhancement and phase retrieval for red blood cell imaging using phase contrast-based synchrotron radiation computed tomography.
(a) A slice of the direct CT reconstruction, while (b) shows a slice of the phase-retrieved and then reconstructed CT data. The white dots between muscle fibres are
red blood cells. Empty capillaries (black circular spaces between muscle fibres) and larger blood vessels (asterisks) can also clearly be distinguished, as well as
intramuscular structures like neuromuscular spindles (less than symbol). (Online version in colour.)
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Figure 8. Proof of concept for mathematical modelling of tissue oxygenation
based on SR CT images of red blood cells within mouse muscle tissue. A
small cubic region of interest has been selected from the muscle volume
and the tissue oxygenation in a resting muscle has been computed.
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tumour oxygenation model presented by Grimes et al. [145].

Complexity of experiments and lack of available resources

are most likely the reasons for this. The method employed

by Grimes et al. [145] stains for hypoxic regions in tumour

tissue; however, for healthy soft tissue this can pose a problem

as no hypoxic regions should in theory be present. Instead, a

tissue stain to mark oxygenation could be used, allowing vali-

dation of the results from computational modelling by use of

gold standard light microscopy. For the validation of a blood

haemodynamics model Liu et al. [152] perfused the muscle

of an anesthetized rat with Tyrode’s solution. Similarly, in an

effort to validate computational modelling results for tissue

oxygen supply, the vasculature could be perfused with fluor-

escent nanoparticles and their diffusion into the tissue could

be recorded visually, similar to the work of Kamoun et al.
[9]. Another, likely more robust approach is to make use of

in vivo imaging techniques that are able to capture oxygenation

and blood vessel morphology. There are a number of in vivo
imaging methods that are already widely used for blood
flow and oxygenation imaging, such as laser Doppler flowme-

try [153] or laser speckle contrast imaging [154]. These imaging

techniques generally suffer from their usage of arbitrary units,

thus allowing comparison between measurements only, but

not quantification of blood flow per se. Japee et al. [155] intro-

duced a video imaging system for capturing RBC flow and

oxygenation simultaneously for superficial imaging of excised

muscles. It was applied in Ellis et al. [156] and Fraser et al. [11]

for comparison with computational modelling results. Other

researchers combined different imaging systems, such as opti-

cal coherence tomography (OCT) and fluorescence and

hyperspectral imaging [157] and two-photon microscopy com-

bined with a PO2 nanoprobe [157]. Both OCT and two-photon

(or multi-photon) laser scanning microscopy have been used

extensively by the group of Jain for the characterization of

tumour vasculature, but are both limited to imaging only a

superficial fraction of tissue within a small field of view

[3,158,159]. These methods are however well established and

could—with addition of an oxygenation-sensing techni-

que such as a PO2 probe—be used to validate results of

image-based modelling of muscle oxygenation as images of

the vasculature could be cross-correlated. Thus, the combina-

tion of existing imaging and oxygen measurement methods

can lead to further exciting results to understand the supply

of oxygen to tissue in health and disease.
5. Summary and conclusion
Image-based modelling of skeletal muscle oxygenation is a

challenging process. At present, only a few models are

based on 3D physiological data and proper validation of

computational modelling results is largely missing. As the

microvasculature is a complex 3D network its structure

needs to be assessed in appropriate detail to obtain infor-

mation about its capability to deliver oxygen. A wide range

of imaging techniques for soft tissue imaging exists, but

only few provide the capability to capture small capillaries

at whole-organ scale. Structural parameters that are currently
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Figure 9. Isosurface rendering of red blood cells and larger blood vessels imaged using phase-contrast synchrotron-based computed tomography of mouse soleus
muscle. RBCs are so abundant that they delineate the direction of the capillaries parallel to the muscle fibre and fill the whole muscle. A zoom into a subregion
shows the disconnected nature of the RBCs and a connected part of a larger blood vessel.
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in use to investigate this capability in health and disease

need to be assessed by mathematical modelling of tissue

oxygenation to evaluate their relevance.

Following a short introduction to the biology of oxygen

delivery in skeletal muscle, we have reviewed the most

common of these structural measures used to assess muscle

oxygenation. We have highlighted the suitability of synchro-

tron radiation-based computed tomography and laboratory-

based micro-computed tomography to do this and reviewed

necessary methods to achieve image contrast in soft tissue.

We further discussed mathematical models of muscle oxy-

genation with particular emphasis on image-based models.

