
Condensation and Demixing in Solutions of
DNA Nanostars and Their Mixtures
Emanuele Locatelli,*,† Philip H. Handle,‡ Christos N. Likos,† Francesco Sciortino,‡,§

and Lorenzo Rovigatti†,⊥

†Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
‡Dipartimento di Fisica, Sapienza-Universita ̀ di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
§Istituto Sistemi Complessi (CNR-ISC), Via dei Taurini 19, 00185 Roma, Italy
⊥Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, U.K.

*S Supporting Information

ABSTRACT: We present a numerical/theoretical approach to efficiently
evaluate the phase diagram of self-assembling DNA nanostars. Combining
input information based on a realistic coarse-grained DNA potential with
the Wertheim association theory, we derive a parameter-free thermody-
namic description of these systems. We apply this method to investigate
the phase behavior of single components and mixtures of DNA nanostars
with different numbers of sticky arms, elucidating the role of the system
functionality and of salt concentration. Specifically, we evaluate the
propensity to demix, the gas−liquid phase boundaries and the location of
the critical points. The predicted critical parameters compare very well
with existing experimental results for the available compositions. The
approach developed here is very general, easily extensible to other all-DNA
systems, and provides guidance for future experiments.
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The pivotal role played by DNA in biology cannot be
understated.1 Its outstanding pairing specificity, em-
bodied by the famous Watson−Crick mechanism, lies

at the core of its biological functionality. Exploiting such a
specificity in synthetic applications, an idea which dates back to
the seminal work of Seeman in the 1980s, provides researchers
from many different fields, ranging from nanotechnology to
material science, with a powerful tool.2,3 Since then, DNA has
been used in nanotechnogy to build, just to name a few
examples, nanomachines,4 logic gates,5 and nanoscale objects of
predetermined shape thanks to DNA origami6,7 or DNA Lego-
like bricks.8,9 On the materials side, recent advances have made
it possible to synthesize DNA-coated colloids that self-assemble
into both ordered and disordered structures10−13 as well as to
produce materials made exclusively of DNA.14−17 These all-
DNA materials are synthesized through a multistep self-
assembly process: the basic constituents are short strands
with sizes ranging from a few to a few tens of nucleotides and
with sequences specifically designed to self-assemble into well-
defined constructs at intermediate temperature. These DNA
constructs can, in turn, bind to each other to form higher order
structures at lower T. The strategy outlined here has been
exploited to synthesize two-dimensional ordered lattices14 as
well as DNA hydrogels with unique characteristics.15,17,18

Owing to the high degree of control provided by DNA, these
building blocks can be used not only to synthesize
biocompatible materials with tunable properties but also to
investigate fundamental questions. For instance, trivalent and
tetravalent DNA constructs (nanostars) have been recently
used to assess the dependence of the gas−liquid phase
separation on the maximum number of bonds that each
particle can form (also called valence). In fact, the experimental
work of Biffi et al.17 confirmed that, as predicted by theory and
simulation,19 the gas−liquid phase coexistence region can be
shrunk by decreasing the maximum number of bonds that each
particle can form. The importance of this result is 2-fold. First,
the experimental verification of the effect of the valence on the
gas−liquid instability provides an innovative route for the
generation of low-density physical gels, also known as empty
liquids.17 Second, it strengthens the idea that carefully designed
DNA constructs can be used as experimental realizations of
patchy particles, which have recently gained much interest for
their ability to self-assemble materials with exotic thermody-
namic and dynamic properties, such as low-density gels, re-
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entrant gels, open crystals, ultrastable liquids, and much
more.20−24 Remarkably, many of the features that make these
materials so unique and interesting can be theoretically
predicted by means of the Wertheim thermodynamic
perturbation theory (TPT).25,26

Here, we introduce a method to predict the phase behavior
of a system composed by interacting DNA nanostars (NST)
with valence f = 2−4, identical to the ones employed in recent
experimental studies17,18 (see Figure 1a−c). Each DNA

nanostar is formed by f DNA strands made of 49 nucleotides,
which hybridize to form the body of the construct. The
sequence of each strand terminates with six self-complementary
bases that allow for internanostar bonding (see the Supporting
Information). Therefore, each DNA nanostar carries a
functionality (or valence) f. When the strands composing the
NST are mixed in solution in the proper stochiometric ratio,
they self-assemble into well-defined NST constructs, interacting
among themselves via the sticky ends, as schematically shown
in Figure 1d.
To describe the temperature and density dependence of the

system we exploit the Wertheim theory, a theory originally
designed to model associating liquids but which was proved to
qualitatively (and, in some cases, quantitatively) reproduce the
numerical results obtained in systems of patchy particles.21,27

