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In this paper, the role of gradient micro-inertia
terms η̄‖∇u,t‖2 and free micro-inertia terms η‖P,t‖2

is investigated to unveil their respective effects on
the dynamic behaviour of band-gap metamaterials.
We show that the term η̄‖ ∇u,t‖2 alone is only
able to disclose relatively simplified dispersive
behaviour. On the other hand, the term η‖P,t‖2

alone describes the full complex behaviour of band-
gap metamaterials. A suitable mixing of the two
micro-inertia terms allows us to describe a new
feature of the relaxed-micromorphic model, i.e. the
description of a second band-gap occurring for
higher frequencies. We also show that a split of
the gradient micro-inertia η̄‖∇u,t‖2, in the sense of
Cartan–Lie decomposition of matrices, allows us to
flatten separately the longitudinal and transverse
optic branches, thus giving us the possibility of a
second band-gap. Finally, we investigate the effect
of the gradient inertia η̄‖∇u,t‖2 on more classical
enriched models such as the Mindlin–Eringen and the
internal variable ones. We find that the addition of
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such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin–Eringen
model and three band-gaps in the internal variable model. In this last case, however, non-local
effects cannot be accounted for, which is a too drastic simplification for most metamaterials.
We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic
model remains the best performing one, among the considered enriched models, for the
description of non-local band-gap metamaterials.

1. Introduction
The question of effectively studying the dynamic behaviour of microscopically heterogeneous
materials in the simplified framework of continuum mechanics is a major challenge for
engineering sciences.

Indeed, it is rather clear from the present state of knowledge that classical Cauchy continuum
models are too simplified to describe the behaviour of a huge class of materials in the dynamic
regime. As a matter of fact, almost all real materials show dispersive behaviour with respect to
wave propagation, especially when considering waves with small wavelengths. More precisely,
this means that the speed of propagation of waves is not a constant, as happens for Cauchy
continua, but that it depends on the wavelength of the travelling wave. Such a phenomenon
is comprehensible if one thinks of the fact that the mechanical properties of materials vary when
going down to lower scales. It is then sensible that the speed of propagation of mechanical waves
varies when considering waves with wavelengths which are small enough to be comparable to
the characteristic size of the underlying heterogeneities.

If Cauchy continuum theories are not rich enough to catch these dispersive behaviours,
generalized continuum theories offer the possibility of describing wave dispersion while still
remaining in the framework of continuum mechanics. Although various generalized continuum
models have been introduced to describe dispersion (see the pioneering works [1,2]; for a review
of the use of enriched models in the dynamics of heterogeneous materials we refer to [3]), it is
still not completely clear whether such dispersive properties can be attributed to the constitutive
assumptions which are made on the strain energy density or to the choice of the micro-inertia
terms which can be introduced.

The aforementioned considerations about the dispersive behaviour of materials can be
reformulated with renewed awareness when talking about metamaterials.

Metamaterials are man-made artefacts which are conceived by assembling small structural
elements in periodic or quasi-periodic patterns in such a way that novel mechanical behaviour
emerges. Metamaterials are often studied from both a static (those with enhanced mechanical
properties with respect to traditional materials) [4–6] and a dynamic (those exhibiting band-
gaps, negative refraction, cloaking, focusing, etc.) point of view [7–14]. The characteristic size
of microstructures in such metamaterials usually ranges from micrometres to centimetres, so that
they show dispersive behaviours for wavelengths which are relatively large.

More than this, some metamaterials can exhibit dispersive behaviour, which gives rise to
unorthodox mechanical properties that are not encountered in natural materials. For example,
some metamaterials are able to inhibit wave propagation within certain frequency ranges due to
the presence of an underlying microstructure which is able to resonate locally when excited at
those frequencies or even to remain completely unperturbed. The energy of the incident wave
remains trapped at the level of the microstructure and the macroscopic propagation results to
be inhibited. Evidence of this type has been reported in the literature based on both theoretical
studies [15,16] and experimental results [10,17].

To capture the complex behaviour exhibited by such metamaterials while remaining in the
framework of continuum mechanics, generalized continuum models with enriched kinematics
are needed. This means that extra degrees of freedom must be introduced in the spirit
of micromorphic theories [1,2], which take into account micro-motions at the level of the
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microstructure. More particularly, the kinematic unknowns of such micromorphic models are
usually the macro-displacements u and the micro-distortion tensor P. Well-adapted constitutive
choices must then be introduced for the strain energy density in order to describe accurately the
behaviour of the considered metamaterials in the static regime.

As a last point, appropriate inertia terms must be introduced to model the mechanical
behaviour of metamaterials in the dynamic regime. It is exactly this point that will be the focus
of the present paper: how to choose well-suited micro-inertia terms when dealing with enriched
continuum models of the micromorphic type? How does each of these terms affect the dynamic
behaviour of real band-gap metamaterials? Some hints on the role of micro-inertia in modelling
dispersive behaviour are given in [18] but many fundamental questions remain open.

