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Cell growth and division are processes vital to the proliferation and development

of life. Coordination between these two processes has been recognized for dec-

ades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae,
this coordination or ‘size control’ appears as an inverse correlation between

cell size and the rate of cell-cycle progression, routinely observed in G1 prior to

cell division commitment. Beyond this point, cells are presumed to complete

S/G2/M at similar rates and in a size-independent manner. As such, studies

of dependence between growth and division have focused on G1. Moreover, in

unicellular organisms, coordination between growth and division has com-

monly been analysed within the cycle of a single cell without accounting for

correlations in growth and division characteristics between cycles of related

cells. In a comprehensive analysis of three published time-lapse microscopy data-

sets, we analyse both intra- and inter-cycle dependencies between growth and

division, revisiting assumptions about the coordination between these two

processes. Interestingly, we find evidence (i) that S/G2/M durations are

systematically longer in daughters than in mothers, (ii) of dependencies between

S/G2/M and size at budding that echo the classical G1 dependencies, and (iii) in

contrast with recent bacterial studies, of negative dependencies between size at

birth and size accumulated during the cell cycle. In addition, we develop a

novel hierarchical model to uncover inter-cycle dependencies, and we find evi-

dence for such dependencies in cells growing in sugar-poor environments.

Our analysis highlights the need for experimentalists and modellers to account

for new sources of cell-to-cell variation in growth and division, and our model

provides a formal statistical framework for the continued study of dependencies

between biological processes.
1. Introduction
Cell division and cell growth are processes fundamental to all life, and

their dysregulation is common in diseases like cancer. In the budding yeast

Saccharomyces cerevisiae, cell division is known to be coordinated with cell

growth [1–6] (reviewed in [7]). This dependence between growth and division

is most noticeable in daughter cells that, owing to the asymmetric manner

of budding yeast division, are born smaller than their mothers (figure 1).

Consequently, daughters undergo longer G1 phases to reach a ‘critical size’ at

START, the point of cell-cycle commitment [8,9]. Generally, a correlation has

been observed between the birth mass of a cell and its time spent in G1, with

smaller cells at birth taking longer to complete G1. This ‘size control’ is impor-

tant for the maintenance of a consistent size distribution in the cell population

from generation to generation (size homeostasis).

Studies of coordination between growth and division in budding yeast have

focused primarily on G1. Indeed, after having reached a sufficient and roughly

similar size, both mother and daughter cells are presumed to proceed through

the S, G2 and M phases at similar rates [9,10]. These tenets of the traditional

model of size control in budding yeast set certain expectations for S/G2/M

duration: (i) G1 duration is size-dependent, while S/G2/M duration is
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Figure 1. A diagram of the haploid budding yeast cell cycle. The process of cell
division begins at the top of the diagram and proceeds clockwise. Cell division
consists of G1, S, G2 and M; in yeast, the latter two are conceptually merged
since classical studies demonstrate that they largely overlap. Along the outer
ring of the diagram are depicted progressive stages of division, as reflected
by the different markers of cell-cycle progression. Each bar inside the cell rep-
resents a single copy of the genome. The feature at the neck joining the
mother and daughter cell represents the myosin ring. The myosin ring appears
late in G1, marking the location where the bud will emerge, and disappears
with cytokinesis, indicating the separation of the mother and daughter cyto-
plasms. After cell wall separation, the mother and daughter cells are free to
undergo more rounds of division. In budding yeast, division is asymmetric
and daughters (shown outside) are born smaller than their mothers.
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size-independent and (ii) S/G2/M duration is roughly con-

stant from cell to cell. Assuming a consistent single-cell

growth rate across cells, these tenets are sufficient to maintain

a consistent size distribution in the population. Recent studies

in bacteria have revealed an alternative size control model by

which cells add a relatively constant amount of volume over

the cell cycle, regardless of their birth size [11–13]. Here we

use time-lapse microscopy datasets tracking characteristics

of individual cells to test these models and further characterize

coordination between growth and division in budding yeast.

These time-lapse datasets also allow investigation of cor-

relations between measurements made at different cell cycles,

an important gap in our understanding of coordination

between growth and division. In multicellular systems,

coordination of division among cells has important impli-

cations for higher-scale phenomena like development,

differentiation and tissue organization [14–18]. In unicellular

organisms like the budding yeast S. cerevisiae, inter-cycle

dependencies between growth and division are also

plausible [19] and might affect more classically studied

intra-cycle dependencies or characteristics. For example, a

mother cell with some advantage in cell division or growth

might transmit that advantage to her progeny, resulting in

a fast-dividing or fast-growing daughter cell. However, it

is unclear the extent to which cell-cycle progression is

correlated across cell cycles in budding yeast, if at all.

Statistical modelling provides a powerful and principled

foundation for characterizing these correlations in lineages

of proliferating cells. Indeed, correlation and biological

lineage analysis have been intertwined at least as far back as

the development of the correlation coefficient by Galton, Pearson

and co-workers [14,19–23]. Statistical models of correlation in

cellular characteristics have been successfully applied to bacterial

and mammalian cell lineage data [24,25]. In addition, modern

Bayesian inference techniques for regression and model
averaging provide a framework for evaluating the plausibility

of a variety of different models of correlation between growth

and division [26].

Here, we provide in-depth statistical analysis to address four

main biological questions: (i) Is S/G2/M duration approximately

constant across cells or does it vary between mothers and daugh-

ters? (ii) Is S/G2/M duration independent of cell size? (iii) Is size

at birth independent of size accumulated over the cell cycle?

(iv) Is there evidence for inter-cycle dependencies in cell-cycle

progression that accompany known intra-cycle dependencies?

We analyse three microscopy datasets comprising different gen-

etic and nutrient environment conditions [2]. We conduct a

Bayesian regression analysis to investigate the dependence

between cell growth and division within and between cycles,

and comprehensively evaluate the plausibility of different

models of correlation. We introduce a novel hierarchical statisti-

cal model [27,28] of budding yeast cell division at the single-cell

level to formally characterize inter-cycle correlations in cell-cycle

progression. Our analysis offers fresh biological and methodo-

logical insights on the extent and nature of coordination

between cell division and cell growth, as well as a novel frame-

work for formally characterizing dependencies within and

between cells in these and other biological processes.
2. Single-cell analysis of size control models in
budding yeast

2.1. Single-cell measurements of Saccharomyces
cerevisiae growth and division

Single-cell data of haploid budding yeast were acquired from

a previously published study [2]. The study followed cell-

cycle progression and growth in 26 wild-type lineages (782

cells) grown in glucose, 19 6 � CLN3 lineages (376 cells)

grown in glucose and 21 wild-type lineages (518 cells)

grown in glycerol/ethanol (example lineage in figure 2).

Only those cells (or a subset thereof where specified) with

fully observed cell-cycle durations were retained for sub-

sequent processing and analysis, resulting in 213 wild-type

cells in glucose, 99 6 � CLN3 cells and 157 wild-type cells

in glycerol/ethanol.