The Wertheim theory evaluates the free energy of the system as
a sum of two contributions: a reference part, which is often the
free energy of a purely repulsive system, and a bonding part,
which takes into account the formation of interparticle bonds.
In the case of patchy colloids, the former is provided by the
Carnahan−Starling expression for the free-energy of hard
spheres,28 while the parameters that determine the latter are
embedded in the definition of the interparticle interaction,
which is set a priori. Extending the Wertheim approach to all-
DNA systems requires one to provide a way of evaluating these
two contributions.
We propose (i) to evaluate the reference free energy building

on an existing accurate coarse-grained model for DNA,
oxDNA2,29 which allows us to evaluate numerically the
effective potential between pairs of constructs and the
associated virial coefficient, in the absence of sticky interaction
between the NST. This requires short, small-scale simulations.
The reference free energy is then evaluated as a virial expansion
truncated to the second order. We also propose (ii) to evaluate
the probability of association between the sticky ends via the
well-known SantaLucia nearest neighbor model.30,31 We
independently test (i) and (ii) by running large-scale bulk
simulations, which confirm the validity of the approach. The
theoretical expressions and the numerical techniques are
detailed in the Methods.
Finally, we test the resulting theory by evaluating the critical

points and coexistence regions of pure tetramer and trimer
systems, carrying out comparisons with the experimental and

Figure 1. (a−c) Representative snapshots of DNA nanostars with
different functionalities. (a) A DNA dimer ( f = 2), (b) a DNA
trimer ( f = 3), and (c) a DNA tetramer ( f = 4). The f strands
composing each nanostar are colored differently. (d) Simulation
snapshot of a binary mixture composed of 50 trimers and 100
dimers at a nanostar number density ρ = 2.4 × 10−4 nm−3 and T =
48 °C. Trimers are colored violet, dimers are green, and sticky ends
are red.

Figure 2. (a) Effective interaction potential between two DNA tetramers, excluding the sticky ends, as a function of the distance r between the
tetramers’ centers of mass for fixed temperature T = 20 °C and different salt concentrations (main panel) and for fixed salt concentration S =
0.05 M and different temperatures (inset). (b) Second virial coefficient B2 for DNA tetramers ( f = 4) as a function of the inverse of the salt
concentration for different temperatures (main panel) and as a function of the temperature for different salt concentrations (inset). The
second virial coefficient is evaluated according to eq 11.
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numerical data available in the literature. We find good
agreement with experimental results for the critical temperature
and for the density of the coexisting phases away from the
critical point, while comparisons with the experimental critical
densities are less favorable, as it is often the case with patchy
models.19 We also show that the salt concentration plays a
major role in determining the phase behavior of these DNA
constructs, which helps rationalizing recent experimental results
on their dynamical properties.32 We demonstrate the generality
of our theoretical approach by computing the critical points,
coexistence regions, the degree of demixing as well as the
cloud/shadow curves of binary mixtures of DNA nanostars with
different valences, for several values of the salt concentration.

RESULTS AND DISCUSSION

Effective Interactions and Second Virial Coefficients.
The evaluation of the effective interaction potentials βV(r)
between DNA NST in the absence of binding sites and,
consequently, of the second virial coefficients B2 (as detailed in
the Methods) is key to our investigation methodology, which is
based on a separation of the free energy into a reference part,
accounting for the repulsion, plus a binding contribution
computed using the SantaLucia model (see the Methods). We
start the discussion of the results by reporting the reference
interaction potentials and the second virial coefficients,
computed for tetramers. Similar results for trimers are reported
in the Supporting Information.
Figure 2 shows examples of the effective interaction potential