We will show in this paper that:1

— Gradient micro-inertia terms η̄‖∇u,t‖2 only allow us to describe dispersion either in
classical or in enriched continuum models [18].

— Micro-inertia terms involving time derivatives of the extra kinematic degrees of freedom
η‖P,t‖2 allow us to describe and control optic branches in the dispersion relations of
classical and relaxed micromorphic continuum models [1,2,19–26].

— The relaxed micromorphic model with micro-inertia of the type η‖P,t‖2 is able to describe
the onset of the first band-gaps in mechanical metamaterials [20–24].

— The relaxed micromorphic model with both micro-inertia terms η‖P,t‖2 and η̄‖∇u,t‖2

allows us to account for the first and also for the second band-gap which occurs for higher
frequencies.

— Classical Mindlin–Eringen models with full micro-inertia η‖P,t‖2 and η̄‖∇u,t‖2 allow for
the description of only the first band-gap.

— Internal variable models with full micro-inertia η‖P,t‖2 and η̄‖∇u,t‖2 allow for the
description of three band-gaps, even if some peculiar phenomena related to non-locality
cannot be accounted for and the resulting behaviour is thus not versatile enough to model
realistic metamaterials.

For the first three points a clear treatise is present in the literature, while the last three points
are discussed for the first time in this paper.

Finally, we show that a weighted gradient micro-inertia of the type 1
2 η̄1‖ dev sym ∇u,t‖2 +

1
2 η̄2‖ skew ∇u,t‖2 + 1

6 η̄3 tr(∇u,t)2 allows us to flatten some optic curves independently for
longitudinal and transverse waves. More precisely, if the parameter η̄3 allows us to flatten one
optic curve for longitudinal waves, the parameter η̄2 has an analogous effect for transverse waves.
Such improved control on the dispersion curves will allow for a more effective fitting procedure
on real band-gap metamaterials, since the description of the second band-gap occurring at higher
frequencies becomes accessible. The effects of analogous decompositions on the other terms of
the energy densities have already been studied in [27].

We have already shown in [20] that the relaxed micromorphic model with free micro-inertia
can be successfully used to describe the dynamic behaviour of actual band-gap metamaterials.
In that case, we showed that the model is perfectly able to capture experimental results related
to the transmission coefficient at an interface between a classical Cauchy material and a specific
band-gap metamaterial. The proposed use of the relaxed micromorphic model for the description
of that particular physical system is accurate enough to faithfully reproduce the transmission
coefficient as a function of frequency, also capturing specific internal resonance phenomena that
are characteristic of the targeted metamaterial.

1In order to clarify the nomenclature used in this paper, we call ‘classical continua’ the classical continua of Cauchy for which
the strain energy density depends on the first gradient of the displacement u. When we talk about ‘enriched continua’, we
are referring to continua with enriched kinematics, i.e. continua whose motion is defined by the displacement ‘u’ and the
micro-distortion P. Different sub-classes of enriched continua can be introduced depending on the constitutive choice of the
strain energy density. For example, we talk about ‘classical micromorphic’ media when the strain energy depends on ∇u, P
and ∇P, while we call ‘relaxed micromorphic media’ those for which the strain energy density is a function of ∇u, P and
Curl P.
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Moreover, preliminary studies on other band-gap metamaterials, which will be reported in
papers in preparation or already submitted to other journals, allow us to:

— confirm the effectiveness of the use of the relaxed micromorphic model for the description
of actual band-gap metamaterials via a restricted number of constitutive parameters
(such parameters are true material parameters, i.e. they are constants when fixing the
metamaterial and independent of frequency; see [28]),

— perfectly fit the relaxed micromorphic model on both the dispersion curves of the targeted
metamaterials and the reflection/transmission spectra at material surfaces embedded in
such metamaterials,

— show the specific effect that both free micro-inertia and gradient micro-inertia have
on the dispersion patterns of such specific metamaterials. Indeed, as will be shown in
subsequent works, both types of micro-inertia are needed when one wants to describe,
with sufficient precision, a wide class of realistic band-gap metamaterials.

This paper lays the foundations for the extensive use of enriched continuum models of
the micromorphic type for the characterization of the behaviour of a huge class of actual
metamaterials. The advantage of the use of such models will become evident when the
mechanical behaviour of a consistent number of metamaterials is described with the simple
introduction of a few material parameters which are true material constants, independent of
frequency and not relying on the usual hypothesis of separation of scale.

2. The relaxed micromorphic model
Our novel relaxed micromorphic model endows the Mindlin–Eringen representation with the
second-order dislocation density tensor α = −Curl P instead of the full gradient ∇P.2 In the
isotropic case, the elastic energy reads

W = μe ‖ sym(∇u − P)‖2 + λe

2
(tr(∇u − P))2︸ ︷︷ ︸

isotropic elastic energy

+ μc ‖ skew(∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2︸ ︷︷ ︸

micro self-energy

+ μeL2
c

2
‖ CurlP‖2︸ ︷︷ ︸

isotropic curvature

, (2.1)

where the parameters and the elastic stress are analogous to the standard Mindlin–Eringen
micromorphic model. The model is well posed in the static and dynamic cases, including when
μc = 0 (see [19,25]).

