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For precise motor control, we must be able to not only initiate movements with

appropriate timing, but also stop them. The importance of stopping tended to

be overlooked in research in favour of studying movement itself, so we are still

only beginning to understand the neural basis of action cancellation. However,

the development of models of behaviour in a wider range of tasks, and their

relation to neural recordings has provided great insight into the underlying

neurophysiology. Here we focus on developments of the linear approach to

threshold with ergodic rate (LATER) model, relating these to complementary

neurophysiological studies. It is tempting to consider that there may be a uni-

fying mechanism for cancelling impending decisions in many contexts and

how future efforts may clarify this possibility.

This article is part of the themed issue ‘Movement suppression: brain

mechanisms for stopping and stillness’.
1. Introduction
How we cancel our upcoming movements is a fundamental question in modern

neuroscience. Cancelling, or stopping, actions is not just one process, but can

occur in a number of different contexts [1,2]. To appreciate the importance of

this behaviour, one only has to consider an everyday example of a driver about

to press on the accelerator as the traffic light turns green before a pedestrian

suddenly appears on the street—an immediate cancellation of the driver’s foot

movement is needed to avoid a disaster! Recent investigations into how

the brain enables us to do this have been highly informative, and we focus our

discussion on eye movement paradigms for stopping.
2. Measuring and modelling stopping behaviour
There are many kinds of stopping behaviour [1,2]. In order to study stopping be-

haviour in the laboratory, whether the subjects are humans or animals, a simple

experimental task is needed. The best known and most established such task is

called ‘countermanding’, also known as the ‘Stop signal task’. In this paradigm,

all trials start with the presentation of a ‘Go’ stimulus that a subject has been pre-

viously instructed to make a movement (such as a saccade) towards. On a subset

of trials, a Stop signal is presented after the Go stimulus with a delay called the

Stop signal delay. The subject is instructed to withhold the impending movement

if the Stop signal is presented, but in some cases—failed Stop trials—they are

unable to do so. An early model for countermanding proposed two neural

units racing towards a threshold in Stop trials [3]. The idea of a neural decision

unit accumulating activity towards threshold is well established in decision

theory, with the accumulation itself representing sensory information providing

evidence for a particular decision. In the case of countermanding, the first unit

represents the ‘Go’ decision, and the second one (the Stop unit) starts accumulat-

ing after the Stop signal delay if the Stop signal is presented. Failed Stop trials can

then be explained by the Go unit reaching threshold before the Stop unit and

therefore escaping inhibition, whereas successfully cancelled trials are due to

the Stop unit winning the race. A feature of this model is that the two units in

this model move towards threshold independently from one another.
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Figure 1. The LATER model. (a) A single LATER unit that accumulates a decision signal at a linear rate until threshold is reached, at which point the decision is
made. (b) Simulated reciprobit plot showing the distribution of saccadic reaction times in a simple step task as predicted by a single LATER unit.
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The independent race model does not posit definitively

what the underlying neural mechanism for stopping might

be, and later neurophysiological studies of neural correlates

of Stop and Go processes in the frontal eye fields and

superior colliculus (SC) of monkeys have suggested that a

network of interacting rather than independent neurons

may generate the countermanding behaviour [4,5]. Boucher

et al. [6,7] made an attempt to reconcile these neurophysiolo-

gical findings with race model analysis by proposing the

‘interactive race model’ for countermanding, in which stop-

ping occurs through a network of mutually inhibitory Go

and Stop neurons [6,7]. As with the independent model

from Logan, Cowan and Davis [3], the Go unit is activated

following a short processing delay after stimulus presen-

tation, and the Stop unit is later activated after another

processing delay if the Stop signal is also presented. The

key difference here is that the two neural units laterally inhi-

bit one another. Model simulations implied that the Stop unit

would strongly inhibit Go unit very late, therefore produc-

ing reaction times (RTs) almost identical to those of the

independent race model.

