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The ability to stop ongoing movement is fundamental to animal survival.

Behavioural arrest involves the hierarchical integration of information

throughout the forebrain, which ultimately leads to the coordinated inhib-

ition and activation of specific brainstem motor centres. Recent advances

have shed light on multiple regions and pathways involved in this critical

behavioural process. Here, we synthesize these new findings together with

previous work to build a more complete understanding of the circuit mech-

anisms underlying suppression of ongoing action. We focus on three specific

conditions leading to behavioural arrest: goal completion, fear and startle.

We outline the circuitry responsible for the production of these behaviours

and discuss their dysfunction in neurological disease.

This article is part of the themed issue ‘Movement suppression: brain

mechanisms for stopping and stillness’.
1. Introduction
An animal will stop ongoing movement for a variety of reasons, including reach-

ing a goal, freezing during perceived threat and stopping to evaluate a surprising

stimulus. In each of these situations, the animal will terminate the current action,

such as locomotion or grooming, and transition its energy into postural control.

This requires coordination between the neural signals that cease the current

action and those that enable and maintain postural control during motionless-

ness. There is no single circuit in the brain responsible for the termination of

movement. Instead, multiple neural systems appear to carry out the process

depending on the specific set of circumstances that require it [1–8].

In this review, we highlight recent work on the neural circuits implicated in

different types of behavioural arrest. We start with action termination upon

goal completion, which putatively involves inhibitory control of downstream

motor circuitry by the basal ganglia (BG). This type of motor suppression

should be clearly distinguished from action cancellation (or countermanding),

which occurs at or near the initiation of action and is reviewed elsewhere in

this issue. We next consider fear-induced freezing, which is controlled by the

amygdala and involves both activation of muscle tone and inhibition of other

motor programmes. Following this, we examine circuits involved in startle-

induced behavioural arrest that arises from surprising visual or auditory

stimuli. Finally, we discuss diseases in which this circuitry malfunctions leading

to aberrant arrest and movement symptoms.
2. Termination of action upon goal completion
One of the most common instances in which ongoing movement must be

terminated is when an animal reaches a goal, such as a food or water source.

However, few studies have looked specifically at this aspect of natural behav-

iour. A strong candidate system for action termination upon goal completion

is the BG, which are a set of subcortical nuclei that are involved in adaptive

motor planning and action selection [4,5,9–12]. Two major circuits through

the BG originate from two populations of GABAergic striatal projection neur-

ons: direct pathway medium spiny neurons (dMSNs) and indirect pathway
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Figure 1. Simplified basal ganglia circuit diagram shown in sagittal view with many connections omitted for simplicity. Blue arrows and dots, direct pathway and
dMSNs; red arrows and dots, indirect pathway and iMSNs; green arrows, BG output; black arrows, thalamic or cortical connections. GPe, globus pallidus, pars externa;
GPi, globus pallidus, pars interna; MLR, mesencephalic locomotor region; SC, superior colliculus; SNr, substantia nigra, pars reticulata; STN, subthalamic nucleus.
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medium spiny neurons (iMSNs) [10,13–15]. dMSNs directly

inhibit the output nuclei of the BG, the substantia nigra

pars reticulata (SNr) and globus pallidus internal portion

(GPi), whereas iMSNs disinhibit the SNr/GPi through a

series of intermediate nuclei (figure 1). The two pathways

have long been hypothesized to serve opposing functions

[16,17], and recent optogenetic experiments have established

opposite behavioural effects of activating each of these circuits

[18–21]. The SNr and GPi contain tonically active GABAergic

projection neurons that regulate motor behaviour through inhi-

bition of regions downstream of the BG, including the

thalamus, superior colliculus, dorsal raphe and brainstem

motor centres [4,22–25]. A simple model for BG regulation

of target regions is that activation of dMSNs releases tonic

inhibition by BG output, allowing action initiation, whereas

iMSN activity increases inhibition and suppresses motor pro-

grammes, enabling an animal to stop. Indeed, a pause in the

firing rate of some SNr neurons precedes increased firing in

the superior colliculus and saccades in monkeys [26]. However,

both increases and decreases in the firing of BG output neurons

are observed during limb movements [27,28] or optogenetic

activation of BG circuitry [29], reflecting more complex control

of downstream circuitry.

More recently, the effects of dMSN and iMSN stimulation

on brainstem regions involved in locomotion were tested.