In our relaxed model, the complexity of the general micromorphic model has been decisively
reduced and features basically only symmetric gradient micro-like variables and the Curl of the
micro-distortion P. However, the relaxed model is still general enough to include the full micro-
stretch as well as the full Cosserat micro-polar model (see [26]). Furthermore, well-posedness
results for the static and dynamic cases have been provided in [26], making decisive use of
recently established new coercive inequalities that generalize Korn’s inequality to incompatible
tensor fields [29–33].

The relaxed micromorphic model counts six constitutive parameters in the isotropic case (μe,
λe, μmicro, λmicro, μc, Lc). The characteristic length Lc is intrinsically related to non-local effects
due to the fact that it weights a suitable combination of the first-order space derivatives in the
strain energy density (2.1). For a general presentation of the features of the relaxed micromorphic
model in the anisotropic setting, we refer to [34].

2The dislocation tensor is defined as αij = −(Curl P)ij = −Pih,kεjkh, where ε is the Levi–Civita tensor and the Einstein notation
of sum over repeated indices is used.
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As for the kinetic energy, we consider in this paper that it takes the following form:3

J = 1
2 ρ‖u,t‖2︸ ︷︷ ︸

Cauchy inertia

+ 1
2 η‖P,t‖2︸ ︷︷ ︸

free micro-inertia

+ 1
2 η̄1‖ dev sym ∇u,t‖2 + 1

2 η̄2‖ skew ∇u,t‖2 + 1
6 η̄3 tr(∇u,t)2︸ ︷︷ ︸

new gradient micro-inertia

, (2.2)

where ρ is the value of the average macroscopic mass density of the considered metamaterial,
η is the free micro-inertia density and the η̄i, i = {1, 2, 3}, are the gradient micro-inertia densities
associated with the different terms of the Cartan–Lie decomposition of ∇u.

If the first two terms appearing in equation (2.2) can be directly related to those introduced
by Mindlin [2], the last three terms of the gradient micro-inertia are considered here for the first
time when dealing with enriched continua of the micromorphic type. In fact, gradient micro-
inertia terms are currently used when dealing with second gradient continua [35,36], but never
when considering micromorphic models. Nevertheless, based on our first comparisons with
experimental results [20,28], we are persuaded that gradient micro-inertia is essential also when
considering enriched models of the micromorphic type if the ultimate goal is that of describing
the behaviour of actual physical systems.

The associated equations of motion in strong form, obtained by a classical least action
principle, take the form [22–25]

ρu,tt − Div[I]︸ ︷︷ ︸
new augmented term

= Div[σ̃ ], ηP,tt = σ̃ − s − Curl m, (2.3)

where

I = η̄1 dev sym ∇u,tt + η̄2 skew ∇u,tt + 1
3 η̄3 tr(∇u,tt),

σ̃ = 2 μe sym(∇u − P) + λe tr(∇u − P)1 + 2 μc skew(∇u − P),

s = 2 μmicro sym P + λmicro tr(P)1

and m = μeL2
c Curl P.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.4)

The addition of a gradient micro-inertia to the kinetic energy (2.2) modifies the strong-form
PDEs of the relaxed micromorphic model with the addition of the new term I. Of course,
boundary conditions would also be modified with respect to the ones presented in [20,24]. The
study of the new boundary conditions induced by gradient micro-inertia will be the subject of a
subsequent paper, in which the effect of such extra terms on the conservation of energy will also
be analysed.

3. Plane-wave propagation
Sufficiently far from a source, dynamic wave solutions may be treated as planar waves. Therefore,
we now want to study harmonic solutions travelling in an infinite domain for the differential
system (2.3). We suppose that the space dependence of all introduced kinematic fields is limited

3The Cauchy inertia and free micro-inertia terms appearing in equation (2.2) are classical and already introduced by
Mindlin [2] and Eringen and Suhubi [1], while the gradient micro-inertia terms are introduced here for the first time in a
micromorphic framework. Indeed, Mindlin [2] recognized inertia terms which are similar to our gradient micro-inertia terms
when considering the particular case of the long-wavelength limit of his micromorphic model. Expression (2.2) of the energy
that we propose here is more general (i.e. not restricted to large wavelengths) and indeed the gradient micro-inertia will show
its higher effect for relatively small wavelengths (high wavenumbers).
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to the scalar component X, which is also the direction of propagation of the wave. To do so,
following [20–24,37], we define

PS := 1
3 tr(P), P[ij] := (skew P)ij = 1

2 (Pij − Pji),

PD := P11 − PS, P(ij) := (sym P)ij = 1
2 (Pij + Pji)

and PV := P22 − P33.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.1)

With this decomposition, equations (2.3) can be rewritten as [22,23]

— a set of three equations only involving longitudinal quantities:

ρü1 − 2η̄1 + η̄3

3
ü1,11︸ ︷︷ ︸

new augmented terms

= (2 μe + λe)u1,11 − 2μe PD
,1 − (2μe + 3λe)PS

,1,

ηP̈D = 4
3

μe u1,1 + 1
3

μeL2
c PD

,11 − 2
3

μeL2
c PS

,11 − 2(μe + μmicro)PD

and ηP̈S = 2 μe + 3 λe

3
u1,1 − 1

3
μeL2

c PD
,11 + 2

3
μeL2

c PS
,11

− (2 μe + 3 λe + 2 μmicro + 3 λmicro)PS,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

— two sets of three equations only involving transverse quantities in the ξ th direction, with
ξ = 2, 3:

ρüξ − η̄1 + η̄2

2
üξ ,11︸ ︷︷ ︸

new augmented terms

= (μe + μc)uξ ,11 − 2 μe P(1ξ ),1 + 2 μc P[1ξ ],1,

ηP̈(1ξ ) = μe uξ ,1 + 1
2

μeL2
c P(1ξ ),11 + 1

2 μeL2
c P[1ξ ],11 − 2(μe + μmicro) P(1ξ )

and ηP̈[1ξ ] = −μc uξ ,1 + 1
2

μeL2
c P(1ξ ),11 + 1

2 μeL2
c P[1ξ ],11 − 2 μc P[1ξ ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

— one equation only involving the variable P(23):

ηP̈(23) = −2(μe + μmicro)P(23) + μeL2
c P(23),11, (3.4)

— one equation only involving the variable P[23]:

ηP̈[23] = −2 μc P[23] + μeL2
c P[23],11, (3.5)

— one equation only involving the variable PV :

ηP̈V = −2(μe + μmicro)PV + μeL2
c PV

,11. (3.6)

Once this simplified system of PDEs is obtained, we look for a waveform solution of the type:

v1(X, t) = β ei(kX−ωt)︸ ︷︷ ︸
longitudinal

, vτ (X, t) = γ τ ei(kX−ωt)︸ ︷︷ ︸
transverse

, τ = 2, 3

and v4(X, t) = γ 4 ei(kX−ωt)︸ ︷︷ ︸
uncoupled

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.7)
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where we set for compactness

v1 = (u1, PD, PS), vτ = (uτ , P(1τ ), P[1τ ]), τ = 2, 3

and v4 = (P(23), P[23], PV),

⎫⎬
⎭ (3.8)

where β = (β1, β2, β3)T ∈ C
3, γ τ = (γ τ

1 , γ τ
2 , γ τ

3 )T ∈ C
3 and γ 4 = (γ 4

1 , γ 4
2 , γ 4

3 )T ∈ C
3 are the unknown

amplitudes of the considered waves,4 k is the wavenumber and ω is the wave frequency.
Replacing the waveform solution (3.7) in equations (3.2)–(3.6), it is possible to express the

system as

A1 · β = 0, Aτ · γ τ = 0, τ = 2, 3 and A4 · γ 4 = 0, (3.9)

where

A1(ω, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ω2
(

1 + k2 2η̄1 + η̄3

3ρ

)
+ c2

pk2 ik2 μe

ρ

ik(2 μe + 3 λe)
ρ

−ik
4
3

μe/η −ω2 + 1
3

k2c2
m + ω2

s −2
3

k2c2
m

−1
3

ik(2 μe + 3 λe)/η −1
3

k2c2
m −ω2 + 2

3
k2c2

m + ω2
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

A2(ω, k) = A3(ω, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ω2
(

1 + k2 η̄1 + η̄2

2ρ

)
+ k2c2

s
ik2 μe

ρ
−i

k
ρ

ηω2
r

− ik μe

η
−ω2 + c2

m
2

k2 + ω2
s

c2
m
2

k2

i
2
ω2

r k
c2

m
2

k2 −ω2 + c2
m
2

k2 + ω2
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A4(ω, k) =

⎛
⎜⎜⎜⎝

−ω2 + c2
m k2 + ω2

s 0 0

0 −ω2 + c2
m k2 + ω2

r 0

0 0 −ω2 + c2
m k2 + ω2

s

⎞
⎟⎟⎟⎠ .

Here, we have defined:

cm =
√

μeL2
c

η
, cs =

√
μe + μc

ρ
, cp =

√
2 μe + λe

ρ
,

ωs =
√

2(μe + μmicro)
η

, ωp =
√

(2 μe + 3 λe) + (2 μmicro + 3 λmicro)
η

, ωr =
√

2 μc

η
.

To have non-trivial solutions of the algebraic systems (3.9), one must impose that

det A1(ω, k) = 0,︸ ︷︷ ︸
longitudinal

det A2(ω, k) = det A3(ω, k) = 0,︸ ︷︷ ︸
transverse

det A4(ω, k) = 0.︸ ︷︷ ︸
uncoupled

(3.10)

The solutions ω = ω(k) of these algebraic equations are called the dispersion curves of the
relaxed micromorphic model for longitudinal, transverse and uncoupled waves, respectively.

In what follows we will present the results obtained for the numerical values of the elastic
coefficients shown in table 1 if not otherwise specified.