Salinas and Stanford have recently proposed a similar

model that explains the behavioural data and neural recordings,

the difference being that their model puts emphasis on the time

needed to detect the Stop signal; in their model, a saccadic

decision signal begins to rise towards a threshold, but presen-

tation of the Stop signal leads to detection with a particular

speed and reliability; the Go signal then declines towards zero

[8,9]. The similarity between these various models of counter-

manding highlights an important problem in the field: ‘model

mimicry’; it is difficult to distinguish reliably between them

by simple behavioural and neuronal measurements, without

further complex analysis [10,11]. Further work is also needed

to determine whether similar models can explain cancelling

of limb in addition to eye movements [12].
3. The LATER model
A type of decision-making model that has become increas-

ingly popular is the ‘linear approach to threshold with

ergodic rate’ (LATER) model [13–16]. In this model, a poten-

tial decision is represented by a unit that starts from a

baseline point (S0) and then rises linearly towards threshold
(ST) with a mean rate of rise (m) and variance (s) (figure 1).

The mean rate of rise is determined by the rate at which infor-

mation for a particular decision is supplied, rather like

accumulating evidence for a given hypothesis; this decision

signal represents the log likelihood of the hypothesis that a

particular decision should be made (such as looking towards

a visual stimulus if it is present). An important feature is that

although the mean rate of rise is fixed for a decision unit,

the rate of rise varies randomly between trials, allowing the

model to account for the random variability in reaction

times. The popularity of this model stems largely from its

conceptual simplicity and ability to simulate reaction time

(RT) data for decision tasks with relatively few free par-

ameters, as well as being grounded in Bayesian decision

theory. Early evidence for the accuracy of LATER in repre-

senting neural processes came from a behavioural study in

which subjects made saccades to visual targets with varying

prior probabilities of the target appearing. Altering the prior

probability S0 should result in a specific change, a ‘swivel’, in

the subjects’ RT distribution; and indeed this is what was

observed [13]. The LATER model itself has been recently

reviewed elsewhere [1,2,17].

In a study aimed at modelling countermanding with

LATER, Hanes & Carpenter [18] measured saccadic latencies

in a group of human subjects performing this task. They

found that the Stop signal reaction times of these human sub-

jects were between 125 and 145 ms. Using a race model with

two LATER units that independently rise towards threshold

linearly with a rate that varies randomly between trials,

they were able to accurately capture not only the error rates

and mean reaction times, but also the entire statistical distri-

butions of these RTs in quantitative detail. The Go unit is

initiated by the Go stimulus following a short delay, and

the Stop unit would similarly be activated by the Stop

signal, with the winner of the race between these two units

determining whether the impending saccade would suc-

cessfully be cancelled or not. The entire RT distributions

were simulated with only four parameters—mgo, sgo, mstop

and sstop. The accuracy with which this model predicted

the data is a strong testimony to the power of this type of

model in simulating human decision-making behaviour.

Although modelling data based on mean reaction times or

a small number of ‘quintiled’ reaction times can be perfectly

acceptable in many cases, this approach can often be too
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Figure 2. Early saccades. There are two separate latency distributions: a main
distribution, and an early one; the two are modelled by separate, competing
LATER units, with the parameters m and s for the early unit being very large.
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simplistic and lead to oversights in important points in the

data that could point towards alternative underlying neural

processes. In particular, plotting full RT distributions, such

as with 10 ms bins, allows one to discern subtle differences

at particularly short or long latencies where populations of

responses may not follow the main distribution, and which

tend to be hidden in conventional linear plots. For example,

this approach allows ‘early’ saccades to be seen more clearly

(figure 2). It is important to note these extra populations of

responses because a thorough model of the data should

also be able to account for these [19].
4. Complex stopping experimental tasks
Although countermanding is the simplest and most studied

experimental task requiring cancellation of impending actions,

other tasks have also more recently emerged as likely to require

stopping. These tasks differ, not only in terms of the actual

choices involved in that there are different potential responses,

but also in terms of the model architecture and therefore the

underlying neural decision processes. One such task is the

Go/No-Go task. A study aimed at devising a race model for

the behaviour in this task employed two different coloured

visual stimuli: the human subjects were instructed to make a

saccade towards the target if it was red but not to do so if the

target was blue [20,21]. Subjects made a variable number of

errors, saccades towards the target even if it was the wrong

colour. Observing the distributions of reaction times of correct

and error responses, it is evident that at lower latencies the

two distributions are essentially identical, suggesting indiscri-

minate responding to the target irrespective of whether or not

it is the correct colour. With longer latencies, the number of

errors tends to saturate, whereas the correct responses become

more frequent. This suggests that the subjects are using the

colour information of the target to decide whether to make a

saccade or not only at longer latencies, most likely because

there is insufficient time for cortical processing of this colour

information at very short reaction times. An important feature

noticed from the RT distributions that would have otherwise

been missed had only mean RTs been analysed is the bimodal-

ity in correct responses: there were early and late responses,
often with a short period in between when very few responses

occurred (see figure 3, for an example). This feature made it

clear that to model the decision-making behaviour, a Stop

unit is needed, accounting for the complete suppression of

error responses after the delay for cortical processing of

colour and for the bimodality in the RTs for correct responses.