Cell-cycle progression was measured using the times of

occurrence of two landmark cell-cycle events for each yeast

cell on the plate: the appearance and disappearance of the

myosin ring, visualized by tagging Myo1p with green fluor-

escent protein (GFP) (figures 1 and 2). The myosin ring is a

contractile structure that appears late in G1, just prior to the

appearance of the bud [29] (figure 1). Cell growth was mon-

itored with the red fluorescent protein, DsRed, which was

placed under the control of the promoter of ACT1, the consti-

tutively expressed actin gene. In this way, total red

fluorescence in a cell served as a proxy for total protein con-

tent or cell mass. Red fluorescence in a cell was quantified at

each time point and suitably normalized across all cells in a

microcolony (electronic supplementary material, §1).

2.2. Size-dependent differences in S/G2/M duration
between mothers and daughters

Budding yeast cells born at a smaller than average size tend

to undergo longer G1 phases to reach a sufficient size for

cell-cycle entry, manifesting as a dependence between cell
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Figure 2. Illustration of single-cell lineages and classification of cell types. Shown is a typical single-cell lineage tree from the dataset of Di Talia et al. [2]. Arranged
along each branch of the lineage tree are images of representative cells undergoing cell-cycle events. Binary cell labels ending in 0 indicate a mother cycle while
those ending in 1 indicate a daughter cycle.
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Figure 3. (a – c) Density plots of S/G2/M durations for mother and daughter cells in the three different experimental conditions. Rug plots appear below each
density plot.

Table 1. Differences in S/G2/M duration between mother and daughter
cells. Cell counts are the same as in figure 3. Estimates of differences in
S/G2/M duration and 95% CIs (in parentheses) are shown.

dataset difference (min) p-value

wild-type (glucose) 26 (29, 0) 0.021

6 � CLN3 212 (218, 23) 0.001

wild-type (gly/eth) 26 (212, 0)a 0.166
aBefore rounding of interval estimates for display purposes, interval for
wild-type cells in glycerol/ethanol included 0 while interval for glucose did
not (hence different p-values).
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size and division within a given cell cycle. Under the assump-

tion that mothers and daughters complete G1 at roughly the

same size, the cells maintain a consistent cell size distribution

from generation to generation provided the amount of time

they spend in S/G2/M is similar on average. As such, we

tested whether S/G2/M duration is similar across mother

and daughter cells [9].

To assess differences in the observed mother and

daughter S/G2/M duration, we performed two-sided non-

parametric Wilcoxon’s rank sum tests in the three datasets

(figure 3 and table 1). For this analysis, we separated

mother and daughter S/G2/M durations. We used a subset

of the mother cells because some S/G2/M durations were

associated with the same mother in consecutive cell

cycles (electronic supplementary material, §1). We found

significantly shorter S/G2/M durations for mothers com-

pared with daughters for both 6 � CLN3 cells and

wild-type cells growing in glucose. We also found suggestive

(but not significant) differences in S/G2/M for wild-type cells

growing in glycerol/ethanol.
One potential explanation for these differences in

S/G2/M duration is that daughter cells smaller than their

mothers at the onset of S/G2/M might require more time

to complete the budded period. We tested this hypothesis

by pairing mother cells from the previous analysis with

their first daughters. Here, mother–daughter pairs only
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Figure 4. Scatter and marginal density plots of mother – daughter differences in log S/G2/M duration and mass at budding. Marginal density plots of each variable
are shown on the diagonal. In the lower off-diagonal panels appear the Spearman’s rank correlation coefficients. Scatter plots along with best linear fit lines (green),
loess smoothed fit lines (solid red) and loess spread lines (dashed red; root-mean-squared positive and negative residuals) appear in the upper diagonal panels. The
loess span was 1.0. Daughter – mother pair counts are those listed in table 2.

Table 2. Regression of daughter – mother differences in size at budding on differences in log S/G2/M duration. p-values (in parentheses) are for the test of
zero-valued estimates. Fitted masses at budding were computed from linear regressions on the logarithm of each cell’s growth traces (§2; electronic
supplementary material, §2). p-values less than 0.001 are shown in scientific notation.

wild-type 6 3 CLN3 wild-type

glucose (N544 pairs) glucose (N516 pairs) gly/eth (N526 pairs)

parameter estimate ( p-value) estimate ( p-value) estimate ( p-value)

intercept 20.26 (1.03 � 1026) 20.06 (0.366) 0.09 (0.068)

coefficient 21.16 (2.19 � 1028) 20.68 (0.047) 20.36 (0.061)
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included daughter cells whose immediate mother was not

also a daughter cell herself. We then fit a linear regression

of the mother–daughter difference in log S/G2/M duration

on the differences in estimated mass at budding (figure 4).

In this regression model, the intercept represents the con-

ditional expected difference between daughter and mother

log S/G2/M durations independent of size differences,

while the coefficient refers to the slope in terms of differences

in fitted masses at budding. In two of the three experimental

settings, the difference between daughter and mother mass at

budding was a significant negative predictor of differences in

log S/G2/M duration (table 2). Thus, daughters smaller than

their mothers at the point of cell-cycle entry tend to spend

more time in S/G2/M. Collectively, these results provide evi-

dence that S/G2/M duration is systematically different

between mother and daughter cells, and, surprisingly, we

identify a growth-related component to this difference.
2.3. Significant associations observed between size at
birth and size accumulated

Recent studies in bacteria and budding yeast have suggested

a compelling alternative model for size control called the

‘adder’ model [6,11–13] which posits that the size added

by cells during the cell cycle is roughly constant from cell

to cell and independent of the cell’s size at birth. To evaluate

evidence for this hypothesis in our data, we analysed the

association between the observed birth mass (M0) and mass

accumulated between birth and division (Madd ¼Mdiv 2

M0). Interestingly, we find strong negative correlations

between mass at birth and mass accumulated over the cell’s

life in every cell type and every condition (figure 5).
Moreover, the correlations we observe are all significant

with two-sided hypothesis tests of the Spearman’s rank

coefficients (table 3).

One possible explanation for the association we observe is

that it is driven primarily by a negative correlation between

mass at birth and size accumulated during G1 (classical size

control dependence) and that mass at birth and size accumu-

lated during S/G2/M are uncorrelated. However, we also

observe significant negative associations between mass at

birth and size accumulated during S/G2/M, particularly in

6 � CLN3 cells (table 3). These correlations might indicate a

compensatory mechanism during S/G2/M to overcome dis-

abled G1 size control and ensure robust cell size at division.

