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Multi-fidelity modelling enables accurate inference
of quantities of interest by synergistically combining
realizations of low-cost/low-fidelity models with
a small set of high-fidelity observations. This is
particularly effective when the low- and high-fidelity
models exhibit strong correlations, and can lead to
significant computational gains over approaches
that solely rely on high-fidelity models. However, in
many cases of practical interest, low-fidelity models
can only be well correlated to their high-fidelity
counterparts for a specific range of input parameters,
and potentially return wrong trends and erroneous
predictions if probed outside of their validity regime.
Here we put forth a probabilistic framework based
on Gaussian process regression and nonlinear
autoregressive schemes that is capable of learning
complex nonlinear and space-dependent cross-
correlations between models of variable fidelity, and
can effectively safeguard against low-fidelity models
that provide wrong trends. This introduces a new
class of multi-fidelity information fusion algorithms
that provide a fundamental extension to the existing
linear autoregressive methodologies, while still
maintaining the same algorithmic complexity and
overall computational cost. The performance of the
proposed methods is tested in several benchmark
problems involving both synthetic and real multi-
fidelity datasets from computational fluid dynamics
simulations.
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1. Introduction
In recent years, we have been witnessing the emergence of a new wave in computational
science where data-driven approaches are starting to take the centre stage. Among these
developments, the concept of multi-fidelity modelling has been steadily gaining appeal among
the computational science and engineering communities, as it allows one to use simple but
potentially inaccurate models that carry a low computational cost, and effectively enhance
their accuracy by injecting a small set of high-fidelity observations. By exploiting the cross-
correlations between the low- and high-fidelity data via machine learning, this procedure can lead
to significant computational gains and allow us to address problems that would be impossible to
tackle if we solely relied on computationally demanding high-fidelity models. A non-exhaustive
review on multi-fidelity modelling approaches with a particular focus on the areas of uncertainty
propagation, inference and optimization was recently given by Peherstorfer et al. [1]. Other
representative studies that highlight the merits and success of multi-fidelity models in areas
including design, model inversion and uncertainty quantification can be found in [2–4].

Many of these multi-fidelity approaches are based on Gaussian process (GP) regression [5] in
combination with the linear autoregressive information fusion scheme put forth by Kennedy &
O’Hagan [6]. Their success is well documented in cases where low-fidelity models can capture the
right trends, and the low- and high-fidelity model outputs exhibit strong linear correlation across
the input space [2–4]. Moreover, by construction, in cases where such linear correlations cannot be
detected during model training then the algorithm ignores the low-fidelity data and puts all the
weight solely on the high-fidelity observations. Although this is a desirable feature, we later show
that there exist cases where the low- and high-fidelity data exhibit more complex nonlinear and
space-dependent cross-correlations that are very informative, but are inevitably ignored owing
to the simple linear autoregressive structure assumed by the Kennedy and O’Hagan scheme.
Such cases often arise in realistic modelling scenarios where low-fidelity models can typically
be trusted and are well correlated to their high-fidelity counterparts only for a specific range of
input parameters.

Take, for example, the case of multi-fidelity modelling of mixed convection flows past a
cylinder using experimental correlations and direct numerical simulations as put forth in [7], and
revisited in §3c of this paper. There, the low-fidelity experimental correlations stand true, and
are strongly correlated with high-fidelity direct numerical simulations, in the case of aiding flows
where the mixed-convection flow is steady and remains attached to the surface of the cylinder.
However, this is far from true for the case of opposing flows where the dynamics become time
dependent, and the low-fidelity models return erroneous trends and predictions that are off by up
to 30% [7]. Such problems pose the question of designing flexible multi-fidelity algorithms that
can learn more complex cross-correlations between data, safeguard against low-fidelity models
that may provide wrong trends, but are also able to extract any informative behaviour from them.

The scope of this study is situated exactly at this junction. We revisit the classical autoregressive
scheme of Kennedy and O’Hagan, and propose a fundamental extension that results in a new
class of flexible and data-efficient multi-fidelity information fusion algorithms. Specifically, we
adopt a functional composition approach inspired by deep learning, and derive a novel multi-
fidelity scheme that is able to learn complex nonlinear and space-dependent cross-correlations
between data, without sacrificing the algorithmic simplicity and overall computational cost of
the Kennedy and O’Hagan approach.