4Here, we understand that having found the (in general, complex) solutions of (3.7) only the real or imaginary parts separately
constitute actual wave solutions which can be observed in reality.
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Figure 1. Dispersion relations ω = ω(k) for the uncoupled (a), longitudinal (b) and transverse (c) waves of the relaxed
micromorphic model with free micro-inertia η = 10−2 kg m−1. TRO, transverse rotational optic; TSO, transverse shear optic;
TCVO, transverse constant-volume optic; LA, longitudinal acoustic; LO1/LO2, first and second longitudinal optic; TA, transverse
acoustic; TO1/TO2, first and second transverse optic.

Table 1. Values of the parameters used in the numerical simulations (top), and corresponding values of the Lamé parameters
and of the Young modulus and Poisson ratio (bottom), for the formulas needed to calculate the homogenized macroscopic
parameters starting from the microscopic ones (see [34]).

parameter value unit

μe 200 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λe = 2μe 400 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μc = 5μe 1000 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μmicro 100 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λmicro 100 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lc 1 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 2000 kg m−13

λmacro 82.5 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μmacro 66.7 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Emacro 170 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

νmacro 0.28 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following sections, we will explicitly discuss the effect of each micro-inertia parameter
on the dispersion curves of the relaxed micromorphic model. More particularly, we will focus on
the following cases:

— vanishing free micro-inertia η = 0 and non-vanishing gradient micro-inertia,
— both non-vanishing gradient micro-inertia and free micro-inertia.

The remaining case (vanishing gradient micro-inertia η̄ = 0 and non-vanishing free micro-
inertia η �= 0) is the classical case treated for the relaxed micromorphic model in [20–24,37]. For
the sake of completeness, we present in figure 1 the dispersion curves for this case when using
the values of the parameters given in table 1.

It can be found that, when considering the free micro-inertia alone, the relaxed micromorphic
model is able to predict the first band-gap, which usually occurs at relatively low frequencies.
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Moreover, the relaxed micromorphic model is, for the current state of the art, the only continuum
model which is able to describe simultaneously band-gaps and non-local behaviour [20].

In the following sections, we will present the new results concerning the effect of the gradient
micro-inertia terms on the dispersion curves of the relaxed micromorphic model, as well as the
effect of such gradient micro-inertia terms on more classical enriched models (Mindlin, internal
variable).

4. Case of vanishing free micro-inertia η and non-vanishing gradient micro-
inertia η̄

In this section, we discuss the effect on the dispersion curves of enriched continuum models of the
gradient micro-inertia term alone. We will show that the fact of complementing the macro-inertia
ρ‖u,t‖2 only with the gradient micro-inertia η̄‖∇u,t‖2 is a fundamental modelling limitation
since the complexity of the dynamic behaviour of micromorphic models cannot be unveiled.
Nevertheless, the gradient micro-inertia allows us to describe some dispersion which is not
allowed by classical Cauchy models.

(a) Study of the dispersion curves
In the case in which we consider only the gradient micro-inertia η̄ �= 0 to be non-vanishing, the
matrix associated with the longitudinal dynamic system can be expressed as:5

A1(ω, k) =

⎛
⎜⎜⎜⎜⎜⎝

−ω2
(

ρ + k2 2η̄1 + η̄3

3

)
+ (2 μe + λe)k2 ik2μe ik(2 μe + 3 λe)

−ik
4
3

μe
1
3

k2μeL2
c + 2(μe + μmicro) −2

3
k2μeL2

c

−1
3

ik(2 μe + 3 λe) −1
3

k2 μeL2
c

2
3

k2 μeL2
c + ω2

p

⎞
⎟⎟⎟⎟⎟⎠ .

(4.1)

It is possible to remark that the polynomial det A1(ω, k) is of the second order in ω. This
implies that we have a unique positive solution of the equation det A1(ω, k) = 0 when considering
positive k.6 In particular, when plotting such a solution in the (ω, k) plane only one acoustic branch
can be detected (figure 2).7

Comparing the results shown in figure 2 with those presented in figure 1, it can be immediately
noticed that the fact of considering the gradient micro-inertia alone significantly constrains the
behaviour of the considered enriched continuum. Even if the constitutive expression for the strain
energy density W is the same in both figure 2 and figure 1 (see equation (2.1)), the fact of using
a gradient micro-inertia η̄‖ ∇u,t‖2 instead of a free micro-inertia η‖P,t‖2 drastically simplifies the
patterns which are found for the dispersion curves. With reference to figure 2, we can remark
that a unique acoustic branch is found and that the presence of a non-vanishing micro-inertia
parameter η̄3 induces a dispersive behaviour. When the gradient micro-inertia parameters are
all vanishing (η̄1 = η̄2 = η̄3 = 0), this means that only a macro-inertia ρ‖u,t‖2 is present and this
corresponds to an almost constant speed of the travelling waves, which is what happens for the
classical Cauchy case. It can be shown that, considering an adapted choice of the constitutive
parameters for the relaxed micromorphic model with macro-inertia ρ‖u,t‖2 alone, the dispersion
curve obtained is exactly the straight one obtained with the classical Cauchy model.