and of the second virial coefficients for DNA tetramers. Both
βV(r) and B2 have a negligible T dependence, which reflects the
weak T-dependence of the Debye screening length as well as
the small absolute-T range relevant for DNA. By contrast, the
salt concentration has a substantial effect on the effective
interaction. Indeed, the screening length depends on the
inverse of the square root of S, which varies by more than a
factor of 10 in the explored range. The resulting V(r) is well-
described for distances comparable to the construct size by an
exponential decay characterizing the softness and inter-
penetrability of the NST. The decay length of βV(r) increases
on decreasing S, consistent with the increasing of the screening
length. The behavior of B2 is consistent with a bare excluded
volume contribution of 1.7 × 103 nm3 and displays a linear
growth controlled by S−1. Even though we have not carried out
a direct comparison, these results are in qualitative agreement

with the experimentally measured salt dependence of the
second virial coefficient of small DNA fragments.33,34

Comparison with Large-Scale Simulations: Test of
βV(r). To validate the numerical procedure designed to evaluate
the repulsive part of the effective potential and B2, we resort to
a comparison between a bulk simulation of DNA−NST
interacting with oxDNA (156800 nucleotides) and a simulation
of particles interacting via βV(r). Indeed, the accurate
investigation of the structure and thermodynamics of
disordered all-DNA materials is a recent topic, and a large
corpus of experimental results that can be used as terms for
comparison is not yet available. In particular, no scattering data
for inter-NST correlations are presently available to compare
with the theoretical predictions. Remarkably, oxDNA2 has been
shown to quantitatively reproduce the form factor of tetravalent
nanostars, as measured by small-angle neutron scattering
experiments.35

Figure 3a shows the structure factor of a system of 800 DNA
tetramers at T = 50 °C, S = 0.1 M, and NST number density ρ
= 1.8 × 10−4 nm−3 interacting with either oxDNA2 or βV(r).
The structure factors of the two systems are indistinguishable
within our numerical accuracy, validating the use of the effective
potential, at least up to the large density investigated (which is
higher than the range of densities we will consider in the
following).

Comparison with Large-Scale Simulations: Test of the
Bonding T-Dependence. The second assumption on which
we build to develop a thermodynamic description of the
association process assumes that the bonding free energy
depends on S, T, and the sequence of the sticky ends but not
the remaining parts of the nanostars. Testing such an
assumption requires a full-scale simulation to also take into
account internanostar bonding. We thus run simulations of a
binary mixture made of 50 DNA trimers and 100 DNA dimers
(17150 nucleotides) at NST number density ρ = 2.4 × 10−4

nm−3, S = 1.0 M and for several T, down to T = 36 °C. Below
this temperature, 2 weeks of GPU computing time are not
sufficient to observe the convergence of observables such as the
potential energy or the total number of bonds. Such a lack of
equilibration highlights the demanding nature of these large-
scale simulations, and as a consequence, the usefulness of the
proposed theoretical approach. From the simulated config-
urations we evaluate the probability to form a bond, pb, and
compare it to the theoretical estimate based on the well-known
SantaLucia model (see the Methods (eq 6) and SI). Figure 3b

Figure 3. (a) Structure factors for a system made of 800 DNA tetramers simulated with oxDNA2 (circles) and with the effective interaction
reported in Figure 2 (lines), simulated at T = 50 °C, S = 0.1 M, and nanostar number density ρ = 1.8 × 10−4 nm−3. (b) Probability of forming a
bond, pb, as a function of temperature for a binary mixture composed by 50 DNA trimers and 100 DNA dimers at nanostar number density ρ
= 2.4 × 10−4 nm−3 and S = 1.0 M as a function of T. The line is the theoretical estimate, eq 6; circles are simulation data.
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shows such a comparison, confirming the validity of the
theoretical expression.
Pure Systems. The theoretical and numerical expressions

reported in the Methods, complemented with the oxDNA-
based B2, provide a close expression for the free energy of any
mixture or pure solution of DNA NST of arbitrary valence. We
begin by evaluating the phase diagram for pure solutions of
trivalent and tetravalent NST, for which experimental data for S
= 0.035 M and S = 0.025 M are available.
Figure 4a shows the gas−liquid critical temperatures as a

function of the salt concentration for DNA tetramers and
trimers. The same figure also reports the available experimental
data from ref 17. The theoretical estimates, based on
calculations that do not require a significant amount of
numerical resources, are in very good agreement with the
experimental data, being less than 2% off.
Figure 4b shows the gas−liquid critical densities as a function