2. Methods

(a) Regression with Gaussian processes
The main building block of our multi-fidelity modelling approach is GP regression and
autoregressive stochastic schemes (see [5,6,8]). GP regression defines a supervised learning
problem, in which we assume the availability of datasets comprising input/output pairs of
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observations D = {xi, yi} = (x, y) of i = 1, . . . , n that are generated by an unknown mapping f

y = f (x), with x ∈ R
d. (2.1)

The unknown function f (x) is typically assigned a zero mean GP prior, i.e. f ∼
GP( f |0, k(x, x′; θ )), where k is an appropriate kernel function parametrized by a vector of hyper-
parameters θ that gives rise to a symmetric positive-definite covariance matrix Kij = k(xi, xj; θ ),
K ∈ R

n×n. The prior essentially assigns a measure for quantifying pairwise correlations between
the input points (xi, xj) and reflects our prior knowledge on the properties of the function to
be approximated (e.g. regularity, monotonicity, periodicity). Moreover, the eigenfunctions of the
kernel define a reproducing kernel Hilbert space, which characterizes the class of functions that
are within the approximation capacity of the predictive GP posterior mean [5].

The vector of hyper-parameters θ is determined by maximizing the marginal log-likelihood of
the model (see [5]), i.e.

log p(y|x, θ ) = −1
2

log |K| − 1
2

yTK−1y − n
2

log 2π . (2.2)

Assuming a Gaussian likelihood, the posterior distribution p( f |y, X) is tractable and can be used
to perform predictive inference for a new output f∗, given a new input x∗ as

p( f∗|y, X, x∗) =N ( f∗|μ∗(x∗), σ 2
∗ (x∗)), (2.3)

μ∗(x∗) = k∗nK−1y (2.4)

and σ 2
∗ (x∗) = k∗∗ − k∗nK−1kT

∗n, (2.5)

where k∗n = [k(x∗, x1), . . . , k(x∗, xn)] and k∗∗ = k(x∗, x∗). Predictions are computed using the
posterior mean μ∗, while uncertainty associated with these predictions is quantified through the
posterior variance σ 2∗ .

(b) Multi-fidelity modelling with recursive Gaussian processes
The GP regression framework can be systematically extended to construct probabilistic models
that enable the combination of variable fidelity information sources (see [6,8]). To this end,
suppose that we have s levels of information sources producing outputs yt(xt), at locations
xt ∈ Dt ⊆ R

d. We can organize the observed data pairs by increasing fidelity as Dt = {xt, yt},
t = 1, . . . , s. Then, ys denotes the output of the most accurate and expensive to evaluate model,
whereas y1 is the output of the cheapest and least accurate model available. In this setting, the
autoregressive scheme of [6] reads as

ft(x) = ρft−1(x) + δt(x), (2.6)

where ft−1 and ft are GPs modelling the data at fidelity level (t − 1) and t, respectively, ρ is a
scaling constant that quantifies the correlation between the model outputs {yt, yt−1} and δt(xt) is
a GP distributed with mean μδt and covariance function kt, i.e. δt ∼ GP(δt|μδt , kt(xt, x′

t; θt)). This
construction implies the Markov property

cov{ ft(x), ft−1(x′) | ft−1(x)} = 0, ∀x �= x′, (2.7)

which translates into assuming that, given the nearest point ft−1(x), we can learn nothing more
about ft(x) from any other model output ft−1(x′), for x �= x′ [6,9].

A numerically efficient recursive inference scheme can be constructed by adopting the
derivation put forth by Le Gratiet & Garnier [8]. Specifically, this is achieved by replacing the
GP prior ft−1(x) appearing in equation (2.6) with the GP posterior f∗t−1 (x) of the previous inference
level, while assuming that the corresponding experimental design sets {D1,D2, . . . ,Ds} have a
nested structure, i.e D1 ⊆D2 ⊆Ds. In other words, this assumption implies that the training inputs
of the higher fidelity levels need to be a subset of the training inputs of the lower fidelity levels.
According to Le Gratiet & Garnier [8], this scheme is exactly matching the Gaussian posterior
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distribution predicted by the fully coupled scheme of Kennedy & O’Hagan [6]. However, now
the inference problem is essentially decoupled into s standard GP regression problems, yielding
the multi-fidelity posterior distribution p( f t|yt, Xt, f∗t−1

), t = 1, . . . , s, with predictive mean and
variance at each level given by

μ∗t (x∗) = ρμ∗t−1 (x∗) + μδt + k∗nt K
−1
t [yt − ρμ∗t−1 (xt) − μδt ] (2.8)

and
σ 2

∗t
(x∗) = ρ2σ 2

∗t−1
(x∗) + k∗∗ − k∗nt K

−1
t kT

∗nt
, (2.9)

where nt denotes the number of training point locations where we have observed data from the
t-th information source.