Consistent with the model proposed above, Roseberry et al.
[25] showed that optogenetic activation of dMSNs resulted

in a selective increase in firing of glutamatergic neurons in

the mesencephalic locomotor region (MLR), whereas iMSN

activation resulted in decreased firing of MLR glutamatergic

neurons. This modulation of the glutamatergic population

was quite homogeneous, in contrast to the heterogeneous

effects of dMSN and iMSN stimulation on SNr neurons

[29], indicating functional specificity in projections from BG

output. However, much remains unknown, particularly

with regard to modulation of thalamocortical circuits,

where BG circuit activation exerts complex actions that

depend on time, cell location, functional specialization and

training [30].
Although the basal ganglia have long been implicated in

movement initiation, their role in termination of motivated

behaviours is less appreciated. Indeed, there are cells in the

striatum that become active at the termination of a motor

sequence or at the cessation of locomotion during goal-directed

behaviour [31–37]. As the striatum receives input from regions

involved in motor planning and outcome evaluation [8,38–40],

and the SNr/GPi send outputs that regulate downstream motor

structures [9,24,41], it would follow that information about task

progress could be integrated here to cease ongoing action. In

support of this, patients with Parkinson’s disease (PD), which

strongly disrupts striatal circuitry and function [10,11,13],

have deficits in terminating ongoing movement [42,43]. In

addition, optogenetic activation of dMSNs during lever-

pressing causes mice to continue lever-pressing beyond the

number of presses required to receive reward [44]. Taken

together, the stop signals seen in the striatum and other BG

nuclei appear to be critical for terminating ongoing movement.

The simplest explanation for how the BG could stop move-

ment would be an increase in the activity of the indirect

pathway. This would lead to enhanced firing in SNr/GPi

and the inhibition of downstream structures. However, many

aspects of this simple model are not borne out by the available

evidence. First, both pathways are active simultaneously

during movement [35,45] and at the cessation of movement

[35]. Second, Jin et al. [35] found that more optogenetically

identified dMSNs encoded the termination of a lever-pressing

sequence than identified iMSNs. Indeed, termination of move-

ment could be considered an action in and of itself that requires

increased drive to muscles to counteract ongoing behaviour

and subsequently stabilize posture. The basal ganglia are there-

fore likely to coordinate both the initiation and termination of

actions through similar processes.
3. Fear-induced freezing
Perhaps the most widely studied form of behavioural arrest

occurs during conditioned fear paradigms [2,3]. When
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Figure 2. Schematic of fear-induced behavioural arrest pathways. Much of
the amygdala circuitry is omitted for simplicity. ACx, auditory cortex; BLA,
basolateral amygdala; CeL, centrolateral nucleus of the amygdala; CeM, cen-
tromedial nucleus of the amygdala; Mc, magnocellular nucleus; MLR,
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presented with a cue (CS) predicting an aversive stimulus,

animals will stop moving and their muscles will become

rigid in preparation for escape [6,46,47]. In the context of be-

havioural arrest, it is important to note that these are two

separate processes: one to suppress movement and one to

induce the characteristic muscle tone associated with freezing

[48]. This freezing state has been used for decades to measure

an animal’s state of fear [49–52]. A principal structure in the

expression of freezing is the central nucleus of the amygdala

(CeA; figure 2) [53–56]. This structure is considered the

output of the amygdala and projects to the hypothalamus,

periaqueductal grey (PAG), and pontine reticular formation

among other structures [57]. The CeA can be divided into

two separate subregions, a lateral portion (CeL) and a

medial portion (CeM) [3,58]. It appears that both structures
regulate fear behaviours through their projections to

downstream areas [56,59].

A recent study elegantly mapped how fear-induced freez-

ing could result in increased muscle tone. CeM projection

neurons were previously shown to be excited by a CS pre-

dicting a foot shock [55]. The authors demonstrated that

GABAergic cells within the ventrolateral PAG (vlPAG) receive

inhibitory input from CeM projection neurons and that acti-

vation or inhibition of these GABAergic neurons suppresses

or drives freezing, respectively (figure 2). These GABAergic

cells, in turn, synapse onto local glutamatergic cells within

the PAG that target pre-motor neurons in the magnocellular

nucleus and drive freezing-like behaviours [60]. This pathway

increases muscle tone during presentation of a CS and likely

participates in generating the rigid muscles characteristic of

the freezing state [46,61]. The purpose of rigid muscles

during freezing is still unknown, but it may enable faster

escape than if only the postural and axial muscles used for

regular standing were active [6,62]. It is interesting to note

that in the same mouse line, activation of vlPAG GABAergic

neurons increased the probability that a mouse would enter

non-rapid eye movement (NREM) sleep [63]. These divergent

results indicate that further work is needed to dissect out

which neurons are responsible for these effects.