5We can see from the form of A1(ω, k) that considering an additional micro-inertia η̄ is equivalent to defining an average
macroscopic density depending on the wavelength as ρ∗(k) = ρ + k2η̄. The same can be found for the transverse waves.
6It can be checked that, when considering elastic parameters which guarantee positive definiteness of the elastic energy, the
solutions ω = ω(k) of the characteristic polynomials are always real [37].
7Here and in the sequel, we will always set η̄1 = 0, since we could not isolate a characteristic effect of such parameters on the
dispersion curves.
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Figure 2. Dispersion relationsω = ω(k) for the longitudinal waves of the relaxed micromorphic model with gradient micro-
inertia η̄3 = (0, 3 × 10−3, 3 × 10−2) kg m−1 and η = 0. Black dots indicate the dispersion relations for a first gradient
model with Lamé parameters μmacro and λmacro and the same inertiae ρ and η̄3 (a). The same picture obtained imposing
λmicro = 0 (b): a very slight variation with respect to the first gradient case can be detected. (Online version in colour.)

With a similar reasoning to the one made for longitudinal waves, considering the case η̄ �= 0 for
transverse waves, the matrix associated with the transverse dynamic system can be expressed as

A2(ω, k) =

⎛
⎜⎜⎝

−ω2
(

ρ + k2 η̄1 + η̄2

2

)
+ k2(μe + μc) ik2μe −ik2μc

−ik2μe μeL2
c k2 + 4(μe + μmicro) μeL2

c k2

ik2μc μeL2
c k2 μeL2

c k2 + 4μc

⎞
⎟⎟⎠ .

(4.2)

It is possible to see that the new inertia terms η̄2 play the same role for the transverse waves that
was played by η̄3 for the longitudinal waves. The results concerning the solutions ω = ω(k) of the
characteristic equation det A2(ω, k) = 0 are analogous to the case of longitudinal waves (figure 3).

If the particular case with non-null gradient micro-inertia η̄ �= 0 and null free micro-inertia
η = 0 is considered, the matrix associated with the uncoupled waves reduces to

A4(ω, k) =

⎛
⎜⎝μeL2

c k2 + 2(μe + μmicro) 0 0
0 μeL2

c k2 + 2 μc 0
0 0 μeL2

c k2 + 2(μe + μmicro)

⎞
⎟⎠ , (4.3)

from which it is not possible to derive any dispersion curve, due to the absence of inertia terms.

(b) Afirst conclusion on the effect of gradientmicro-inertia on enriched continuummodels
— When considering a macro-inertia term ρ‖u,t‖2 alone, only one acoustic branch is present

that has an almost constant speed of propagation. Such behaviour is strongly dictated by
the macro-inertia term since the difference on the associated dispersion curves between a
simple Cauchy energy W(∇u ) and an enriched model W = W(∇u , P, Curl P) is small and
vanishing considering an adapted choice of the constitutive parameters.

— When complementing the macro-inertia ρ‖u,t‖2 with a gradient micro-inertia η̄‖∇u,t‖2

the speed of propagation of waves is not constant anymore, but it depends on
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Figure 3. Dispersion relations ω = ω(k) for the transverse waves of the relaxed micromorphic model with gradient micro-
inertia η̄2 = (0, 2 × 10−3, 2 × 10−2) kg m−1 and η = 0. Black dots indicate the dispersion relations for a first gradient
model with Lamé parametersμmacro andλmacro and the same inertiaeρ and η̄t . (Online version in colour.)

the wavelength of the travelling waves. Nevertheless, only an acoustic branch can
be described, independently of the more or less complicated (standard or enriched)
kinematics.

— Complementing the macro-inertia ρ‖u,t‖2 with a free micro-inertia η‖P,t‖2 allows us to
disclose the full rich constitutive behaviour provided by considering an enriched model,
as studied in [20–24,37] and reproduced in figure 1. Two optic branches are observed,
for both longitudinal and transverse waves, in addition to the acoustic ones already
discussed in the previous case (figure 1). The properties of such curves depend both on
the constitutive parameters appearing in the expression of the energy (equation (2.1)) and
on the free inertia parameter η. In this framework of inertia of the type ρ‖u,t‖2 + η‖P,t‖2,
the relaxed micromorphic model is the only non-local, enriched continuum model
allowing for the presence of band-gaps [21].

5. Caseof bothnon-vanishing freemicro-inertiaη andgradientmicro-inertia η̄
In this section, we will discuss the effect of a full inertia ρ‖u,t‖2 + η‖P,t‖2 on the dispersion curves
of the relaxed micromorphic model. We will show that the complementation of the macro-inertia
with both the gradient and free micro-inertia allows for the description of a new feature of the
relaxed micromorphic model, i.e. the onset of a second band-gap occurring at higher frequencies
than the first one.