(c) Nonlinear information fusion algorithms
(i) General formulation

We generalize the autoregressive multi-fidelity scheme of equation (2.6) to

ft( x) = zt−1( ft−1(x)) + δt(x), (2.10)

where zt−1(·) is an unknown function that maps the lower fidelity model output to the higher
fidelity one. Here, we propose a Bayesian non-parametric treatment of z by assigning it a GP
prior. Because ft−1 in equation (2.6) is also assigned a GP prior, the functional composition of two
GP priors, i.e. zt−1(ft−1(x)), gives rise to the so-called deep GP as first put forth in [10,11], and,
therefore, the posterior distribution of ft is no longer Gaussian. This general formulation allows
us to go well beyond the linear structure of the Kennedy & O’Hagan [6] scheme, and enables
the construction of flexible and inherently nonlinear and non-Gaussian multi-fidelity information
fusion algorithms.

However, this generality comes at a price as the intractability of deep GPs introduces a
training procedure that involves variational approximations, leading to a significant increase
in computational cost and far more complex implementations than standard GP regression.
Although great progress has been made in designing robust and efficient inference methods
for such models [12,13], here we seek to harness their functionality without compromising the
analytical tractability and favourable algorithmic complexity of standard GP regression. To this
end, motivated by the approach put forth by Le Gratiet & Garnier [8], and outlined in §2b, we
replace the GP prior ft−1 with the GP posterior from the previous inference level f∗t−1 (x). Then,
using the additive structure of equation (2.10), along with the independence assumption between
the GPs zt−1 and δt, we can summarize the autoregressive scheme of equation (2.10) as

ft(x) = gt(x, f∗t−1 (x)), (2.11)

where gt ∼ GP( f t|0, kt((x, f∗t−1 (x)), (x′, f∗t−1 (x′)); θt)). The independence assumption between zt−1
and δt follows the construction of Kennedy & O’Hagan [6] and Le Gratiet & Garnier [8]. In our
particular setting, the key implication is that, under this independence assumption, the δt process
gets implicitly ‘absorbed’ into gt in equation (2.11). Moreover, under the assumption of noiseless
data and stationary kernels, this leads to an equivalent Markov property as in equation (2.7),
which translates into assuming that given the nearest point of the nonlinearly transformed lower
fidelity level posterior, i.e. zt−1( f∗t−1 (x)), we can learn nothing more about ft(x) from any other
model output zt−1( f∗t−1 (x′)), for x �= x′ [6,9].

Essentially, this defines a (d + 1)-dimensional map that jointly relates the input space and the
outputs of the lower fidelity level to the output of the higher fidelity model. Note that, under
the assumption of nested training sets (i.e. xt ⊆ xt−1) and noiseless observations {yt, yt−1}, the
training of gt given the available data {xt, yt} reduces to a straightforward maximum-likelihood
estimation problem since the posterior of the lower fidelity level evaluated at xt (i.e. f∗t−1 (xt)) is
by construction a known deterministic quantity.
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Although this scheme can serve as a launch pad for constructing flexible and expressive multi-
fidelity information fusion algorithms, a first observation is that the chosen structure for the
covariance function of gt may not be natural as the inputs f∗t−1 (x) and x belong to inherently
different spaces. Here, we extend the proposed methodology by introducing a more structured
prior for gt that better reflects the autoregressive nature of equation (2.6). To this end, we consider
a covariance kernel that decomposes as

ktg = ktρ (x, x′; θtρ ) · ktf ( f∗t−1 (x), f∗t−1 (x′); θtf ) + ktδ (x, x′; θtδ ), (2.12)

where ktρ , ktf and ktδ are valid covariance functions and {θtρ , θtf , θtδ } denote their hyper-
parameters. The latter can be readily learnt from the data {xt, yt} via the maximum-likelihood
estimation procedure described in §2a (see equation (2.2)) using the kernel ktg . In comparison
with the recursive implementation of the classical Kennedy and O’Hagan scheme, our approach
requires the estimation of (2d + 3) instead of (d + 3) model hyper-parameters, assuming that all
kernels account for directional anisotropy in each input dimension using automatic relevance
determination (ARD) weights [5]. However, this difference is considered negligible, especially
when compared against a full blown deep GP approach that would typically require hundreds
to thousands of variational parameters to be estimated [10]. Throughout this work, all
aforementioned kernel functions are chosen to have the squared exponential form [5] with ARD
weights, i.e.

kt(x, x′; θt) = σ 2
t exp

⎛
⎝−1

2

d∑
i=1

wi,t(xi − x′
i)

2

⎞
⎠ , (2.13)

where σ 2
t is a variance parameter and (wi,t)d

i=1 are the ARD weights corresponding to fidelity
level t. These weights allow for a continuous ‘blend’ of the contributions of each individual
dimension in xt as well as the posterior predictions of the previous fidelity level f ∗

t−1, and they
are learnt directly from the data when inferring ft.