of the salt concentration for DNA tetramers and trimers. The
critical density increases monotonically with salt concentration,
similar to the critical temperature. Such behavior suggests that
the coexistence region of the system, in the (ρ − T) plane,
broadens with salt concentration, following the progressive
softening of the particles (see Figure 2b and Figure S3) as
suggested in ref 36.
Figure 5 shows the theoretical and experimental17 coex-

istence curves for pure systems of tetramers and trimers in the

ρ − T plane. We observe that the extent of the coexistence
region is comparable with the experimental data. For trimers,
the shape of the region is particularly well reproduced; for
tetramers, the theory underestimates the location of the binodal
at high densities. Nevertheless, a good estimate for the highest
coexistence density, as well as for the coexistence curve at small
ρ, is found.
As a general remark, we note that the salt concentration has a

strong influence on the location of the critical points. Its effect
on the thermodynamics of the system is a result of two
contributions. First, S controls the flexibility and overall shape
of the NST (see the Supporting Information),35,37 as well as the
repulsion between the DNA nanostars and, hence, the value of
the second virial coefficient. Second, S enters in the bonding
free energy, as prescribed by the SantaLucia model (see eq 7 in
the Methods). We find that the critical T depends on S through
both B2 and the bonding free-energy, whereas the S-
dependence of the critical density is exclusively encoded in
B2 (see the Supporting Information).
In the past, the numerical determination of critical points in

DNA NST systems has been attempted only through expensive
numerical simulations,36 with a substantial computational effort.
We show here, through direct comparison of our results with
data available in the literature, that the present far less
demanding methodology is able to yield equally good estimates
but for all possible values of the ionic strength.

Binary Mixtures. As predicted by theory and simula-
tions19,38 and later confirmed by experiments,17 the gas−liquid
phase coexisting region shrinks as the overall valence of the
system tends to 2. Approaching this limit with continuity
requires a noninteger average valence which can be achieved by
employing mixtures of fixed-valence objects. We thus study
mixtures of constructs with valence 4−2 and 3−2. We also
investigate 4−3 mixtures, where both limiting cases (pure
trimers and pure tetramers) exhibit a gas−liquid phase
separation. For all these systems, we compute the loci of the
critical points. We also compute some representative
coexistence curves as well as shadow and cloud curves for the
4−2 mixture. In all cases considered here, the nature of the
phase separation is found to be compatible with a gas−liquid
phase separation close to the critical point and becomes more
demixing-like as T decreases.
Figure 6a shows the critical parameters for mixtures of

trimers and dimers at different salt concentrations. We observe
that the trend of the curve is similar for all the values of salt

Figure 4. Gas−liquid (a) critical temperatures and (b) critical densities as functions of the salt concentration for DNA tetramers (circles) and
trimers (squares). Red and green symbols and lines refer to the theoretical estimates (see the Methods). Blue circles and squares are
experimental values for tetramers and trimers, respectively, from ref 17; the gray circle is a numerical estimate from ref 36.

Figure 5. Coexistence region for tetramers at S = 0.025 M (red line
and symbols) and trimers at S = 0.035 M (green line and symbols).
Lines refer to theoretical data, symbols refer to experimental data,
taken from ref 17. Empty symbols are the experimental critical
points.
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considered. In particular, the critical density increases with
temperature until a maximum is reached and then converges
smoothly toward the critical point of the pure system. The
maximum is less pronounced for smaller salt concentrations.
Interestingly, the curves at different S seem to collapse below a
certain T, even though such a collapse is not reached for the
smallest values of S considered here.
The critical points of mixtures of tetramers and dimers at

different salt concentrations, reported in Figure 6b, exhibit the
same trends seen for the trimer−dimer mixture. However, the
nonmonotonic behavior of the critical density is much more
pronounced here. In addition, compared to the 3−2 case, the
collapse of the curves starts at higher salt concentrations.
Figure 6c shows the critical densities at different temper-

atures for mixtures of tetramers and trimers at different S. This
case is qualitatively different from the previous ones in that

both critical points of the pure system exist. Indeed, it can be
seen that the line of critical densities at intermediate
compositions connects the critical points of the associated
pure systems. Since the critical points of the pure systems are
separated by small T and ρ differences, the lines of critical
points of the mixtures are quite short in this representation. We
note that, in contrast with the previous cases, we do not
observe a collapse of the curves at low temperatures. We also
note that similarly to pure systems, the salt concentration plays
a big role in determining the critical parameters of the mixtures,
monotonically moving the critical points to higher T and ρ.
Next, we focus on the full coexistence region of the mixtures.