Although in theory, freezing could override ongoing

actions, current evidence suggests that suppression of ongoing

actions in response to a CS is a separate process. For example,

suppression of lever-pressing has been shown to be inde-

pendent of the PAG [48], but could still involve the CeL.

Somatostatin-expressing (SOMþ) cells in the CeL have been

shown to project to the paraventricular nucleus of the thalamus

(PVT) and the vlPAG [64]. The PVT lies adjacent to the intra-

laminar nuclei of the thalamus, which was recently shown to

be a site for behavioural arrest induced by stimulation of glyci-

nergic fibres from the pontine reticular formation (PRF; figure 2)

[65]. This could be part of an arrest coordination centre as PRF

terminal stimulation also resulted in cortical slow wave activity,

which is a hallmark of the stationary state [66]. In a follow-up

study using optogenetics, CeL SOMþ cells were shown to be

sufficient to suppress licking behaviour to an aversive cue [64].

Interestingly, Penzo et al. [64] also found that inhibiting SOMþ
cells in the CeL increased a locomotor response to aversive

stimuli. Our laboratory recently demonstrated a direct connec-

tion from the CeA to glutamatergic neurons in MLR using

cell-type-specific rabies viral tracing methods [25,67]. These

glutamatergic cells are both necessary and sufficient to drive

locomotion, and it is possible that SOMþCeL neurons inhibit the

MLR directly to stop locomotion during freezing. Finally,

the CeM projects preferentially to direct pathway neurons

in the striatum [38], which have been shown to initiate move-

ment and locomotion [18,25]. As CeM neurons are GABAergic

[57], this provides yet another pathway through which a CS

could induce fear-mediated behavioural suppression in multiple

brain regions through the CeA (figure 2).

Another mechanism for coordinated suppression of be-

haviour could rely on coherent oscillations across brain

regions. While cortical slow-wave activity has usually been

thought to result from the freezing state [68], recent evidence

suggests that slow waves in the mPFC can actually drive

freezing. Karalis et al. [61] took these results further and

demonstrated that 4 Hz oscillations originating in the dor-

somedial prefrontal cortex (dmPFC) could predict the

freezing state and temporally lead similar oscillations in the
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basolateral amygdala (BLA; figure 2). Driving this specific

frequency using channelrhodopsin in parvalbumin-expressing

interneurons in the dmPFC also resulted in increased freezing

behaviour. It is interesting to note that specific basolateral

amygdala (BLA) neuron populations also project to specific

portions of the dmPFC and that these projection patterns

specify whether a BLA neuron encodes fear expression or

extinction [59]. These reciprocal connections could be part of

an integrated signal that evaluates the necessity of freezing

against the opportunity for other actions such as escape that

could be mediated by the dmPFC projection to the striatum

for coordinating orientation and locomotor initiation [6,38].

Together, these data suggest that brain-wide coordinated

signalling involving both activation and inhibition of specific

structures and cell types is necessary to execute fear-induced

freezing. In spite of recent work in this area [3,58], many

questions remain as to how these signals are integrated to

result in behavioural arrest.
 2:20160197
4. Startle-induced behavioural arrest
When an animal is surprised by a bright light or loud noise, it

activates the startle reflex, which causes a strong increase in

muscle tone and termination of ongoing behaviour. This is

an unconscious action that occurs prior to cognitive assessment

of a situation, but which can be modulated by conditions such

as fear or experience [7,69–71]. Most studies have focused on

the jump-like reflex that occurs during presentation of the sur-

prising stimulus, but recent work has looked at the arresting

effects of startle in ongoing behaviour.

Light-induced startle is relatively unstudied [72]. It is

important to differentiate it from freezing behaviour observed

under other visually aversive stimuli such as looming objects,

which produce long-lasting immobilization. The temporary

arrest behaviour seen during light-induced startle is transient

and the animal rapidly transitions back to the behaviour it

was performing previously [72]. Using a head-fixed prep-

aration, Liang et al. [72] were able to demonstrate a novel

pathway from visual cortex (V1) to the superficial superior col-

liculus (SC) involved in locomotor inhibition during light-

induced startle. Silencing the SC eliminated the locomotor

arrest, while silencing V1 input decreased the amount of loco-

motor inhibition indicating that while the SC is required for the

behaviour, V1 may be playing a modulatory role. The SC

receives direct input from the retina [73] and directly interfaces

with spinally projecting motor systems [4,9,74,75], making it an

excellent substrate to carry out visually induced startle arrest.