The structure of the kernel kgt now reveals the effect of the deep representation encoded
by equation (2.11). In particular, gt(x, f∗t−1 (x)) projects the lower fidelity posterior f∗t−1 onto a
(d + 1)-dimensional latent manifold, from which we can infer a smooth mapping that recovers the
high-fidelity response ft. As we demonstrate in §3a, this allows us to capture general nonlinear,
non-functional and space-dependent cross-correlations between the low- and high-fidelity data.
Another interesting observation arises if one assumes that gt admits a separable form, i.e.
gt(x, f∗t−1 (x)) = ρ(x)f∗t−1 (x). This can be obtained by simply using a linear kernel for ktf (x, x′; θtρ ),
thus resulting to a simplified scheme that may account for space-dependent cross-correlations
while still allowing for ρ(x) to be treated in a fully probabilistic and non-parametric fashion. In
the special case where ρ(x) assumes a deterministic parametric form, one can also recover the
recursive multi-fidelity scheme proposed by Le Gratiet [14]. However, in the scarce data regime
typically encountered in multi-fidelity applications, such parametric approaches may introduce
a large number of parameters and are likely to struggle during model training. In summary, the
general form of equation (2.11) results in a fundamental extension of the schemes put forth by
Kennedy & O’Hagan [6] and Le Gratiet [14] and only involves the optimization of a minimal set
of hyper-parameters, while maintaining the same overall algorithmic complexity.

(ii) Prediction and propagation of uncertainty

The first level of the proposed recursive scheme corresponds to a standard GP regression problem
trained on the lowest fidelity data {x1, y1}, and, therefore, the predictive posterior distribution
is Gaussian with a mean and covariance given by equations (2.4) and (2.5) using the kernel
function k1(x1, x′

1; θ1). However, this is not the case for the subsequent recursive levels for which
the posterior distribution is no longer Gaussian, because predictions need to be made given
a test point (x∗, f∗t−1 (x∗)). To this end, note that f∗t−1 (x∗) will generally follow a non-Gaussian
distribution, except for the case t = 2 where it remains Gaussian. Therefore, for all cases with
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t ≥ 2, we have to perform predictions given uncertain inputs, where the uncertainty is propagated
along each recursive step. Then, the posterior distribution is given by

p( f∗t (x∗)) := p( ft(x∗, f∗t−1 (x∗))|f∗t−1 , x∗, yt, xt)

=
∫

p( ft(x∗, f∗t−1 (x∗))|yt, xt, x∗)p( f∗t−1 (x∗)) dx∗, (2.14)

where, for clarity, we have omitted the dependence on all hyper-parameters, whereas p( f∗t−1 (x∗))
denotes the posterior distribution of the previous level (t − 1). In all results presented in this work,
we compute the predictive mean and variance of all posteriors p( f∗t (x∗)), t ≥ 2, using Monte Carlo
integration of equation (2.14).

(iii) Workflow and computational cost

Here we provide a summary of the workflow and comment on the computational cost associated
with each step. Given a set of nested and noiseless multi-fidelity input–output pairs {xt, yt} sorted
by increasing level of fidelity t = 1, . . . , s, we proceed as follows.

Step 1: we train the GP regression model of equation (2.1) on the lowest fidelity data {x1, y1} via
maximizing the marginal log-likelihood of equation (2.2) using the kernel function k1(x1, x′

1; θ1).
This step scales as O(n3

1) and results in a Gaussian predictive posterior distribution as summarized
by equations (2.4) and (2.5). This unfavourable cubic scaling with the number of training points
is a well-known limitation of GP regression, but it has been effectively addressed in the works of
Snelson & Ghahramani [15] and Hensman et al. [16]. In this work, we have limited ourselves to
datasets of moderate size, and we have employed the standard GP training procedure outlined
in §2a.
Step 2: for all subsequent fidelity levels t = 2, . . . , s, we train the (d + 1)-dimensional GP model
of equation (2.11) on the data {(xt, f∗t−1 (xt)), yt} via maximizing the marginal log-likelihood of
equation (2.2) using the kernel of equation (2.12). Here, we have used the gradient descend
optimizer L-BFGS [17] using randomized restarts to ensure convergence to a global optimum.
Again, this step scales as O(n3