Regardless, in aggregate, we find no evidence for ‘adder’

model effects in our time-lapse datasets.
2.4. Post-G1 dependence between cell-cycle progression
and cell growth

As mentioned earlier, budding yeast daughter cells tend to

spend more time in G1 than their mothers to reach a sufficient

size for cell-cycle entry. This reflects an association between

G1 duration and cell size at birth. It has been hypothesized

that G1 is the primary period during which cell-cycle pro-

gression depends on cell size and that S/G2/M progression

is largely independent of size, subject instead to a timing

mechanism [10]. Moreover, analyses of coordination between

growth and division have focused primarily on dependencies

within rather than across cell cycles. However, given that

budding yeast cells divide asymmetrically, leading to parti-

tioning of organelles and other cellular contents between

mothers and daughters, it is plausible that cell-cycle



M0

–0.29

1.0

0.8

0.6

0.4

1.0

wild-type (glucose) 6 × CLN3 (glucose) wild-type (gly/eth)

0.4 0.5 0.6 0.8 1.2

0.2

0

–0.2

–0.4

–0.6

–1.0

–0.6

–0.2

0.4 0.6 0.8 1.00.70.80.60.4

(a) (b) (c)

–0.4

–0.8

–0.4

0

–0.2 0 0.2

0.4 0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2 1.4 0.6 1.0 1.4

–0.4

–0.2
–0.2

0

0.2

0

0.2

–0.4–0.6 –0.2 0 0.2–0.2

–0.8 –0.4 0 –0.8 –0.6 –0.4 –0.2 0 –1.0 –0.6 –0.2

0 0.2

0.4

0.6
0.6

0.8

1.0

1.2

1.4

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

–0.8

1.4

1.0

0.6

–0.6

–0.4

–0.2

0

0.4

0.5

0.6

0.7

0.8

–0.62 –0.61 –0.58

–0.59 –0.62

M0 M0

Madd Madd Madd

M0 M0 M0

Madd Madd Madd

m
ot

he
rs

da
ug

ht
er

s

Figure 5. Scatter and marginal density plots of mass at birth and mass accumulated from birth to division for mother and daughter cells in all three experimental
conditions. The layout and content of each of the six panels are the same as in figure 4. Cell counts are in table 3.

Table 3. Test of no correlation between size at birth and mass
accumulated over the cell cycle. The third column shows p-values for the
correlation between mass at birth (M0) and mass added over the entire cell
cycle (Madd, full). The fourth column shows p-values for the correlation
between birth mass and mass added during S/G2/M (Madd, sg2m). p-values
less than 0.001 are shown in scientific notation.

p-value

dataset cell type Madd, full Madd, sg2m

wild-type

(glucose)

mothers (N ¼ 78) 0.011 0.188

daughters (N ¼ 70) 2.10 � 1028 0.183

6�CLN3 mothers (N ¼ 35) 2.22 � 1024 0.003

daughters (N ¼ 34) 1.69 � 1024 0.001

wild-type

(gly/eth)

mothers (N ¼ 58) 3.82 � 1027 0.001

daughters (N ¼ 44) 4.49 � 1025 0.172
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progression might depend on characteristics of the cell’s

mother as well as on the size of the cell itself.

Classically, one would analyse the correlation between a

cell-cycle interval (e.g. G1) and the cell’s size at the beginning

of that interval. However, by conditioning on more predictor

variables, we can estimate the relative effects of a cell’s size

and the growth and division characteristics of its mother on

the cell’s current cell-cycle durations. To do this, we first com-

puted growth characteristics of a cell and its immediate

antecedent cell. Using the single-cell growth traces of each cell

j and its immediate predecessor cell (Pa( j); mother cycle that

immediately preceded cycle of cell j) in lineage i, we estimated
growth-related variables (âi,j, âi,Pað jÞ, M̂0,i,j, M̂0,i,Pað jÞ, M̂B,i,j and

M̂B,i,Pað jÞ) by assuming exponential single-cell growth kinetics

and fitting a separate linear model to the logarithm of each

cell’s growth trace [2] (electronic supplementary material, §2).

The fitted intercept of this linear model gave the estimated

birth mass (M̂0,i,j) of cell j from each lineage i while the slope

gave the estimated mass accumulation rate (âi,j). We also

retained the fitted mass at budding of each cell (M̂B,i,j). We

then fit linear regression models of log S/G2/M durations on

these cell-level estimates as well as on the log S/G2/M durations

of the cell’s predecessor (Si,Pa( j )).

Here, a model represents a particular pattern of depen-

dence between growth and division and is determined by

the set of predictor variables included in the regression. As

we have seven different predictor variables (not counting

the included intercept term, mS), there are 27 ¼ 128 possible

regression models. To infer the most plausible model of

dependence between size and cell-cycle progression while

explicitly accounting for uncertainty in the model specifica-

tion, we conducted Bayesian model averaging [26]. Since

we did not have strong prior information about the depen-

dencies between these variables, we assumed that each

regression model was equally plausible a priori. We then com-

puted posterior probabilities of each model for mother cells

(figure 6) and daughter cells (figure 7). For the analysis of

mothers, we retained only every other cell cycle of the

mother cell starting with its most recent cycle in the lineage,

to account for potential correlations between different cycles

of the same mother. This procedure resulted in 53 wild-type

pairs in glucose, 25 6 � CLN3 pairs and 46 wild-type pairs in

glycerol/ethanol. For the analysis of daughters, we used the

mother–daughter pairs of our previous analysis (cell counts

provided in table 2).
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When we consider mother-to-mother dependencies

(figure 6), we find a strong association for wild-type mothers

between log S/G2/M duration and growth characteristics,

particularly birth mass and mass at budding. For mothers

growing in glucose, mass at budding (MB) was included in

nearly every enumerated model with non-zero posterior prob-

ability, indicating that mass at budding was an informative

predictor of mother log S/G2/M duration (approx. 82% pos-

terior probability of inclusion; log10(Bayes factor) ¼ 0.657 or

‘substantial evidence’ for inclusion [30]). Mass at birth (M0;

approx. 74% posterior probability) and mass accumulation

rate (a; approx. 71% posterior probability) also tended to be

included as predictors. Likewise, for a mother growing in gly-

cerol/ethanol, we detect an association between her current

log S/G2/M duration and mass at birth (approx. 64% pos-

terior probability) and budding (approx. 61% posterior

probability). In addition, the posterior means (averaged

across all models) of the included regression coefficients for

mass at budding for wild-type mothers in glucose (21.129)

and glycerol/ethanol (20.262) were consistent with classical

G1 size control (larger mass at budding corresponds to less

time spent in S/G2/M). This pattern of dependence has not

previously been observed in mother cells, potentially due to

the fact that we are conditioning on multiple growth and div-

ision characteristics for the cell’s current and previous cycles.

We did not see such patterns of dependence for 6 � CLN3
mother cells. Importantly, we also did not find strong evi-

dence for dependence between a wild-type or 6 � CLN3

mother’s log S/G2/M duration and her characteristics in her

previous cycle (SPa, aPa, M0,Pa and MB,Pa). So, conditioned

on summaries of the mother’s current cycle, her log S/G2/

M duration can be considered independent of her previous

growth and cell-cycle progression.