The Go/No-Go task model is therefore very similar to that of

countermanding, both having a Go and a Stop unit, except in

this task there is also a further decision Go unit for the correct

colour target that is activated after a cortical colour processing

delay of 60 ms [22,23]. This is a satisfying demonstration of

how sensory information (colour) may be used by the brain

during the decision-making process in order to modify its

outcome.

Another more complex eye movement task that involves

cancelling an unwanted action in favour of a more considered

one is the anti-saccade task. This requires the subject to look

in the opposite direction to a given visual stimulus: if, for

example, a target appears on the left, the subject must resist

the tendency to look left and instead look right. As before,

subjects tend to make errors (saccade towards the target

instead of away from it) probably because the tendency to

look towards a novel stimulus is prepotent. Early neural

decision models for anti-saccades involved a simple race

between two Go units—one for the pro-saccade towards the

target, and one for the anti-saccade, with the winner in a

trial determining whether an anti-saccade or error would

occur [24–27]. However, a more recent study investigating

the complete RT distributions of both errors and anti-

saccades has attempted to simulate the data in quantitative

detail [28]. Each subject performed both a control step

(pro-)saccadic task as well as the anti-saccade task, allowing

the best fit parameters for m and s of the main decision unit

to be estimated. These parameters for each individual were

then used to model their corresponding anti-saccade data for

two key units—the anti-saccade and pro-saccade unit. In this

way, the model was highly constrained, with much of the be-

haviour already predicted by the RT distributions in control

trials. A feature of this model was that the anti-saccade

unit was delayed for an extra 50 ms before beginning to rise,

corresponding to the time needed for the cerebral cortex to

invert the spatial location of the target (needed for knowledge

of the anti-saccade target) [29]. A simple two-unit model,

however, failed to capture RT distributions accurately but

did so with the inclusion of a Stop unit that would suppress

the pro-saccade unit. The key observation in the latency distri-

butions here is that there was a significant bimodality in

responses, with many early errors and then mostly late anti-

saccades, suggesting there is a distinct process suppressing

errors before anti-saccades arise. This provided strong justifica-

tion for the importance of stopping in the complex decision

task and further highlights the need for detailed quantitative

analysis for supporting neural models (figure 3).

In trials of the anti-saccade task where the subject fails to

cancel the impending pro-saccade instead of making an anti-

saccade, they almost always make a correction saccade after

the error. Analysis of the RT distributions for these corrections

reveals that they are faster than making anti-saccades afresh.

The original LATER anti-saccade model successfully predicted

these with just a simple modification to the model requiring no

extra free parameters: the anti-saccade unit resets and starts

racing towards threshold after the pro-saccade unit wins the

initial race because the Stop unit failed to reach threshold
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Figure 3. RT distributions of Stop tasks. (a) Histogram of latencies of type A and B responses in the Wheeless task; note the bimodality in the distribution, with a
gap between the end of most A responses and the beginning of most B responses, suggestive of a Stop unit acting on the A responses. This bimodality is also
common to the Go/No-Go task and anti-saccades. (b) Reciprobits plots of countermanding, Wheeless and anti-saccade responses demonstrating that error responses
typically occur earlier than correct ones. Note: the data presented here were from one individual subject, previously unpublished.
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quickly enough. Since there is then no need for further cortical

processing for inversion of spatial location, it is clear why the

correction anti-saccade is faster than normal anti-saccades

[30,31], and is an example of a seemingly complex stopping

task that can be accurately conceptualized by just a few

simple racing decision processes.

A further advanced decision task requiring stopping is the

Wheeless task [32]. This is closely related to the anti-saccade

task in that one must stop an impending response in favour

of another, but is slightly less artificial because here the desired

response is triggered by an external stimulus (rather than an

internal one as for anti-saccades). This paradigm (and closely

related variants such as the redirect task) has been used in clini-

cal studies to identify deficits in Stop signal reaction times in

patients with Parkinson’s disease and schizophrenia [33,34].