The major limitations of such models, in conjunction with

the ex vivo characteristic of the underlying imaging method,

have been identified. It becomes clear that further work

needs to be done in order to better incorporate the effect of

haematocrit and varying capillary PO2 in mathematical

models, as well as in finding methods to validate theoretical

findings. We have therefore highlighted the synergies that

can be gained when combining in vivo imaging methods

with oxygen-sensing methods to validate mathematical

models and to further progress the assessment of micro-

vascular oxygen exchange capability. Evidently, the

emergence of imaging systems at higher spatial resolutions

is a great advantage in understanding the link between

microvascular structure and its oxygenation potential in

health and disease.
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Appendix A. Modelling oxygen diffusion
Oxygen delivery to tissue is driven mainly by diffusion,

which is the process of molecules filling a space through

random movement. In the steady state this process can be

described relating flux to concentration. The relation of flux

and concentration is described by Fick’s first law

J ¼�DrC,

with C the oxygen concentration, D its diffusion coefficient (in

muscle tissue) and J the oxygen flux [139]. The concentration

C(x, t) is dependent on space x [ R3 and time t. The diffusion

coefficient D(T ) is in fact a matrix, which may be dependent

on the direction and the temperature T of the muscle tissue.

For simplicity, it is usually assumed that the diffusion process

is isotropic and constant and thus the matrix D is a scalar. The

diffusion coefficient is normally given at a normal body temp-

erature of 378C and may vary between different intramuscular

soft tissues, such as muscle fibre and interstitial tissue. It is
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commonly assumed that this variation is negligible and a con-

stant value can be used instead.

The relation of concentration C and partial pressure P can

then be described using Henry’s law

C ¼ aP,

with a being the coefficient of water oxygen solubility [139].

It is assumed in this case that both blood plasma and muscle

tissue consist mainly of water and therefore the approxi-

mation of a as the water oxygen solubility coefficient is

sufficiently accurate.

The change in oxygen concentration at any point in the

muscle tissue over time is given by the spatial change in

oxygen flux and the oxygen consumption at this point in

space. This is the process described in the schematic in figure 3.

The conservation of oxygen is then given by the diffusion-

reaction equation

@C
@t
¼ r � ðDrCÞ �MðCÞ

or in terms of the oxygen’s partial pressure [139]

@P
@t
¼ r � ðaDrPÞ �MPðPÞ, ðA 1Þ

where M and MP are the respective oxygen consumption

functions of the skeletal muscle tissue. They may depend

on the oxygen concentration/partial pressure.

In order to solve the above equations it is necessary to

employ initial and boundary conditions. As the time deriva-

tive @P/@t is first order, only one initial condition is required.

On the other hand, r � rP ¼ @2P=@x2 þ @2P=@y2 þ @2P=@z2 is

of second order and requires boundary conditions at

all muscle tissue boundaries, i.e. here at the vessel–tissue

boundary and at the outer tissue boundary.
A.1. Boundary and initial conditions
The flux of oxygen from the capillaries into the tissue is

described bya flow along a concentration or partial pressure gra-

dient [12,13,139], depending on the vessel permeability (process

(2) in figure 3). The permeability of the wall to oxygen molecules

can be described by a mass transfer coefficient k, which depends

on the blood haematocrit, the blood flow rate and the type of

vessel, i.e. capillary, arteriole or venule, and their radius [130].

This boundary condition is given by

� nv � ðDrPÞ ¼ kðP0 � PÞ,

where nv is the unit normal vector to the vessel boundary, P and

P0 are the oxygen partial pressures at time t and at the onset (t ¼
0), respectively, and D is the diffusion coefficient. In most cases, k
is assumed constant and given byan experimentally determined

value (from the literature). This approximation will be valid in

most cases; however, in pathological cases where endothelial

function is restricted k may play a major role for oxygen

supply and must thus be determined. A number of mathemat-

ical models have been employed to investigate the influence of

different factors on the permeability coefficient, but no uniform

formula has been proposed to date. For more information see

the review of Goldman [130].

The boundary conditions are usually imposed at the outer

tissue boundary as a no-flux boundary condition:

� n0 � rP ¼ 0,
where n0 is the unit normal vector to the outer tissue surface.

This means that all oxygen supplied by the blood vessels in

one muscle stays within this muscle. This will usually be

the case, as diffusion distances for oxygen are small.