Extending this analysis to mother-to-daughter associations

(figure 7), we again discovered patterns of dependence

between a cell’s log S/G2/M duration and mass at budding

(MB) for wild-type daughter cells growing in glucose

(figure 7a). Mass at budding was included as an explanatory

variable for the wild-type daughter’s log S/G2/M duration in

glucose in nearly all models with non-zero probability

(approx. 93% posterior probability of inclusion; log10(Bayes

factor)¼1.118 or ‘strong evidence’ for inclusion [30]). As in

the previous analysis, the model-averaged posterior mean of

the included regression coefficient was 20.616, an estimate

consistent with classical G1 size control. We found only mild

associations between log S/G2/M duration and other

growth characteristics in all three conditions (figure 7). In

particular, we note an association between log S/G2/M dur-

ation and mass accumulation rate in glycerol/ethanol (a;

approx. 58% posterior probability of inclusion). The model-

averaged posterior mean of the included regression coefficient

for mass accumulation rate was 218.391, indicating that
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daughters with larger mass accumulation rates spend less

time in S/G2/M. Collectively, our findings for both mother

and daughter cells run counter to the notion that S/G2/M

duration is independent of size.
3. Hierarchical modelling of correlation in budding
yeast cell division at the single-cell level

The regression framework used in the previous section high-

lighted associations between growth and division within

and across cycles. However, we limited our analysis to rigidly

defined mother–mother and mother–daughter pairs and did

not take advantage of the inherent hierarchical organization of

the data (i.e. cells make up lineages and multiple lineages are

observed for each experimental condition). Moreover, simply

computing sample-based estimates of inter-cell correlations

would preclude separation of cell-to-cell variation in cell-

cycle progression from variation due to measurement error.

Hierarchical models provide a formal framework to represent

such structure and naturally pool information across replicate

lineages, as well as allow for estimation of cell-specific and

noise-related sources of variation. An important property of

these models is the potential to reduce parameter estimation

error relative to sample-based approaches by ‘shrinking’

cell-specific parameter estimates towards sample (popu-

lation) estimates [27]. For these reasons, and to more

effectively characterize dependencies between cells, we

developed a novel hierarchical model to analyse single-cell

cell-cycle durations.

3.1. Observing a cellular branching process
To motivate our model, we consider how single-cell data

are acquired using time-lapse microscopy. A single yeast
cell (the founder cell; cell 1 in figure 2) growing on the agar-

ose slab is identified at the onset of the time-lapse

experiment. Each founder cell generates a lineage consisting

of two fully observed sub-lineages (figure 2). The mother

sub-lineage consists of the founder’s first cell cycle after div-

ision from its daughter (mother origin) along with all her

progeny. The daughter sub-lineage consists of the founder

cell’s first daughter (daughter origin) and her progeny.

Non-origin cells of these sub-lineages are hereafter referred

to as ‘mother’ and ‘daughter’ cells.

For these sub-lineage cells, we observe the time relative to

the start of the time-lapse experiment of the appearance and

disappearance of the cell’s myosin ring. We refer to these

times as budding and division times, respectively. In our nota-

tion, the budding time for cell j from lineage i is Bi,j and the

division or cycle time is Ci,j (figure 8). We then transform

these times to cell-specific budding (Brel
i,j ) and division (Crel

i,j )

durations (figure 8; electronic supplementary material, §5.1).

To refer to durations specific to each cell, we adopt the

binary indexing scheme of Di Talia et al. [2].

We view the budding and division durations from each

lineage (as in figure 8) as noisy observations from an under-

lying branching process (illustrated in figure 9). The branches

of the tree in figure 9 represent the expected division dur-

ations for each cell. The cell’s expected budding duration is

modelled as a fraction of this branch length. To identify

inter-cycle correlation in cell-cycle progression, we assume

that the branch lengths in the process may depend on one

another. Further details of model construction follow.

3.2. Likelihood and error model for budding and
division observations

The first (lowest) level of our hierarchical model captures

noise or error in observations while higher levels of the



Table 4. Population parameters of hierarchical model.

parameter description

L population average of mother cell-cycle duration (minutes)

D population average of daughter cell G1 extension duration

(minutes)

c correlation between l’s from two successive mother cycles

r correlation between a mother’s l and her daughter’s l

f correlation between a mother’s l and her daughter’s d

s2
l variance in cell-specific l branch lengths (minutes2)

s2
d variance in cell-specific d branch lengths (minutes2)

mm expected proportion of l spent unbudded in mothers

md expected proportion of l spent unbudded in daughters

hm prior weight of information for mother unbudded period

hd prior weight of information for daughter unbudded period

t2 variance in measurement error (minutes2)
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Figure 9. A diagram of the asymmetric branching process specifying expected cell-cycle durations for each cell. The diagram is drawn to indicate the branch lengths
that give rise to the budding and division durations in figure 8. l10 is the expected cell-cycle duration of mother origin cell 10. The expected cell-cycle duration of
her subsequent cycle is l100, which depends on the length of her first cell cycle through the correlation parameter c. For the daughter branch, two parameters
specify the cell’s expected division duration: d101 and l101. These branch lengths depend on the mother’s cell-cycle duration through the correlation parameters f

and r, respectively. (Online version in colour.)
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hierarchical model capture cell-to-cell variability. Here, we

first assume that the elapsed times from which the durations

for cell j in lineage i are derived are independent and nor-

mally distributed with means mBi,j
and mCi,j

and variance t2.

While the observed cell-cycle durations are positively

valued, we use normal errors at the lowest level of the hier-

archical model rather than alternative error models

(e.g. lognormal) because we do not expect multiplicative

errors from the manual recording of budding and division

events. Instead, as will be discussed in a later section, we con-

strain the branch length parameters to be positively valued.

After transformation of elapsed times into durations, the like-

lihood of all budding and division durations for lineage i is

~B
rel

i

~C
rel

i

 !�����~gi, ~bi, Qpop, t2 � MVNormðA~mi, t
2AA0Þ,

where A is a linear transformation matrix and ~mi is a vector of

the expected budding and division durations for lineage i. ~gi

is a vector containing two types of cell-specific parameters

that make up the branching process of a lineage: the expected

base cell-cycle durations for each cell in lineage i (li,js) and

extensions to expected daughter cell-cycle durations due to

smaller size at birth (di,js). Qpop is the set of population-

level parameters fL, D, s2
l, s2

d, c, r, fg (table 4) that specify

correlation and cell-to-cell variation in the li,js and di,js. The

vector ~bi contains another set of cell-specific parameters

(bi,js): the fraction of cell j’s l branch spent in the unbudded

phase. We describe the model for the means (~mi) of the obser-

vations and the remaining parameters in the next section.
3.3. Representing inter-cycle dependence and cell-to-
cell variability with an asymmetric branching
process

The second level of the hierarchical model consists of cell-

specific parameters (e.g. branch lengths) that give the

expected value of a cell’s budding and division durations

for a particular lineage. This second level comprises a branch-

ing process in which the branch lengths are potentially

correlated and vary from cell to cell (figure 9). The branch

lengths for a lineage i are represented by a vector ~gi, com-

posed of two sets of parameters: li,js and di,js. The ds
account for longer daughter cell cycles due to smaller birth

sizes. To measure correlation between these branch lengths,

we introduced three parameters: c, r and f (figure 9, table 4)

As noted in previous work [31,32] and since the cell-cycle

durations are positively valued, we jointly model all

branch lengths for a lineage i ( ~gi) with a multivariate lognor-

mal distribution (electronic supplementary material, §5.2).