The three mixtures have the same qualitative behavior, and
thus, we discuss only the 4−2 mixture. Since a state point in a
binary mixture of species A and B is identified by three
thermodynamic quantities, the phase diagram of binary

Figure 6. Theoretical critical densities at different temperatures for mixtures of (a) trimers and dimers, (b) tetramers and dimers, and (c)
trimers and tetramers at different salt concentrations. Open symbols refer to the binary mixtures; full symbols refer to the critical points of the
pure systems. In (c), the trimer critical point is always at lower density with respect to the tetramer critical point.

Figure 7. (a) Theoretical coexistence curves for a mixture of tetramers and dimers at salt concentration S = 0.05 M and different temperatures.
(b) Theoretical tie lines for a mixture of tetramers and dimers at salt concentration S = 0.05 M and different temperatures T = 5 °C (black
circles) and T = 23 °C (blue triangles). Open symbols refer to the coexistence points, full symbols refer to critical points, and dashed or full
lines refer to tie lines.
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mixtures requires a three-dimensional representation. The most
common thermodynamic variables used to represent such
phase diagrams are T and the density of each species, ρA and ρB,
or T, the total density ρ, and the composition x = ρA/ρ. In both
these representations, the region of phase coexistence is a
volume in the three-dimensional phase diagram. Therefore, for
the sake of clarity, it is common procedure to plot two-
dimensional slices of the phase diagram by setting one of the
three thermodynamic variables to some constant value.
We start by taking cuts of the T, ρ, and x = ρ4/ρ phase

diagram at constant temperature. In Figure 7a, we report the
coexistence curves, i.e., the binodals, of the 4−2 mixture at salt
concentration S = 0.05 M and different temperatures. At high
T, that is, close to the critical point of the pure system, the
average valence is large, and hence, all of the coexisting points
have high x. However, as T decreases below the critical
temperature of the pure system, the density of dimers increases
in both the gas and the liquid phases, whereas the density of
tetramers grows in the liquid phase while remains small in the
gas phase. In Figure 7b, we report two examples of tie lines,
which connect coexisting points of the two phases, for the 4−2
mixture at salt concentration S = 0.05 M and different
temperatures, one rather low (T = 5 °C) and one close to the
Tc of the pure system, (T = 23 °C). The tie lines confirm the
picture sketched above. As discussed in ref 39, we see that the
low-temperature tie lines connect points with increasingly
different compositions, signaling a change in the nature of the
phase separation, which acquires a more significant demixing
character as T decreases while maintaining the liquid−gas
character witnessed by a marked density gap.
We also assess the effect of salt concentration on the phase

coexisting region. Figure 8a shows the binodal curves at fixed
temperature T = 10 °C and different salt concentrations. As
discussed in the context of the critical parameters, the main
effect of the salt is to enlarge the two-phase region, which
retains its shape but moves to more extreme ρ as S increases.
Another common two-dimensional representation of the

phase diagram can be constructed by fixing the overall
concentration x and then plotting the resulting binodal,
which is called the cloud curve and contains all of the
coexisting points having the chosen composition as a function
of T and ρ. Each point on the cloud curve coexists with another
phase which has, in general, a different composition. The set of
points coexisting with the cloud points is called the shadow
curve, and it is often plotted together with the cloud curve, even

though all its points have different compositions, not only with
respect to the cloud points but also with respect to each other.
In Figure 8b, we report the cloud and shadow curves for a

mixture of tetramers and dimers at fixed composition x = ρ4/ρ
= 0.7 and different salt concentrations. First, we note that the
critical points always lie at the intersection of the two curves, as
expected.40 The effect of the salt, similar to what happens for
the locus of the critical point, is to move the curves to
substantially higher temperatures and densities.