(a) Dispersion relations
Now, we show in figure 4 the results obtained for non-null micro-inertia η �= 0 with the addition
of gradient micro-inertia η̄ �= 0. Surprisingly, the combined effect of the traditional micro-inertia
η with the gradient micro-inertiae can lead to the onset of a second longitudinal and transverse
band-gap. Indeed, the existence of a horizontal asymptote for the first optic branches in figure 4
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Figure4. Dispersion relationsω = ω(k) of the relaxedmicromorphicmodel for the longitudinalwaveswith freemicro-inertia
η = 10−3 and gradient micro-inertia η̄3 = (3 × 10−4, 3 × 10−3, 3 × 10−2) kg m−1 (a) and transverse waves with micro-
inertia η = 10−3 and gradient micro-inertia η̄2 = (2 × 10−4, 2 × 10−3, 2 × 10−2) kg m−1 (b). (Online version in colour.)

could be shown. Nevertheless, an explicit computation of such asymptotes becomes over-
burdening. For this reason, we limit ourselves to remark that, for all the metamaterials that we
tested up to now, it is always possible to find η̄1, η̄2 and η̄3 that are large enough to have horizontal
asymptotes appearing in graphics considering k ranging from 0 (infinite wavelength) to values of
k corresponding to wavelengths smaller than the size of the unit cell. Moreover, it is possible
to note that the addition of gradient micro-inertiae η̄1, η̄2 and η̄3 has no effect on the cut-off
frequencies, which only depend on the free micro-inertia η (and of course on the constitutive
parameters).

The uncoupled waves in the relaxed micromorphic model with generalized inertia behave in
the same way as in the relaxed micromorphic model, as it is possible to see by analysing the
matrix

A4(ω, k) =

⎛
⎜⎝−ω2 + c2

mk2 + ω2
s 0 0

0 −ω2 + c2
mk2 + ω2

r 0
0 0 −ω2 + c2

mk2 + ω2
s

⎞
⎟⎠ . (5.1)

The resulting dispersion curves are the same as those obtained with the classical relaxed
micromorphic model (figure 1b).

(b) Cut-offs and asymptotic behaviour
To study the asymptotic behaviour of the dispersion curves for the relaxed micromorphic model
with full inertia, let us introduce the following quantities:

ωv =
√

(2 μe + λe) + (2 μmicro + λmicro)
η

, ωl =
√

2 μmicro + λmicro

η
, ωt =

√
μmicro

η
,

ωl̄ =
√

2 μe + λe
2η̄1+η̄3

3

, ωt̄ =
√

2(μc + μe)
η̄1+η̄2

2

.
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As stated in the previous section, the cut-off frequencies are not modified by the insertion of a
gradient micro-inertia term. Therefore, considering the longitudinal waves, we have one acoustic
branch of the dispersion curve and two optic branches with cut-off frequencies:

ωs =
√

2(μe + μmicro)
η

and ωp =
√

(2 μe + 3 λe) + (2 μmicro + 3 λmicro)
η

. (5.2)

On the other hand, the asymptotic behaviour changes in a radical fashion from the classical
relaxed micromorphic model. The horizontal asymptote of the acoustic curve changes and we
have the onset of a new horizontal asymptote for one of the optic branches, the values of which
are, respectively,

ωl,acoustic =

√√√√ω2
l̄

+ ω2
v −

√
(ω2

l̄
+ ω2

v)2 − 4ω2
l̄
ω2

l

2

and ωl,optic =

√√√√ω2
l̄

+ ω2
v +

√
(ω2

l̄
+ ω2

v)2 − 4ω2
l̄
ω2

l

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

No difference is found from the other optic branch that has an asymptote with slope cm, as in
the classical relaxed micromorphic model.

Analogously, considering the transverse waves, we have one acoustic branch and two optic
branches with cut-off frequencies,

ωs =
√

2(μe + μmicro)
η

and ωr =
√

2 μc

η
. (5.4)

Once again, the horizontal asymptote of the acoustic curve changes with respect to the classical
relaxed case and we have an extra horizontal asymptote for one of the optic branches, the values
of which are, respectively,

ωt,acoustic = 1
2

√
ω2

t̄
+ ω2

s + ω2
r −

√
(ω2

t̄
+ ω2

s + ω2
r )2 − 4ω2

t̄
ω2

t

and ωt,optic = 1
2

√
ω2

t̄
+ ω2

s + ω2
r +

√
(ω2

t̄
+ ω2

s + ω2
r )2 − 4ω2

t̄
ω2

t .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.5)

No difference is found from the other optic branch that has an asymptote with slope cm, as in
the classical relaxed micromorphic model.

Finally, no change whatsoever is present in the uncoupled waves that keep having cut-off
frequencies ωs and ωr and oblique asymptote of slope cm.

6. Combined effect of the free and gradient micro-inertiae on more classical
enriched models (Mindlin–Eringen and internal variable)

In this section, we discuss the effect on the Mindlin–Eringen and the internal variable model of
the addition of the gradient micro-inertia η̄‖ ∇u,t‖2 to the classical terms ρ‖u,t‖2 + η‖P,t‖2. We
will show that the previously discussed effect of the parameters η̄2 and η̄3 is maintained for both
the Mindlin–Eringen case and the internal variable case.