That is

eg i ¼ expð~g�i Þ (3:1)

with

~g�i jQ
�
pop � MVNormðm�~gi

, S�~gi
Þ: (3:2)

Here, ~g�i is the vector of cell-specific branch lengths on the

natural logarithmic scale. These log-scale durations follow a

multivariate normal distribution with a structured covariance

matrix S
�
~gi

. In this covariance matrix, we encode a simple

model of inter-cycle dependence. With no strong expectations

of the extent of inter-cycle correlation structure, we consider

the simplest model for inter-cell correlation: that the expected

log-scale cell-cycle duration of a newly arisen cell depends



Table 5. Posterior inferences (modes and 95% highest posterior density intervals) for model parameters. L, D, sd, sl and t are in minutes. Cell-specific
unbudded duration parameters, mm and md, range from 0 to 1.

wild-type 6 3 CLN3 wild-type

glucose (N 5 213) glucose (N 5 99) gly/eth (N 5 157)

parameter estimate estimate estimate

L 87.60 (85.08, 90.33) 95.80 (92.40, 100.79) 145.24 (139.19, 152.34)

D 25.55 (20.21, 31.30) 18.57 (12.20, 23.03) 94.02 (81.68, 107.78)

mm 0.18 (0.16, 0.19) 0.15 (0.13, 0.17) 0.25 (0.23, 0.27)

md 0.13 (0.09, 0.17) 0.05 (0.01, 0.11) 0.22 (0.17, 0.27)

hm 23.19 (18.45, 28.77) 25.48 (19.02, 33.19) 22.84 (17.89, 28.49)

hd 16.53 (11.51, 23.33) 20.39 (13.48, 28.22) 23.37 (16.56, 31.56)

c 20.07 (20.31, 0.20) 20.03 (20.38, 0.50) 0.46 (0.22, 0.65)

r 20.18 (20.41, 0.08) 20.29 (20.61, 0.12) 0.21 (20.13, 0.51)

f 20.20 (20.40, 0.05) 20.64 (20.84, 0.01) 20.02 (20.26, 0.24)

sd 20.00 (14.63, 30.32) 6.56 (2.83, 10.11) 42.65 (33.16, 56.56)

sl 15.30 (13.66, 17.20) 15.72 (13.49, 18.82) 26.07 (22.54, 30.11)

t 1.31 (0.93, 1.91) 1.43 (0.99, 2.30) 1.45 (0.96, 2.30)
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solely on the expected log-scale cell-cycle duration of its pre-

decessors in the lineage only through its mother. As we do

not observe the cell-cycle durations of each lineage’s founder

cell (figure 2), this correlation structure dictates that the

branch lengths of the mother origin and daughter origin are

correlated with one another, and we model them accordingly

(electronic supplementary material, §6).

The mean vector m�~gi
consists of parameters L* and D*

(counterparts of L and D on the log scale). S�~gi
is parametrized

by log-scale analogues of c, r, f, sd and sl (Q*
pop). To infer

parameters on the original scale (table 4), we transform the log-

scale analogues (electronic supplementary material, §5.2).

As with the l and d parameters, each cell has a parameter

indicating the proportion of its li,j it spends in the unbudded

state: bi,j. The vector ~bi comprises these cell-specific

parameters for lineage i.
Now, we can compute the expected value of a cell’s

observed budding and division durations. For example, if a

cell j is a mother cell then

mBi,j
¼ E½Brel

i,j j ~gi, ~bi, Qpop� ¼ bi,jli,j (3:3)

and

mCi,j
¼ E½Crel

i,j j ~gi, ~bi, Qpop� ¼ li,j: (3:4)

On the other hand, if cell j is a daughter cell, then

mBi,j
¼ E½Brel

i,j j ~gi, ~bi, Qpop� ¼ di,j þ bi,jli,j (3:5)

and

mCi,j
¼ E½Crel

i,j j ~gi, ~bi, Qpop� ¼ di,j þ li,j: (3:6)

The third level of our hierarchical model (represented by

population-level parameters Qpop; table 4) encapsulates pat-

terns of cell-cycle progression and inter-cycle dependence

shared across replicate lineages in a given experimental con-

dition. Owing to the hierarchical structure of the data, we

assume for each experimental condition that the branch
lengths (li,js and di,js) from all lineages are drawn from the

same distribution: the multivariate lognormal distribution

parametrized by L, D and other parameters of Qpop. More for-

mally, the branch lengths are exchangeable within a given

experimental condition [27]. We make a similar assumption

for the cell-specific bi,js: the unbudded proportions are

exchangeable and drawn from beta distributions for a given

cell type (mother or daughter) and experimental setting:

bi, j �
betaðmmhm, ð1� mmÞhmÞ if cell j is a mother
betaðmdhd,ð1� mdÞhdÞ if cell j is a daughter:

�
(3:7)
3.4. Hierarchical model fitting uncovers variation in cell-
cycle progression across experimental conditions
and between mothers and daughters

Fits of the hierarchical model to the three different datasets

suggest distinct patterns of cell-cycle progression. As shown in

table 5, population average mother cell-cycle duration (L) was

approximately 88 min for wild-type cells in glucose. By contrast,

mother cells divided nearly twice as slowly in glycerol/ethanol

(approx. 146 min). Since Cln3 is a rate-limiting factor for cell-

cycle entry [2,33], daughters with six copies of CLN3 show

quite short G1 extensions (D) compared with wild-type daugh-

ters grown in glucose (table 5). Likewise, the estimated spread in

6 � CLN3 daughter G1 extensions (s2
d) was much smaller com-

pared with the corresponding estimates for wild-type cells,

reflecting greater availability of Cln3 protein [2]. By contrast,

wild-type daughters in glycerol/ethanol took nearly 95 min

more to complete G1 (on average) than their mothers [34].

A benefit of our hierarchical approach is the ability to sep-

arate cell-to-cell variation in cell-cycle progression from

measurement error. As mentioned previously, while infer-

ences for sl do not change much between the two types of

cells grown in glucose, sd is dramatically reduced in 6 �



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160993

10
CLN3 cells reflecting differences in cell-cycle progression one

might expect. However, since the cells were grown in similar

conditions, differences in cell-cycle progression should have

little effect on an experimenter’s ability to record budding

and division times, and so measurement error should be

similar. Importantly, inferences for t for all three conditions

are similar to one another (95% CIs overlap).

As part of our deeper investigation of inter-cycle depen-

dence, we generated inferences for the three correlation

parameters in the model (r, c and f). As shown in table 5, no

strong correlations exist in the two strains grown in glucose

(wild-type and 6 � CLN3) with all 95% posterior confidence

intervals overlapping 0. However, we do see moderate

mother-to-mother l correlations (c) for wild-type cells grown

in glycerol/ethanol. Because we did not detect mother-

to-daughter correlations in the same conditions, the inferences

for c suggest that cells in glycerol/ethanol tend to retain the

rate of cell-cycle progression with which they are born. This cor-

relation could not be explained by drift in cell-cycle progression

due to a cell’s replicative age or time spent by the cells on the

plate (electronic supplementary material, §12). However, con-

sidering our previous Bayesian regression analysis (§2.4), this

cell-cycle dependence is likely mediated by growth character-

istics of the mother cell in her current cycle. To rule out the

possibility that this result is an artefact of over-fitting the data,

we carried out a leave-one-out cross-validation analysis to

evaluate the capacity of different models of inter-cycle corre-

lation to predict the observed cell-cycle durations of left-out

cells. The results of this analysis were consistent with our par-

ameter inferences in that models lacking c predicted the

observed cell-cycle duration of wild-type cells in glycerol/etha-

nol more poorly (electronic supplementary material, §11).