CONCLUSIONS

The advances in the synthesis of DNA-based materials call for
the development of numerical and theoretical methods for the
evaluation of their macroscopic properties. Here, we developed
a theoretical approach for the quantitative prediction of the
low-density phase diagram of one-component and binary
systems composed of DNA constructs with fixed valence. We
have shown that these complex systems can be modeled as
collections of supramolecular particles that, depending on
temperature, can bond to each other but also experience an
effective mutual repulsion, which is controlled mainly by the
salt concentration. These two contributions can be readily
evaluated via short two-body simulations employing a realistic
DNA model29 and by means of the well-established nearest-
neighbor SantaLucia model,30,31 respectively. By comparing
these estimates with numerical results obtained through large-
scale GPU simulations, we have confirmed that the
assumptions underlying these two contributions hold very
well, even at high density. The free energy of the system can
then be computed in a parameter-free fashion in the framework
of Wertheim TPT. In turn, the free energy can be used to
evaluate the phase behavior. We have shown that this
procedure yields results that are in semiquantitative (for the
critical temperature and the off-critical coexisting densities) and
qualitative (for the critical density) agreement with exper-
imental results for one-component systems. We have also
extended this method to binary mixtures, providing predictions
for critical parameters and coexisting curves. Our results shed
light on the dependence of the phase behavior on temperature
and salt concentration, providing guidance for future
experimental work. We stress that the hybrid numerical/
theoretical approach developed here is very general: since it
takes into account DNA−DNA interactions in a realistic
fashion, it can be extended to investigate the behavior of all-
DNA systems that incorporates complex DNA nanotechnology

Figure 8. (a) Theoretical coexistence curves for a mixture of tetramers and dimers at fixed temperature T = 10 °C and different salt
concentrations. (b) Theoretical cloud (full lines) and shadow (dashed lines) curves for a mixture of tetramers and dimers at x = 0.7 at
different salt concentrations. Full symbols refer to critical points.
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motifs such as strand displacements (e.g., DNA re-entrant
gels,18 DNA vitrimers.41)

METHODS
Theoretical Framework. In order to to estimate the gas−liquid

critical parameters and the coexistence regions of DNA nanostar
systems, we combine Wertheim TPT with an accurate mass-action law
describing DNA binding. The Helmholtz free energy per particle for
binary mixtures of DNA nanostars of different valence fA and f B using
Wertheim TPT as in ref 39 is

β β β β̅ ≡ = +f T x v
F T x v

N
f T x v f T x v( , , )

( , , )
( , , ) ( , , )ref b

(1)

where v = 1/ρ, β = 1/kBT, kB is the Boltzmann constant, βf ref(T, x, v)
is the free-energy per particle of the reference state, i.e., the state in
which bonding sites are not present, and βf b(T, x, v) is the free energy
per particle associated with the bond formation between the sticky
ends. βf ref(T, x, v) is evaluated by considering a system in which the
sticky end sequences are scrambled in such a way that Watson−Crick
pairing does not occur and no interstar bond can form; the residual
interaction is thus purely repulsive. In the binary mixture case, we
express the free energy in terms of the concentration of one of the two
species A and B, x = NA/N, N = NA + NB, and the reduced volume per
particle v ≡ 1/ρ, ρ being the total number density. The reference free
energy is given by the two contributions

β β β= +f T x v f T x v f T x v( , , ) ( , , ) ( , , )ref id ex (2)

where the ideal gas free-energy density is given by βf id(T, x, v) = ln(v0/
v) − 1 + x ln(x) + (1 − x) ln(1 − x), where v0 is a reference volume
whose value has no effect on the derivatives of the free energy.
We approximate the excess free energy per particle via a second

virial coefficient approximation for binary mixtures42

∑β
ρρ

ρ
=

= + − + −

f T x v B T
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x B x B x x B
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1
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i j
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,
2

2
2
AA 2

2
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2
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(3)

where B2
AA, B2

BB, and B2
AB are the second virial coefficients of the pure

systems of species A and B and of the mixed system, respectively.
These quantities are computed at different salt concentrations and
temperatures, using the formula

∫ π= − − −
∞ ⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
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r( )

1
2
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( )