t ), but we expect that, as the fidelity of our data is increased (hence
the cost of their acquisition is also increased), nt becomes smaller. In any case, because this step
still corresponds to a standard GP regression problem, any scalable procedure for training GPs
(like the aforementioned works of [15,16]) can be readily applied. In all examples presented in
this work, we have used the squared exponential kernel function with ARD weights to account
for directional anisotropy in higher dimensions [5].
Step 3: once the last recursive GP surrogate has been trained on the highest fidelity data
{(xs, f∗s−1 (xs)), ys}, we can compute the predictive posterior mean and variance at a given set of
test points x∗ by Monte Carlo integration of equation (2.14). This requires sampling the posteriors
at each level p( f∗t (x∗)), t = 1, . . . , s, and propagating each output as an input to the next recursive
level. Although sampling each GP posterior scales linearly with the data O(nt), and all operations
can be vectorized (or parallelized) across multiple test points, the number of required samples
to achieve a desired level of accuracy could increase exponentially fast with the dimension
of x∗ and/or the total number of fidelity levels s. In such cases, we may employ a Gaussian
approximation of all posterior distributions corresponding to t > 2, and use the closed form
expressions for prediction with uncertain inputs derived by Girard et al. [18].

3. Results
In this section, we provide results for three different numerical experiments. Our goal here
is twofold. First, we have chosen each experiment in order to highlight different aspects
of the proposed methodology, and demonstrate its effectiveness on both synthetic and real
datasets. Second, we aim at establishing some simple benchmark cases that the broader scientific
community can use to test and validate different approaches to multi-fidelity modelling. In
the following, we compare three different regression models: (i) the standard single-fidelity
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Figure 1. A pedagogical example: (a) exact low- and high-fidelity functions (see equations (3.1) and (3.2)), along with the
observations used for training the multi-fidelity GP models. (b) Exact solution versus a single-fidelity GP regression trained on
the 14 high-fidelity observations. (Online version in colour.)

GP regression (denoted by GP), (ii) the proposed nonlinear autoregressive multi-fidelity GP
regression (denoted by NARGP), and the classic autoregressive multi-fidelity scheme put forth
by Kennedy & O’Hagan [6] assuming a constant cross-correlation factor ρ (denoted by AR1).
All methods presented here were implemented using the open source library GPy, developed at
the University of Sheffield, UK [19].

(a) A pedagogical example
Let us start by considering a deceptively simple example involving two levels of fidelity in
one input dimension. The low-fidelity model fl is simply chosen to be a sinusoidal wave with
four periods, whereas the high-fidelity model fh is obtained through a transformation of the
low-fidelity expression involving a non-uniform scaling and a quadratic nonlinearity, i.e.

fl(x) = sin(8πx) (3.1)

and

fh(x) =
(

x −
√

2
)

f 2
l (x). (3.2)

Now, assume that we have access only to a finite number of noiseless observations of fl,
supplemented by a small number of noiseless observations of fh. In particular, the training sets
D1 and D2 are created by randomly sampling the low- and high-fidelity functions at n1 = 50 and
n2 = 14 points, respectively, making sure that D1 ⊆D2. Figure 1a provides a plot of the low- and
high-fidelity functions, along with the points available for training the multi-fidelity GP models.

Using this dataset, our goal now is to reconstruct the high-fidelity signal as accurately as
possible. A first intuitive approach would be to train a standard, single-fidelity GP regression
using the high-fidelity training points. As summarized in figure 1, this approach cannot provide
a reasonable reconstruction of fh as the training data are too scarce to resolve the variability in
the underlying signal. Here we must note that this result could improve if one had carefully
chosen the GP covariance function. For this specific case, an additive combination of a linear and
a periodic kernel would have led to a more expressive GP prior. However, here we focus on a
more general approach, hence we deem that further elaborating on manual kernel design is out
of the scope of this work.
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the given multi-fidelity training set. (b) Exact solution versus the AR1 posterior mean and 2 standard deviations for the same
multi-fidelity training set. (Online version in colour.)
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Figure 3. A pedagogical example: (a) cross-correlation structure between the exact low- and high-fidelity signals versus the
cross-correlation learnt by theNARGP andAR1 schemes trained on the givenmulti-fidelity dataset. (b) Log − L2 error between
the exact high-fidelity signal and the computed posterior mean of the GP, AR1 (constant and input-dependent ρ) and NARGP
models, as the number of high-fidelity training points is increased. Shaded regions represent 1 standard deviation from the
mean. (Online version in colour.)