Overall, our statistical framework has generated valuable

insights into potential inter-cycle sources of variation in

biological processes.
4. Discussion and conclusion
In this analysis, we set out to address questions regarding depen-

dencies within and between the fundamental processes of

growth and division. We have found evidence from our analysis

contradicting (i) a relatively constant S/G2/M duration shared

by mother and daughter cells and (ii) a lack of dependence

between S/G2/M duration and size, two previously held

tenets of yeast size control. Our statistical analysis, including

inferences from our hierarchical model (electronic supplemen-

tary material, §10), also demonstrates that combined S/G2/M

duration appears longer on average in daughter cells compared

with mother cells. Moreover, we detect a size-related component

underlying these differences in S/G2/M duration. In support of

our results, at least one classical study with single cells has noted

that the budded duration was mildly longer (5–8 min on aver-

age) for daughters compared with mothers under a range of

different growth conditions [35]. These observations are impor-

tant because experimenters and modellers might otherwise

assume approximately similar S/G2/M durations across cell

types or simpler dependence structure between size, G1 and

S/G2/M that might not be present in their experimental con-

ditions, potentially affecting downstream conclusions about

coordination between growth and division.

Our Bayesian regression analysis uncovered patterns of

dependence between cell size characteristics and S/G2/M
duration for wild-type cells in two different nutrient con-

ditions. Post-G1 dependence between growth and division

has been observed in budding yeast strains engineered for

phase locking [36] and predicted by dynamic models of

cell-cycle progression [32,36]. In particular, we note pheno-

typic similarities between the post-G1 size dependence we

observe in 6 � CLN3 cells and that observed in a study of

strains in which the G1 cyclin, CLN2, was under the control

of the inducible MET3 promoter [36]. As in that study, we

see both reduced G1 duration variability (sd in table 5) and

overall cell-cycle durations in 6 � CLN3 cells similar to

wild-type cells. Our analysis more comprehensively demon-

strates these patterns in S/G2/M, identifying these

dependencies in wild-type cells and in mother cells as well

as daughter cells, on which size control studies have tra-

ditionally been focused. Our analysis also takes into

account new sources of variation (e.g. inter-cell dependen-

cies) to qualify these dependencies. This analysis, coupled

with our finding of no evidence for ‘adder’ model effects in

our data, add to evidence for compensation in cell-cycle

time during S/G2/M and raises the question of whether

size control might exist outside of G1 in budding yeast.

Dual, complementary mechanisms of size control have

been noted in the fission yeast, Schizosaccharomyces pombe,

with a strong size control imposed at the G2/M boundary

and a weaker compensatory size control imposed at the

G1/S boundary [10]. In addition, cell-autonomous size sen-

sing or compensatory modulation of growth rates during

the cell cycle has been postulated in multicellular systems [18].

However, while our findings seem at first glance to extend

the classical model of size control in budding yeast, we cau-

tion that this observed dependence does not necessarily

imply a true size control mechanism. Rather, this association

could be related to compensation in cell-cycle time due to

premature cell-cycle entry or the activation of a cell-cycle

checkpoint [37] due to perturbed cell-cycle progression.

Consequently, our analysis has generated experimentally

testable hypotheses about the molecular basis of post-G1 size

dependence and insights for future studies of size control.

While the dependence we observe in 6 � CLN3 cells, for

example, is likely not due to activation of the morphogenesis

checkpoint [38], other molecular targets related to DNA repli-

cation checkpoints (e.g. Rad53) or cryptic budding yeast size

control (e.g. Bck2) should be tested to ascertain their relative

effects on dependence between mass at budding and dur-

ation of S/G2/M. Recent experimental work in budding

yeast suggests an intriguing mechanistic model for size con-

trol in which dilution of Whi5 as the cell grows in volume

dictates cell cycle entry near the G1/S transition [5]. Our

work could be extended to analyse changes in concentration

of Whi5 and other proteins during S/G2/M to identify

potential mechanistic bases for the dependencies we observe.

We do not detect evidence in our datasets for an ‘adder’

model of size control. Instead, we detect substantial negative

dependencies between size at birth and size accumulated

over the cell cycle. An important distinction between the cur-

rent study and previous analyses is the measurement of cell

size. In our datasets, cell size was measured via a fluorescent

protein-based proxy for cell mass, whereas recent work in

bacteria and budding yeast has focused on cell

volume [6,11–13]. Elements of cell volume in budding

yeast, particularly the vacuoles, are known to undergo

dynamic, regulated changes over the course of the cell
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cycle [39]. On the other hand, it is unclear the extent to which

the fluorescent protein construct used in Di Talia’s datasets is

the best proxy for cell size in the absence of direct measure-

ments of cell mass. Therefore, further experimental and

analytical studies are required to reconcile these results and

determine whether the method of cell size measurement

has any effect on mechanistic conclusions about size control.

In addition, we have developed a novel hierarchical model

of budding yeast cell-cycle progression. In uncovering corre-

lations in cell-cycle progression between wild-type mother

cycles in glycerol/ethanol, our model highlights a common

theme in multicellular organism analyses [18] as well as a

potential need for considering between and within cell depen-

dencies in unicellular organism studies. If capturing cell-to-cell

dependence is an experimental goal, then time-lapse

microscopy is preferable over techniques involving fixed and

independent samples taken over time from an initially syn-

chronized population of cells. From a statistical perspective,

observing more lineages and more generations per lineage

allows for better characterization of this dependence. Our

analysis also suggests that both single-cell experimentalists

and modellers should at least consider the possibility of such

dependence to avoid potential confounding of other observed

between-cell or within-cell dependencies. Dependence

between cell growth and cell division has been thoroughly

studied within a given cell cycle. However, the possibility

that this correlation might be mediated by inter-cycle depen-

dencies brought about by changes in environment or

nutrient availability cannot be ignored. Correlations within a

cycle could disappear or decrease in magnitude when con-

ditioning on characteristics of the previous cell or generation.

Conversely, conditioning on additional variables from pre-

vious cell cycles might not affect an observed correlation,

providing greater context for experimental follow-up or

model construction. In either case, our analysis demonstrates

that both experimentalists and modellers can benefit from

considering multi-generational data acquisition and analysis

to verify the robustness of their correlation inferences.

Our model provides a flexible and extensible platform for

analysis of intra-cycle as well as inter-cycle dependencies.
The hierarchical specification of our model and our Bayesian

approach to inference easily accommodates new lineage infor-

mation. We also note that the model is not limited to cell

division observations and can be adapted to the statistical

analysis of dependence in any biological process (e.g. by drop-

ping the budding yeast-specific d and f parameters and

treating the l branch parameters as the sole quantity of inter-

est). While we modelled the branch lengths with a lognormal

distribution, other distributions exist that could improve fit

to data and form the basis of future work [40]. In addition,

while we made use of single-cell growth data in our regression

analysis, we are finalizing development of extensions to the

hierarchical model to formally fit both the growth and division

measurements in a joint analysis, making for a powerful tool to

estimate correlations between multiple biological processes

while accounting for dependencies between cells in a lineage.