The subject is presented with a visual target either on the left

or right and has to make a saccade directly to the target; for

some trials, this is the end, but for others a second visual stimu-

lus is presented in the opposite direction following a delay (D).

No specific instructions are given to the subjects beforehand,
who are only told to follow the visual targets with their eyes.

Once again, their behaviour is stochastic: in some experimental

trials, they direct their eyes to the first target and then to the

second (a type A response), whereas in others they make a

saccade straight to the second target (B). As might be expected,

the bigger D is, the greater the probability of making a type A

response. The importance of including a Stop unit in general

two-step paradigms of this kind was highlighted in earlier

models [35,36]. Initial LATER model attempts with a Stop

unit and two Go units (one for each possible response) failed

to account for the unexpectedly high rates of cancellation in

Wheeless; even if the rate of rise of the Stop unit was infinite,

it would not predict this high stopping efficiency in certain

circumstances. The implication is that stopping is given a

certain advantage in speed over the other two decision units

here; it was found that if the Stop unit started rising towards

threshold 10–20 ms before the Go units, then the model accu-

rately predicts both error rates and full RT distributions

(figures 3 and 4). It is quite possible, therefore, that the

neural Stop processes can be activated particularly fast in
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conditions when it is important to cancel impending errors

quickly [37]. Indeed, recent neural recordings have

emphasized that onset of neural activity is also crucial

in determining RT and therefore should be care-

fully considered in designing accurate neural race models of

behaviour [8,38].

A critical question arising from these recent modelling

efforts is whether each of these tasks employs its own separ-

ate, neurally distinct Stop decision process, or whether the

Stop unit is actually identical in the various paradigms. Com-

paring the tasks, there is a fundamental difference in how the

Stop process is triggered: in countermanding, Go/No-Go and

Wheeless tasks, there is an external Stop signal of some sort

presented in a given trial that instructs the subject that they

need to cancel the impending eye movement, whereas with

anti-saccades this Stop signal is generated internally because

the subject knows before a given trial that they need to sup-

press their tendency to look at the visual stimulus. Could this

difference in how stopping is triggered mean that the Stop

decision process itself is different, at least in anti-saccades com-

pared with the other tasks? The observation that, in the

Wheeless task, the Stop unit can be activated faster than

expected in certain conditions again raises the possibility that

there is another Stop decision unit acting in these circumstances.

The alternative explanation is that the difference lies purely in

the amount of processing needed to detect and evaluate the

Stop signal in each case, but that the neural Stop unit is itself

identical. Although with current evidence we cannot answer

these questions, it is tempting to consider that all these tasks

embody a single Stop mechanism racing against Go units,

and further that the values of its parameters (m and s) are

rather similar between the tasks.
5. Neural evidence
Race models of decisions in simple as well as complex tasks

have generated much interest in their possible implemen-

tation by the underlying neural processes of Stop and Go.

Early neuronal recordings in the macaque frontal eye fields

revealed movement neurons whose activity rises essentially

linearly before the saccade, and fixation cells whose activity

increased following the Stop signal and before the Stop

signal RT, suggesting potential neuronal correlates of the

decision units in typical models [4]. It is likely that these sig-

nals are passed downstream to the SC, where neurons fire

less when saccades are successfully countermanded with

the implication that their firing must reach a threshold level

to trigger a saccade, although of course the SC may simply

be reflecting the activity of the cortical regions [5].

The neural origin of the Stop process has proved to be

more elusive than for Go. Some light has been shed on this

by Stuphorn & Schall [39], who have performed an elegant

experimental study in macaque monkeys to investigate the

role of the supplementary eye field (SEF) in countermanding.

The SEF has close anatomical connections with the oculomotor

system (specifically with the frontal eye field, basal ganglia, SC

and brainstem), potentially allowing modification of eye move-

ments, although these connections are unlikely to be strong

enough to directly initiate saccades. However, previous work

had already established that the SEF demonstrates error- and

reward-related signals. Stuphorn and Schall weakly stimulated

different regions of the SEF while the monkeys performed a
saccadic countermanding task; for many regions, microstimu-

lation resulted in fewer failed Stop trials, as well as increasing

the delay in mean saccade latency for Go trials. This effect was

specific for countermanding, since the same stimulation did

not increase saccade latency for monkeys performing a

simple step (Go) task. These effects on error rates and latencies

in countermanding for SEF stimulation can potentially be

explained by a more active Stop unit in the independent race

model, which would suppress faster errors and therefore

lengthen mean reaction times (due to a reduction in faster

saccades that are now cancelled). This study therefore demon-

strates a role for the SEF in saccade inhibition in the saccade

unit, rather akin to the Stop unit of race models. A related

study in humans using fMRI showed that the frontal eye fields

were more active on Stop signal trials irrespective of successful

cancellation, whereas the SEF was more active specifically in

Stop signal trials that were successfully cancelled [40].