Next, we present the result obtained using the proposed NARGP multi-fidelity algorithm
trained on exactly the same high-fidelity data, supplemented with a set of low-fidelity
observations, as shown in figure 1a. Evidently, as presented in figure 2a, the NARGP posterior
distribution is able to provide an accurate reconstruction of the high-fidelity signal and provide
sensible predictive uncertainty estimates as quantified by the 2-standard-deviations band.
Remarkably, the NARGP algorithm is able to correctly predict the true underlying signal even
at regions where no high-fidelity data are available and also the low-fidelity model is erroneously
providing the opposite trend (e.g. for 0.25 < x < 0.35). This is possible owing to the structure in
the NARGP prior (see equation (2.12)) that enables learning the nonlinear and space-dependent
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cross-correlation between the low- and high-fidelity data, as shown in figure 3a. This is a key
feature in constructing resilient multi-fidelity modelling algorithms, as it provides a mechanism
to safeguard against wrong trends in the low-fidelity data, while still being able to distil useful
information from them. In contrast, the classical AR1 scheme lacks the flexibility needed to
capture such complex cross-correlations, and therefore it is not able to use the low-fidelity data.
As seen in figure 2b this results in a fit that fails to recover the exact solution, and is qualitatively
similar to the single-fidelity GP regression of figure 1b, albeit with less confident uncertainty
estimates. In general, these estimates offer a natural quantification of model inadequacy, and
constitute one of the most appealing arguments in favour of using GPs over other non-Bayesian
approaches (e.g. neural networks, support vector machines).

In order to asses the sensitivity of our results on the number of training points used, we
have performed a series of experiments by fixing the number of low-fidelity training points to
n1 = 50, and increasing the number of high-fidelity points n2 from six to 30 in increments of 2.
In all cases, we performed 100 independent repetitions, for each of which we chose the training
points at random in the interval x ∈ [0, 1]. Figure 3b shows the computed L2 error between the
predicted and exact high-fidelity signal. Evidently, the NARGP multi-fidelity algorithm is able
to learn the exact solution with reasonable accuracy using only a minimal number of high-
fidelity training points. This significantly outperforms the AR1 scheme, as the latter is unable to
leverage the low-fidelity data, and yields a prediction similar to a single-fidelity GP approach. For
completeness, we also append the results obtained using the AR1 scheme with a space-dependent
cross-correlation factor ρ(x). This case can be viewed as the non-parametric generalization of the
scheme proposed by Le Gratiet [14] that considered ρ(x) to assume a given parametric form.

Figure 4 elucidates the key features of the NARGP algorithm that allow for capturing complex
nonlinear, non-functional and space-dependent cross-correlations. In particular, note how the
low-fidelity model is projected onto the nonlinear latent manifold G that is inferred using the
deep non-parametric representation of equation (2.11). The G manifold is able to correctly capture
the cross-correlation structure imposed by the quadratic nonlinearity and the non-uniform scaling
in equation (3.2). This effectively ‘disentangles’ the complex functional relation between the low-
and high-fidelity data, and is able to recover the target high-fidelity function fh(x) by discovering
a smooth mapping from the G manifold to the high-fidelity data.

(b) Multi-fidelity approximation of the Branin function
Next, we consider an example with three levels of fidelity in two input dimensions. The highest
fidelity data are generated via sampling the non-stationary Branin function [2,20], whereas
the medium- and low-fidelity data are obtained through expressions that involve complex
transformations of the Branin function, including non-uniform scalings, shifts in phase and
amplitude, as well as nonlinearities. The approximation of the Branin function is a popular
benchmark problem for surrogate-based modelling and optimization [2,20], and our goal here is
to provide a simple yet non-trivial set-up that can be used as a benchmark for future development
of multi-fidelity modelling algorithms. In particular, consider the following three functions,
indexed by increasing level of fidelity:

f3(x) =
(

−1.275x2
1

π2 + 5x1

π
+ x2 − 6

)2

+
(

10 − 5
4π

)
cos(x1) + 10, (3.3)

f2(x) = 10
√

f3(x − 2) + 2(x1 − 0.5) − 3(3x2 − 1) − 1 (3.4)

and f1(x) = f2(1.2(x + 2)) − 3x2 + 1. (3.5)

The two-dimensional surfaces corresponding to these expressions are illustrated in figure 5. These
surfaces exhibit complex nonlinear spatial cross-correlations as depicted in figure 6 for 1000
randomly sampled points in x ∈ [−5, 10] × [0, 15].



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160751

...................................................