In addition, the SC is thought to be part of the defensive

response system along with the PAG [76–78]. In agreement

with this role, the superficial SC was shown to contain a popu-

lation of parvalbumin-positive excitatory neurons that could

drive defensive behaviours including freezing and escape

[79]. This population projects to the parabigeminal nucleus of

the brainstem, which neighbours the MLR and PRF and has

been implicated in the startle response [7]. In both these neigh-

bouring regions, GABAergic neuron activity has been shown

to halt ongoing behaviour and locomotion [25,65], suggesting

a generalized role for GABAergic activity in this area.

Acoustic-mediated startle is generated through a separate

pathway beginning at the cochlear nucleus (VCN) [7,70,80].

The VCN then synapses with the ventrolateral lemniscus,

which in turn connects to reticulospinal neurons in the
caudal portion of the PRF [80,81]. Little work has been

done on the arresting effects of acoustic startle; however,

both the SC [80] and the MLR [82] become active during the

acoustic startle response independently of the reflexive

action. GABAergic neurons in the MLR could pause ongoing

behaviour while glutamatergic neuron activity remains just

below running threshold so a quick transition to locomo-

tion could occur if deemed necessary after the brief pause in

behaviour [25].
5. Behavioural arrest in disease
A number of neurological diseases involve aberrant activity in

the regions and pathways described in §§2–4. Perhaps most

prominently, PD arises from a progressive loss of dopamine

neurons and is characterized by basal ganglia circuit dysfunc-

tion [10,11,13,16,17]. Patients with the disease can have

difficulty both initiating and stopping movement [42,43].

Among the most effective treatments for PD is deep brain

stimulation (DBS) of the subthalamic nucleus (STN; figure 1),

which sends excitatory inputs to the SNr and GPi. DBS in the

STN was shown to increase performance in the stop-signal

reaction time test [83], likely by increasing the inhibitory

output of SNr or GPi neurons. It is important to note that

this is action cancellation, a different form of behavioural

arrest. Nevertheless, the same circuitry could be active in

both forms of arrest. Interestingly, dopamine signalling in the

dorsal striatum was recently shown to decrease rapidly

during locomotion termination [84]. Given the poor perform-

ance in stopping tasks in PD patients, it is tempting to

speculate that loss of phasic dopamine signals is involved in

both initiation and termination of actions.

Cataplexy is a condition related to narcolepsy in which a

person suddenly loses muscle tone while maintaining

consciousness. Strong emotional or surprising stimuli can

trigger these attacks, potentially through the amygdalar–

PAG–ventromedial medulla circuit outlined above, which

can aberrantly drive REM sleep circuitry and trigger sleep

paralysis [56,60,85]. When these sleep paralysis circuits fail,

the result is REM sleep disorder, which is characterized by

acting out dreams and hallucinations [85,86]. Paradoxically,

increased activity in the CeA, which occurs during highly

emotional stimuli [87], should result in disinhibition of glutam-

atergic vlPAG neurons projecting to the PRF and spinal cord

[60]. This would result in increased, rather than decrea-

sed, muscle tone, the opposite of what is seen in cataplexy. In

addition, vlPAG GABAergic neurons that were shown to

drive NREM sleep [63] would be inhibited. It is therefore

likely that the circuitry underlying cataplexy involves other

brain regions. One candidate region is the MLR, which has

been hypothesized to be involved in postural control and

muscle tone, in addition to its well-established role in locomo-

tion [88–90]. Indeed, cataplexy can be produced by lesions of

the MLR [88,89], and DBS of the MLR in PD patients can

increase awareness during moderate stimulation or drive

sleep during over-stimulation [91]. This observation, along

with newly found connections from the amygdala [25,67]

(figure 2), suggests that the MLR could be involved in cataplec-

tic attacks. The CeA projects most strongly to glutamatergic

neurons in the MLR [25], and it is these glutamatergic neurons

that drive locomotion, project to the spinal cord [88] and modu-

late brain state [92,93]. An inhibitory signal from the CeA could
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inhibit MLR glutamatergic neurons during strong emotional

stimuli to shut down all of these functions.
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6. Conclusion
The findings outlined here summarize how multiple circuits

and pathways can result in behavioural arrest or cessation

of ongoing movement. When the circuits involved in this pro-

cess become damaged or malfunction, they can have highly

detrimental effects. It should be noted that while we separ-

ated the circuits based on hypothesized function, these

circuits are most likely acting in parallel and simultaneously
during all phases of behavioural arrest, adding specific or

even redundant contributions. Future work will continue to

refine and tease out these contributions while integrating

them into the overall function of the nervous system.
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