The initial conditions for the model can then be set to

P ¼ Prest inVtissue at t ¼ 0,

with Prest being the muscle partial oxygen pressure at rest.
A.2. Oxygen tissue metabolism
The consumption of oxygen within tissue ((3) in figure 3) is

usually described using Michaelis–Menten kinetics:

MðPÞ ¼ M0P
Pþ P50

,

where M0 is the maximum oxygen consumption rate within

the tissue and P50 the oxygen pressure at half-maximal con-

sumption. P50 is usually found to be 0.5–1.0 mmHg [130]

and can be determined experimentally by methods described

in [160]. For skeletal muscle, Al-Shammari and co-workers

[141] took into account the fact that M0 can differ bet-

ween different muscle fibre types (I, IIa and IIb). The use of

Michaelis–Menten kinetics is only an approximation of the

occurring process, describing it more accurately than any

other model [130].
A.3. Myoglobin-facilitated oxygen transport
The myoglobin (Mb) oxygen saturation is determined using

the Hill equation [130]:

SMbðPÞ ¼
P

Pþ PMb,50

with PMb,50 being the half-saturation value of myoglobin. The

shape of the myoglobin oxygen saturation curve and of the

corresponding haemoglobin (Hb) saturation curve is shown

in figure 10. For the same partial oxygen pressure the haemo-

globin O2 saturation is lower than that of myoglobin, which

indicates that haemoglobin is more likely to release oxygen.



Table 3. Parameters typically used for computational modelling of oxygen supply in skeletal muscle. The presented parameters were obtained experimentally.

parameters defining the oxygen perfusion in muscle value source

O2 diffusion coefficient (378C) (1029 m2 s21) 2.11 [24]

consumption rate in muscle at rest (1025 ml O2/ml s), in muscle fibre type I 15.7 Wüst et al. [162]

IIa 13.82

IIb 7.85

myoglobin concentration (1023 ml O2/ml), in muscle fibre type I 10.2 Meng et al. [163]

IIa 4.98

IIb 1.55

myoglobin PO2 saturation at half-maximum (mmHg) 5.3 Jürgens et al. [164]

myoglobin oxygen diffusion coefficient (10211 m2 s21) 1.73 Jürgens et al. [164]

O2 concentration at capillary boundaries (mol m23) 0.28 [24]

O2 solubility (1025 ml O2/ml mmHg) 3.89 [13]

O2 capillary wall permeability (m s21) �1023 [24]

PO2 at 50% haemoglobin saturation (mmHg) 37 Liu et al. [152]

muscle PO2 at half demand (mmHg) 0.5 [165]

muscle PO2 in resting muscle (mmHg) 20 [24]

muscle PO2 in exercising muscle (mmHg) ,5 [24]

end-capillary PO2 in resting muscle (mmHg) 40 [24]

end-capillary PO2 in exercising muscle (mmHg) 15 [24]
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Myoglobin-facilitated transport reaches a plateau for a tissue

oxygen partial pressure higher than PO2 ¼ 2.5 mmHg and

can thus be neglected [13].

When considering myoglobin-facilitated transport

of oxygen ((4) in figure 3), the right-hand side of the

general diffusion equation is extended by the term

DMbCMbr � (ðdSMb=dPÞrP) [13], with DMb, CMb and SMb

being the myoglobin diffusivity, oxygen binding capacity

and oxygen saturation, respectively. The diffusion equation

is thus transformed into

@P
@t
¼ ar � ðDrPÞ þDMbCMbr �

dSMb

dP
rP

� �
�MðPÞ:
A.4. Haemoglobin oxygen saturation
The oxygen saturation of haemoglobin (SO2) is computed

using the Hill equation [130,131]:

SO2ðPÞ ¼
Pn

Pn þ Pn
Hb,50

,

with Pn
Hb,50 the PO2 at 50% haemoglobin saturation, which is

determined experimentally, e.g. by using PO2 electrodes on

blood samples [161] or by microspectrophotometry [160].

Together with the haematocrit distribution, this needs to be

taken into account for modelling tissue oxygenation, because

not all RBCs may be fully saturated with oxygen. n is

obtained experimentally and has been reported to be 2.2 for

hamsters and 2.7 for rats [130]. Using the Hill equation for

modelling haemoglobin oxygen saturation is an approxi-

mation of the inverted Adair equation, which is realistically

describing the oxygen–haemoglobin dissociation curve [130].
A.5. Model parameters
The parameters necessary for modelling soft tissue oxygen-

ation usually used for skeletal muscle are shown in table 3.

The presented parameters were taken from the sources

indicated and were determined experimentally (table 3).
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