0

–0.5

–1.0

f h
(x

)

fl (x)
x

–1.5
1

0

–1
0

0.5

1.0

(b)

(a)

manifoldG
exact correlation
exact low-fidelity fl (x) and
nested training data (14 points)

exact high-fidelity fh (x) and
nested training data (14 points)
projection of fl (x) on
nested high-fidelity

G

training data (14 points)

Figure 4. A pedagogical example: the NARGP algorithm can capture complex nonlinear, non-functional and space-dependent
cross-correlations by inferring the nonlinear latent manifold G that governs the functional relation between the inputs x and
the outputs of the low- and high-fidelity models fl(x) and fh(x), respectively. (a) The low-fidelity model is projected onto the
nonlinear latent manifold G that is inferred using the deep non-parametric representation of equation (2.11). (b) The high-
fidelity function fh(x) is recovered by a smoothmapping from theGmanifold to the high-fidelity data. (Online version in colour.)
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Given a set of noiseless multi-fidelity observations of f1, f2 and f3, our goal now is to train
a multi-fidelity surrogate that can approximate the highest fidelity surface f3. In particular, we
consider a nested experimental design consisting of n1 = 80 low-fidelity, n2 = 40 medium-fidelity
and n3 = 20 high-fidelity observations, randomly chosen in [−5, 10] × [0, 15].

Following the steps outlined in §2c(iii), we train a NARGP multi-fidelity surrogate, and
compare the resulting predictions against the classical AR1 multi-fidelity scheme, as well as
against standard single-fidelity GP regression trained on the highest fidelity data. Our results, as
summarized in figure 7, indicate that the NARGP surrogate was able to accurately reconstruct
the highest fidelity response, resulting in a relative error of 0.023 measured in the L2 norm.
Moreover, the computed posterior standard deviation provides a good a posteriori error estimate
for the maximum absolute deviation from the exact solution, as illustrated in figure 7b,c. Such
estimates can be very informative both in terms of assessing the quality of the surrogate model
and for actively selecting more training points if the computational budget permits [21,22]. Taken
together, these results confirm that the NARGP surrogate was able to successfully infer the
complex cross-correlations in the multi-fidelity dataset, and return a sensible predictive posterior
distribution.

On the other hand, the AR1 multi-fidelity surrogate returns predictions that are about one
order of magnitude less accurate, measuring a relative error of 0.112 in the L2 norm. This lower
accuracy is also reflected by the higher uncertainty estimates quantified by the AR1 posterior
standard deviation which is also one order of magnitude higher than the maximum variance



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160751

...................................................

300

250

200

150

100

50

0

–50

–100
–100 0 100

posterior mean
200

GP
AR1
NARGP
exact

300

f3

Figure 8. Multi-fidelity approximation of the Branin function: scatter plot of the NARGP, AR1 and GP posterior means versus
the exact response f3, evaluated at 1000 randomly chosen test points. (Online version in colour.)

returned by the NARGP model. However, in this example, the AR1 scheme was able to return
a better prediction than the single-fidelity GP regression, which yields a relative L2 error of
1.09. This suggests that the AR1 algorithm was indeed able to distil some useful information
from the lower fidelity data; however, this was not sufficient for it to provide predictions of
comparable accuracy to the NARGP model. In summary, the scatter plot of figure 8 provides
a visual illustration of the predictive capabilities of the NARGP, AR1 and GP surrogates in
comparison with the exact response f3, evaluated at 1000 randomly chosen test locations.

(c) Multi-fidelity modelling of mixed convection based on experimental correlations
and numerical simulations

This example aims to showcase the capabilities of the proposed framework in a practical
application setting, involving multi-fidelity modelling of mixed convection flows. In a recent
study by Babaee et al. [7], the authors employed a multi-fidelity approach based on the recursive
AR1 scheme of Le Gratiet et al. [8] to build a data-driven response surface for the Nusselt
number for mixed convection flow past a circular cylinder based on experimental correlations and
numerical simulations. A schematic of the problem set-up, along with representative snapshots of
the temperature solution obtained through high-fidelity direct numerical simulations, is depicted
in figure 9a–d. The Nusselt number (Nu) is a non-dimensional quantity defined by the ratio
of convective to conductive heat transfer normal to a boundary where heat transfer takes
place [7]. In general, mixed convection occurs when natural convection and forced convection
mechanisms act together to transfer heat. In such situations, the Nusselt number is a function
of the non-dimensional Reynolds (Re) and Richardson (Ri) numbers, as well as the angle φ

between the forced and natural convection directions [7]. Although the cases of aiding convection
(φ = 0◦) and opposing convection (φ = 180◦) have been widely studied and accurate experimental
correlations for relating the Nusselt number as a function of (Re, Ri) exist, the regimes resulting
from intermediate values of 0 < φ < 180 are relatively underexplored [7].