Figure 5 refers to the study of the effects of the parameters η̄2 and η̄3 on the dispersion
curves of the classical Mindlin–Eringen micromorphic model. For the sake of completeness,
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Figure 5. Dispersion relationsω = ω(k) of the standard Mindlin–Eringen model for the longitudinal waves with free micro-
inertia η = 10−3 and gradient micro-inertia η̄3 = (3 × 10−4, 3 × 10−3, 3 × 10−2) kg m−1 (a) and transverse waves with
micro-inertia η = 10−3 and gradient micro-inertia η̄2 = (2 × 10−4, 2 × 10−3, 2 × 10−2) kg m−1 (b). (Online version in
colour.)

we recall that the (simplified) strain energy density for this model in the isotropic case takes
the form

W = μe ‖ sym(∇u − P)‖2 + λe

2
(tr(∇u − P))2︸ ︷︷ ︸

isotropic elastic energy

+ μc ‖ skew(∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2︸ ︷︷ ︸

micro self-energy

+ μeL2
c

2
‖∇ P‖2︸ ︷︷ ︸

isotropic curvature

. (6.1)

Recalling the results of [22], we remark that when the gradient micro-inertia is vanishing (η̄1 =
η̄2 = η̄3 = 0) the Mindlin–Eringen model does not allow the description of band-gaps, due to the
presence of a straight acoustic branch. On the other hand, when switching on the parameters η̄2
and η̄3, the acoustic branches are flattened (they take a horizontal asymptote), so that the first
band-gap can be described. The analogous case for the relaxed micromorphic model (figure 1)
allowed instead for the description of two band-gaps.

Figure 6 shows the effect of the addition of the gradient micro-inertia η̄‖∇u,t‖2 on the
behaviour of the internal variable model. We recall [26] that the energy for the internal variable
model does not include higher space derivatives of the micro-distortion tensor P and, in the
isotropic case, takes the form

W = μe ‖ sym(∇u − P)‖2 + λe

2
(tr(∇u − P))2︸ ︷︷ ︸

isotropic elastic energy

+ μc ‖ skew(∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2︸ ︷︷ ︸

micro self-energy

. (6.2)
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Figure6. Dispersion relationsω = ω(k) of the internal variablemodel for the longitudinalwaveswith freemicro-inertiaη =
10−3 and gradient micro-inertia η̄3 = (3 × 10−4, 3 × 10−3, 3 × 10−2) kg m−1 (a) and transverse waves withmicro-inertia
η = 10−3 and gradient micro-inertia η̄2 = (2 × 10−4, 2 × 10−3, 2 × 10−2) kg m−1 (b). (Online version in colour.)

By direct observation of figure 6, we can note that, by suitably choosing the relative position
of ωr and ωp, the internal variable model allows us to account for three band-gaps.

We thus have an extra band-gap with respect to the analogous case for the relaxed
micromorphic model (figure 1), but we are not able to consider non-local effects. Excluding the
possibility of describing non-local effects in metamaterials can be sometimes too restrictive. For
example, flattening the curve which originates from ωr and which is associated with rotational
modes of the microstructure is unphysical for the great majority of metamaterials.

7. Conclusion
In this paper, we have discussed the fundamental role of micro-inertia in enriched continuum
models of the micromorphic type.

We show that if, on one hand, the free micro-inertia term η‖P,t‖2 is strictly necessary to disclose
the full rich behaviour of micromorphic media in the dynamic regime, on the other hand the
gradient micro-inertia η̄‖∇u,t‖2 has the macroscopic effect of flattening some of the dispersion
curves, so allowing for the description of extra band-gaps. In particular, we have shown that:

— In the case of the relaxed micromorphic model, one band-gap can be described when
introducing the free micro-inertia η‖P,t‖2 alone. When introducing a mixed micro-inertia
η‖P,t‖2 + η̄‖∇u,t‖2 two band-gaps can be accounted for by the same model.

— In the case of the Mindlin–Eringen model, no band-gaps are possible with the term
η‖P,t‖2 alone, while the onset of a single band-gap can be granted by the addition of
the extra term η̄‖∇u,t‖2.

— In the internal variable model, two band-gaps are possible with the term η‖P,t‖2 alone,
even if non-localities cannot be accounted for by such a model. When adding the
extra term η̄‖∇u,t‖2 even three band-gaps becomes possible, but the behaviour of the
dispersion curves becomes fairly unrealistic for a huge class of real metamaterials.
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In conclusion, the results presented in this paper confirm the preceding findings according to
which the relaxed micromorphic model is the most suitable enriched model for the simultaneous
description of (i) band-gaps and (ii) non-localities in mechanical metamaterials.

Future work will be devoted to the application of the results obtained in this paper for
the fitting of the proposed model with enriched micro-inertia on real metamaterials exhibiting
multiple band-gaps.
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