1 dij ij
2

0

2

B (4)

where Vij(r) is the effective intramolecular pair potential, computed
through dedicated numerical simulations (see Numerical Methods).
Note that Vij(r) is an average over the mutual orientations of the
nanostars and thus depends solely on the distance r between the
centers of mass of the two objects considered.
Finally, as all bonds are identical, the bonding free energy per

particle is given by19

β = ⟨ ⟩ − +⎜ ⎟
⎛
⎝

⎞
⎠f T x v f p x v p x v( , , ) ln(1 ( , ))

1
2

( , )b b b (5)

where ⟨f⟩ = fAx + f B(1 − x), fA and f B are the valences of the first and
second species, respectively, and pb is the fraction of formed bonds.
The latter, which is function of T, x, and v, can be evaluated via a law
of mass action, yielding

= −
− + + Δ⟨ ⟩

Δ⟨ ⟩
p T x v

f v
f v

( , , ) 1
1 1 4 /

2 /b (6)

where Δ is linked to the free-energy difference between bonded and
nonbonded pairs of sticky ends. Following refs 30 and 31

βΔ ≡ − Δ = −
Δ − Δ + Δ⎛

⎝⎜
⎞
⎠⎟v G v

H S S T
k T

exp( ) exp
( )

b b
nosalt salt

B

(7)

where ΔH = −42790 cal is the enthalpy gain upon bonding, ΔSnosalt =
−119.84 cal/K, and ΔSsalt = 0.368·(Ldna − 1)·ln(S) cal/K are the salt-
independent and salt-dependent entropy variations again upon
bonding, respectively. These quantities refer to the sticky end
sequences, for which Ldna = 6. The expression for Δ thus encodes
the salt, temperature, and sequence-length dependence of the free-
energy difference between bonded and nonbonded states. Further-
more, vb = 1.6606 nm3 is the reference volume of the nonbonded
single strands.9 Indeed, in a two-state system the condition for
chemical equilibrium is given by

ρ
ρ ρ

= β− Δe Gd

s s (8)

where ρd is the density of the products (double strands), ρs is the
density of the reagents (single strands), ρ̅ = ρ/ρref, where ρref = 6.022
× 1023 dm−3 = 0.6022 nm−3 is the standard state density, and ΔG is
the free-energy difference associated with the bonding reaction. Δ,
introduced in eq 6, is defined as

ρ
ρρ

ρΔ = = β− Δe /Gd

s s
ref

(9)

as in eq 7, which implies vb = 1/ρref = 1.6606 nm3.
For pure systems, i.e., systems composed of particles of the same

species and same valence, eq 2 simplifies to

β ρ ρ ρ≃ − +f T v B T( , ) ln( ) 1 ( )ref 0 2 (10)

where B2(T) is, again, the second virial coefficient of the particular
species considered, while eqs 5 and 6 hold, with x = 1 and fA = 4
(tetramers) or fA = 3 (trimers). For pure systems, the locus of critical
points is given by (Tc, ρc) at fixed salt concentration; for binary
mixtures, it is given by (xc, ρc) at fixed temperature and salt
concentration. Critical points always satisfy the standard thermody-
namical stability conditions.43

We also evaluate the coexistence region of both pure systems and
binary mixtures. We do so by employing a standard common tangent
construction.39 Different points that yield phases with the same
pressure and chemical potentials for both species lie on a tie line. We
complete the analysis of the phase diagram of the binary mixtures by
looking at the cloud and shadow curves. The locus of the cloud points
in the x − T plane is obtained by considering the intersection of a line
at fixed x with the phase boundary in the ρA − ρB plane at fixed T.
Each point on a cloud curve has a corresponding shadow point, which
is the state on the coexistence curve connected to the cloud point
through a tie line.40,44 We note that, as a consequence of this
construction, shadow points on the same shadow curve have, in
general, different compositions, whereas cloud points have, by
construction, always the same composition.

As a general remark, we note that, in addition to the conditions for
phase coexistence one should also require Donnan equilibrium; i.e., the
chemical potential of the salt in the two phase should be the same, μsalt

1

= μsalt
2 . However, since the absolute values of the concentration of the

coexisting phases are small fractions of the overlap density, one can
safely ignore it, assuming that the salt has the same concentration in
both coexisting phases.