In [7], the authors employed the AR1 multi-fidelity scheme to synergistically combine
available low-fidelity experimental correlations with a relatively small number of high-fidelity
direct numerical Navier–Stokes simulations of mixed convection flow over a cylinder, in order
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to construct a stochastic response surface for Nu = f (Re, Ri, φ) that significantly improves the
empirical correlations used so far in mixed convection modelling. It was shown that, although the
empirical low-fidelity expressions are relatively accurate for cross-flows with aiding convection
(i.e. small Richardson numbers and φ < 90◦), they become increasingly more inaccurate for
opposing flows (φ < 90◦) and Ri � 1. Using the AR1 model to perform multi-fidelity information
fusion, the authors concluded that, in the latter regime of the input space, low-fidelity correlations
are not informative and high-fidelity simulations are needed to accurately capture the nonlinear
map Nu = f (Re, Ri, φ). We believe that this behaviour is probably the result of the limited
expressivity of the AR1 scheme employed in [7], in which a constant cross-correlation parameter
ρ was not sufficient to fully capture the correlation structure between the low- and high-fidelity
data. This motivates the use of the proposed NARGP algorithm in the hope that it can accurately
learn the space-dependent nonlinear cross-correlations between the low- and high-fidelity data,
and return a more accurate predictive distribution.

Here, we test the performance of NARGP using the same multi-fidelity dataset employed
by Babaee et al. [7]. The dataset comprises 1100 evaluations of the low-fidelity experimental
correlations for mixed convection put forth by Hatton et al. [23], and 300 high-fidelity direct
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numerical simulations of the Navier–Stokes equations past a circular cylinder, as reported in [7].
This nested set of low- and high-fidelity data is created by sampling the input space defined
by Re ∈ [0, 100], Ri ∈ [0, 1] and φ ∈ [0, 180] using a space-filling Latin hypercube strategy [2].
Following the workflow presented in §2c(iii), we have trained NARGP, AR1 and GP surrogates
on a selection of different training sets, constructed by randomly selecting a subset of low-fidelity
and high-fidelity training points, where we fix n1 = 200 and increase n2 from 18 to 36 in increments
of 2. To asses the accuracy of each surrogate, we have validated their predictions against the
remaining high-fidelity observations that were not used for training. Figure 10a summarizes the
results of this experiment by depicting the relative L2 error between the validation data and
the posterior mean predictions of each surrogate as the number of high-fidelity training data
are increased. Evidently, the ability of the NARGP model to learn the space-dependent cross-
correlations between the low- and high-fidelity data yields consistently more accurate predictions
for all cases. Moreover, the NARGP model is able to reach accuracy levels that are the same as or
better than the AR1 scheme, but with a considerably smaller set of high-fidelity training data.
This is attributed both to being more flexible in capturing complex interdependencies in the data
as well as to having a very compact parametrization that can be meaningfully trained in data-
scarce scenarios. Finally, the scatter plot of figure 10b provides a visual assessment of the accuracy
of each surrogate model when trained on n1 = 200 low- and n2 = 20 high-fidelity observations,
respectively.

4. Conclusion
We have presented a novel framework for multi-fidelity modelling using GPs and nonlinear
autoregressive schemes. The proposed methodology can be viewed as a fundamental
generalization of the classical AR1 scheme put forth by Kennedy & O’Hagan [6], enabling us
to learn complex nonlinear and space-dependent cross-correlations in multi-fidelity datasets.
We demonstrated the performance of this new class of learning algorithms through a series of
benchmark problems involving both synthetic and real datasets. In all cases, the method was
able to distill useful information from complex nonlinearly correlated data and outperformed
the classical AR1 scheme in terms of predictive accuracy even with less training data. Being able
to safeguard our computations against low-fidelity models that may provide wrong trends—
a scenario that is quite likely in realistic modelling situations—our nonlinear scheme naturally
allows for more flexible and data-efficient multi-fidelity information fusion. Finally, as the
difference in computational cost and algorithmic complexity of training the AR1 and NARGP
algorithms is negligible, we believe the latter can serve as a drop-in replacement that greatly
enhances the capabilities of probabilistic multi-fidelity models.

A drawback of this work stems from the fact that we limited ourselves to cases with noiseless
data. Although this is a realistic assumption for all cases considered here—and also in the general
context of multi-fidelity modelling of computer codes—this choice rules out many scenarios
where noise in the training data plays an important role (e.g. when distilling information from
experimental measurements). Here we chose not to address this issue primarily because our aim
was to provide a clear presentation of the main ideas behind the proposed framework. However,
our methods can be extended to handle noisy or missing data by leveraging the recent work of
Damianou & Lawrence [24] on semi-described and semi-supervised learning. In fact, the recursive
nature of the proposed algorithm results in independent GP regression problems at each fidelity
level, and allows for the straightforward application of any GP model variant (e.g. heteroscedastic
GPs for dealing with correlated noise [25], stochastic variational inference GPs for dealing with
big data [16], warped GPs for dealing with non-stationary and discontinuous data [26]).
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