This work represents an important step towards under-

standing the dependencies in cell-cycle progression and cell

growth within and across cells in a dividing population.

The statistical model-based approaches described here—

coupled with ongoing time-lapse microscopy studies—will

shed new light on cell-cycle and cell growth regulation and

reveal mechanistic insights about the coordination between

these two fundamental biological processes.

Data accessibility. All data files and analysis code are available at
https://github.com/dataforager/interface.

Author’s contributions. M.B.M., E.S.I. and A.J.H. conceived the study.
M.B.M. and E.S.I. developed the model. M.B.M. implemented the
analysis and model fitting code. M.B.M., E.S.I. and A.J.H. wrote the
manuscript.

Funding. This work was funded in part by grants from NIH
(P50-GM081883-01 and R01-GM118551-01) and DARPA (HR0011-
09-1-0040) and was performed in part under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344 (LLNL-JRNL-702334).

Acknowledgements. We thank Stefano Di Talia and Frederick Cross; Sung
Sik Lee and Matthias Heinemann for generously providing their
data; and Merlise Clyde, Stefano Di Talia, Steve Haase, Daniel
Lew, Nick Buchler, Bruce Futcher, Kurt Schmoller, Ivan Surovtsev,
members of the Haase and Hartemink labs, and the anonymous
reviewers for helpful comments about our analysis and manuscript.
References
1. Johnston GC, Pringle JR, Hartwell LH. 1977
Coordination of growth with cell division in
the yeast Saccharomyces cerevisiae. Exp. Cell.
Res. 105, 79 – 98. (doi:10.1016/0014-
4827(77)90154-9)

2. Di Talia S, Bean JM, Siggia ED, Cross FR. 2007 The
effects of molecular noise and size control on
variability in the budding yeast cell cycle. Nature
448, 947 – 951. (doi:10.1038/nature06072)

3. Goranov AI, Cook M, Ricicova M, Ben-Ari G,
Gonzalez C, Hansen C, Tyers M, Amon A. 2009 The
rate of cell growth is governed by cell cycle stage.
Genes Dev. 23, 1408 – 1422. (doi:10.1101/gad.
1777309)

4. Ferrezuelo F, Colomina N, Palmisano A, Gari E,
Gallego C, Csikasz-Nagy A, Aldea M. 2012 The
critical size is set at a single-cell level by growth
rate to attain homeostasis and adaptation. Nat.
Commun. 3, 1012. (doi:10.1038/ncomms2015)

5. Schmoller KM, Turner JJ, Koivomagi M, Skotheim
JM. 2015 Dilution of the cell cycle inhibitor Whi5
controls budding-yeast cell size. Nature 526, 268 –
272. (doi:10.1038/nature14908)

6. Soifer I, Robert L, Amir A. 2016 Single-cell analysis
of growth in budding yeast and bacteria reveals a
common size regulation strategy. Curr. Biol. 26,
356 – 361. (doi:10.1016/j.cub.2015.11.067)

7. Turner JJ, Ewald JC, Skotheim JM. 2012 Cell size
control in yeast. Curr. Biol. 22, R350 – R359. (doi:10.
1016/j.cub.2012.02.041)

8. Hartwell LH. 1974 Saccharomyces cerevisiae cell
cycle. Bacteriol. Rev. 38, 164 – 198.

9. Hartwell LH, Unger MW. 1977 Unequal division in
Saccharomyces cerevisiae and its implications for the
control of cell division. J. Cell Biol. 75, 422 – 435.
(doi:10.1083/jcb.75.2.422)

10. Rupes I. 2002 Checking cell size in yeast. Trends
Genet. 18, 479 – 485. (doi:10.1016/S0168-
9525(02)02745-2)

11. Campos M, Surovtsev IV, Kato S, Paintdakhi A,
Beltran B, Ebmeier SE, Jacobs-Wagner C. 2014
A constant size extension drives bacterial cell size
homeostasis. Cell 159, 1433 – 1446. (doi:10.1016/j.cell.
2014.11.022)

12. Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA,
Paulsson J, Vergassola M, Jun S. 2015 Cell-size control
and homeostasis in bacteria. Curr. Biol. 25, 385 – 391.
(doi:10.1016/j.cub.2014.12.009)

13. Jun S, Taheri-Aghari S. 2015 Cell-size maintenance:
universal strategy revealed. Trends Microbiol. 23,
4 – 6. (doi:10.1016/j.tim.2014.12.001)

https://github.com/dataforager/interface
https://github.com/dataforager/interface
http://dx.doi.org/10.1016/0014-4827(77)90154-9
http://dx.doi.org/10.1016/0014-4827(77)90154-9
http://dx.doi.org/10.1038/nature06072
http://dx.doi.org/10.1101/gad.1777309
http://dx.doi.org/10.1101/gad.1777309
http://dx.doi.org/10.1038/ncomms2015
http://dx.doi.org/10.1038/nature14908
http://dx.doi.org/10.1016/j.cub.2015.11.067
http://dx.doi.org/10.1016/j.cub.2012.02.041
http://dx.doi.org/10.1016/j.cub.2012.02.041
http://dx.doi.org/10.1083/jcb.75.2.422
http://dx.doi.org/10.1016/S0168-9525(02)02745-2
http://dx.doi.org/10.1016/S0168-9525(02)02745-2
http://dx.doi.org/10.1016/j.cell.2014.11.022
http://dx.doi.org/10.1016/j.cell.2014.11.022
http://dx.doi.org/http://dx.doi.org/10.1016/j.cub.2014.12.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.tim.2014.12.001


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160993

12
14. Smith JA, Martin L. 1973 Do cells cycle? Proc. Natl
Acad. Sci. USA 70, 1263 – 1267. doi:10.1073/pnas.
70.4.1263

15. Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA.
1998 Coordination of growth and cell division in the
Drosophila wing. Cell 93, 1183 – 1193. (doi:10.1016/
S0092-8674(00)81462-2)

16. Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD.
2009 A single-cell pedigree analysis of alternative
stochastic lymphocyte fates. Proc. Natl Acad. Sci. USA
106, 13 457 – 13 462. (doi:10.1073/pnas.0905629106)

17. Pauklin S, Vallier L. 2013 The cell-cycle state of
stem cells determines cell fate propensity. Cell 155,
135 – 147. (doi:10.1016/j.cell.2013.08.031)

18. Ginzberg MB, Kafri R, Kirschner M. 2015 On being
the right (cell) size. Science 348, 1245075. (doi:10.
1126/science.1245075)

19. Powell EO. 1958 An outline of the pattern of
bacterial generation times. J. Gen. Microbiol. 18,
382 – 417. (doi:10.1099/00221287-18-2-382)