The basal ganglia, which of course also contain oculomo-

tor as well as more general motor machinery, represent

another region where neural representations of both Stop

and Go decision units have been implicated. In a counter-

manding study in rats that used lateral head movements to

indicate decisions, Schmidt et al. [41] recorded from neurons

of various basal ganglia nuclei. Subthalamic nucleus (STN)

neurons responded to the Stop cue irrespective of whether

the rat successfully cancelled the impending head movement.

In contrast, neurons in the substantia nigra (SNr) downstream

from the STN responded to the Stop signal only in trials

where stopping was successful, and it is significant that this

neuronal response occurred before the Stop signal RT,

suggesting it is early enough to influence behaviour and

potentially cause the stopping itself. The proposal is therefore

that the STN–SNr pathway represents the Stop unit of coun-

termanding. Further recordings have demonstrated that

striatal input to the SNr caused pauses in SNr firing correlat-

ing with Go trials, suggesting the striatal–SNr pathway is

related to the Go unit. In this way, groups of neurons in these

two regions could be seen to race against one another, much

akin to the two decision units of race models, with the motor

outcome of a given trial depending on which pathway wins

the race in that particular trial. This is an excellent example of

how early race models have in many cases been vindicated

by careful neural recordings in subjects performing decision

tasks. One important question arising from this study is

whether these basal ganglia pathways are the decision-

makers themselves or alternatively (and more likely) they are

a reflection of decisions being made in higher regions, such

as the SEF for the case of stopping [4,30,31,39]. Moreover, it

is unclear whether this race between Stop and Go processes

in the basal ganglia also generates behaviour in other types

of stopping task, such as anti-saccades and the Wheeless para-

digm. As discussed earlier, it is not known whether the Stop

unit in these various tasks is the same or whether each task

has its own neurally distinct Stop process, and careful neural

recording studies in these other Stop paradigms are needed

to clarify whether this race in the basal ganglia can also explain

them in a similar fashion.
6. Conclusion and future directions
The importance of cancelling impending undesired actions

cannot be overestimated: just imagine how many ‘wrong’
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actions we would perform if there were no neural mechanisms

to suppress them. Through simple laboratory paradigms such

as countermanding, we have been able to conceptualize

neural Stop processes with race decision models. These have

progressed from those that characterized very basic features

of behaviour such as mean reaction times and error rates,

to more recent ones that are now able to fully predict the

quantitative details of behaviour with surprising accuracy.

Neurophysiological recordings have been crucial in justifying

the processes posited in these models as well as attempting to

localize where in the brain these are occurring. It is still unclear

where in the brain these processes originate, and it may well be

that the decision units in race models are represented by func-

tionally linked groups of neurons in distributed regions of the

brain that must act together in order to generate a decision.

Moreover, the recent work identifying distinct race pathways

in the basal ganglia for countermanding raises questions as to

whether there is just one Stop process that can also apply to

more complex behaviours like anti-saccades, or whether there

are multiple Stop processes represented in the brain for cancel-

ling unwanted actions in different contexts, although this

important question has undoubtedly been considered before
[42–46]. In my opinion, the fact that recent work has demon-

strated that these seemingly disparate Stop tasks can all be

conceptualized in a relatively simple manner, with similar

race models, suggests that there may well be a unifying mech-

anism for stopping impending movements. Of course, the

tasks discussed in this paper all involve eye movements,

which provide useful paradigms for experimental study in a

laboratory, but more work would be needed to determine

whether similar results and conclusions are drawn from limb

movements. Further insights will undoubtedly be gleaned

from detailed modelling of Stop behaviours, correlation with

neural recordings in these more advanced tasks and com-

parison of data between these tasks to identify potentially

unifying decision processes. In particular, studies with larger

numbers of subjects that each perform several of these Stop

tasks and have their behaviour simulated with race models

will allow unprecedented valid comparisons of the neural

processes underlying these paradigms.
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