20. Galton F. 1894 Natural inheritance, 5th edn.
New York, NY: MacMillan.

21. Pearson K. 1896 Mathematical contributions to the
theory of evolution. III. Regression, heredity and
panmixia. Phil. Trans. R. Soc. Lond. A 187, 253 – 318.
(doi:10.1098/rsta.1896.0007)

22. Stewart EJ, Madden R, Paul G, Taddei F. 2005 Aging
and death in an organism that reproduces by
morphologically symmetric division. PLoS Biol. 3,
e45. (doi:10.1371/journal.pbio.0030045)

23. Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta
V. 2014 Derivation and experimental comparison of
cell-division probability densities. J. Theor. Biol.
359, 129 – 135. (doi:10.1016/j.jtbi.2014.06.004)
24. Cowan R, Staudte R. 1986 The bifurcating
autoregression model in cell lineage studies.
Biometrics 42, 769 – 783. doi:10.2307/2530692

25. Huggins RM, Basawa IV. 1999 Extensions of the
bifurcating autoregressive model for cell lineage
studies. J. Appl. Prob. 36, 1225 – 1233. (doi:10.
1239/jap/1032374768)

26. Clyde MA, Ghosh J, Littman ML. 2011 Bayesian
adaptive sampling for variable selection and model
averaging. J. Comput. Graph. Stat. 20, 80 – 101.
(doi:10.1198/jcgs.2010.09049)

27. Greenland S. 2000 Principles of multilevel
modelling. Int. J. Epidemiol. 29, 158 – 167. (doi:10.
1093/ije/29.1.158)

28. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari
A, Rubin DB. 2013 Bayesian data analysis, 3rd edn.
Boca Raton, FL: CRC Press.

29. Bi E, Maddox P, Lew DJ, Salmon ED, McMillan JN,
Yeh E, Pringle JR. 1998 Involvement of an
actomyosin contractile ring in Saccharomyces
cerevisiae cytokinesis. J. Cell Biol. 142, 1301 – 1312.
(doi:10.1083/jcb.142.5.1301)

30. Kass RE, Raftery AE. 1995 Bayes factors. J. Am. Stat.
Assoc. 90, 773 – 795. (doi:10.1080/01621459.1995.
10476572)

31. Dowling MR, Kan A, Heinzel S, Zhou JHS,
Marchingo JM, Wellard CJ, Markham JF,
Hodgkin PD. 2014 Stretched cell cycle model for
proliferating lymphocytes. Proc. Natl Acad. Sci.
USA 111, 6377 – 6382. (doi:10.1073/pnas.
1322420111)

32. Oguz C, Palmisano A, Laomettachit T, Watson LT,
Baumann WT, Tyson JJ. 2014 A stochastic
model correctly predicts changes in budding yeast
cell cycle dynamics upon periodic expression of CLN2.
PLoS ONE 9, e96726. (doi:10.1371/journal.pone.
0096726)

33. Cross F, Blake C. 1993 The yeast Cln3 protein is an
unstable activator of Cdc28. Mol. Cell. Biol. 13,
3266 – 3271. (doi:10.1128/MCB.13.6.3266)

34. Broach JR. 2012 Nutritional control of growth and
development in yeast. Genetics 192, 73 – 105.
(doi:10.1534/genetics.111.135731.)

35. Lord PG, Wheals AE. 1981 Variability in individual
cell cycles of Saccharomyces cerevisiae. J. Cell Sci.
50, 361 – 376.

36. Charvin G, Cross FR, Siggia ED. 2009 Forced
periodic expression of G1 cyclins phase-locks
the budding yeast cell cycle. Proc. Natl Acad. Sci.
USA 106, 6632 – 6637. (doi:10.1073/pnas.
0809227106)

37. Sidorova JM, Breeden LL. 2002 Precocious S-phase
entry in budding yeast prolongs replicative state
and increases dependence upon Rad53 for viability.
Genetics 160, 123 – 136.

38. McNulty JJ, Lew DJ. 2005 Swe1p responds to
cytoskeletal perturbation, not bud size, in
S. cerevisiae. Curr. Biol. 15, 2190 – 2198. (doi:10.
1016/j.cub.2005.11.039)

39. Weisman LS. 2003 Yeast vacuole inheritance and
dynamics. Annu. Rev. Genet. 37, 435 – 460. (doi:10.
1146/annurev.genet.37.050203.103207)

40. Golubev A. 2016 Applications and implications
of the exponentially modified gamma distribution
as a model for time variabilities related to
cell proliferation and gene expression.
J. Theor. Biol. 393, 203 – 217. (doi:10.1016/j.jtbi.
2015.12.027)

http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1016/S0092-8674(00)81462-2
http://dx.doi.org/10.1016/S0092-8674(00)81462-2
http://dx.doi.org/10.1073/pnas.0905629106
http://dx.doi.org/10.1016/j.cell.2013.08.031
http://dx.doi.org/10.1126/science.1245075
http://dx.doi.org/10.1126/science.1245075
http://dx.doi.org/10.1099/00221287-18-2-382
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1371/journal.pbio.0030045
http://dx.doi.org/10.1016/j.jtbi.2014.06.004
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1239/jap/1032374768
http://dx.doi.org/10.1239/jap/1032374768
http://dx.doi.org/10.1198/jcgs.2010.09049
http://dx.doi.org/10.1093/ije/29.1.158
http://dx.doi.org/10.1093/ije/29.1.158
http://dx.doi.org/10.1083/jcb.142.5.1301
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1073/pnas.1322420111
http://dx.doi.org/10.1073/pnas.1322420111
http://dx.doi.org/10.1371/journal.pone.0096726
http://dx.doi.org/10.1371/journal.pone.0096726
http://dx.doi.org/10.1128/MCB.13.6.3266
http://dx.doi.org/10.1534/genetics.111.135731.
http://dx.doi.org/10.1073/pnas.0809227106
http://dx.doi.org/10.1073/pnas.0809227106
http://dx.doi.org/10.1016/j.cub.2005.11.039
http://dx.doi.org/10.1016/j.cub.2005.11.039
http://dx.doi.org/10.1146/annurev.genet.37.050203.103207
http://dx.doi.org/10.1146/annurev.genet.37.050203.103207
http://dx.doi.org/10.1016/j.jtbi.2015.12.027
http://dx.doi.org/10.1016/j.jtbi.2015.12.027

	Characterization of dependencies between growth and division in budding yeast
	Introduction
	Single-cell analysis of size control models in budding yeast 
	Single-cell measurements of Saccharomyces cerevisiae growth and division
	Size-dependent differences in S/G2/M duration between mothers and daughters
	Significant associations observed between size at birth and size accumulated
	Post-G1 dependence between cell-cycle progression and cell growth

	Hierarchical modelling of correlation in budding yeast cell division at the single-cell level
	Observing a cellular branching process
	Likelihood and error model for budding and division observations
	Representing inter-cycle dependence and cell-to-cell variability with an asymmetric branching process
	Hierarchical model fitting uncovers variation in cell-cycle progression across experimental conditions and between mothers and daughters

	Discussion and conclusion
	Data accessibility
	Author’s contributions
	Funding
	Acknowledgements
	References