Numerical Methods. We perform simulations of DNA nanostars
with oxDNA2, a DNA model coarse-grained at the level of single
nucleotides. The interaction forms and parameters in oxDNA2 are
chosen to reproduce structural and thermodynamical properties of
both single- and double-stranded DNA molecules in B-form. The
interactions between nucleotides, modeled as rigid bodies, account for
excluded volume, electrostatic repulsion between the negatively
charged backbones, backbone connectivity, Watson−Crick hydrogen
bonding, stacking, cross-stacking, and coaxial stacking. The interaction
parameters have been adjusted in order to be consistent with
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experimental data on the structure and thermodynamics of DNA.29,45

The electrostatic repulsion is provided by a Yukawa term characterized
by a screening length which is an increasing function of T and a
decreasing function of S. We note that we also present results for S =
0.025 M, a salt concentration which is slightly below the lowest value
for which oxDNA2 has been parametrized.
In order to calculate the second virial coefficient, we evaluate the

interstar interaction potential V(r) in the infinite dilution limit. We
compute V(r) between two isolated nanostars, for different values of S
and T, using a generalized Widom insertion method.46 We first
separately simulate the two nanostars for long enough that they lose
memory of their previous conformation. We then take the two
equilibrated configurations, fix the first one and randomly rotate and
insert the other so that their relative center-to-center distance is r, with
0 < r < 30 nm. We perform 500 insertions for every different value of r
considered. For each insertion, we calculate the Boltzmann factor of
the insertion, e−βΔU, where ΔU is the potential energy difference
between the initial state (where the two nanostars are very far apart)
and the new configuration, and average it over all trial insertions at
fixed r. We repeat the whole procedure for at least = 106 iterations,
obtaining the radial distribution function, g2(r) = ⟨e−βΔU⟩r, from which
the interaction potential between the DNA nanostars in the limit of
infinite dilution is readily obtained as

β = − = − ⟨ ⟩β− ΔV r g r e( ) ln( ( )) ln( )U
r2 (11)

Given the small scale of the simulations, which involve only two
DNA constructs, and the purely repulsive nature of the interactions,
convergence is reached very rapidly. Indeed, the evaluation of a single
B2(T, S) value takes from few minutes to few hours (depending on the
size of the nanostars and on salt concentration) on a single CPU core.
The code we use is based on oxDNA,47 and it is available upon
request.
We also run large-scale simulations (800 purely repulsive tetramers

and a binary mixture of 50 trimers and 100 dimers) to test the
assumptions underlying the proposed theoretical approach. We
perform these simulations on NVIDIA K80 GPUs,48 and equilibration
takes between a few days to a few weeks of computer time.
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(21) Roldań-Vargas, S.; Smallenburg, F.; Kob, W.; Sciortino, F. Phase
Diagram of a Reentrant Gel of Patchy Particles. J. Chem. Phys. 2013,
139, 244910.
(22) Romano, F.; Sanz, E.; Sciortino, F. Crystallization of Tetrahedral
Patchy Particles in Silico. J. Chem. Phys. 2011, 134, 174502.

ACS Nano Article

DOI: 10.1021/acsnano.6b08287
ACS Nano 2017, 11, 2094−2102

2101

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08287
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b08287/suppl_file/nn6b08287_si_001.pdf
mailto:emanuele.locatelli@univie.ac.at
http://orcid.org/0000-0002-5507-1282
http://orcid.org/0000-0001-5017-2829
http://dx.doi.org/10.1021/acsnano.6b08287


(23) Smallenburg, F.; Sciortino, F. Liquids More Stable than Crystals
in Particles with Limited Valence and Flexible Bonds. Nat. Phys. 2013,
9, 554−558.
(24) Millan, J. A.; Ortiz, D.; van Anders, G.; Glotzer, S. C. Self-
Assembly of Archimedean Tilings with Enthalpically and Entropically
Patchy Polygons. ACS Nano 2014, 8, 2918−2928.
(25) Wertheim, M. S. Fluids with Highly Directional Attractive
Forces. I. Statistical Thermodynamics. J. Stat. Phys. 1984, 35, 19−34.
(26) Wertheim, M. S. Fluids with Highly Directional Attractive
Forces. II. Thermodynamic Perturbation Theory and Integral
Equations. J. Stat. Phys. 1984, 35, 35−47.
(27) Marshall, B. D.; Ballal, D.; Chapman, W. G. Wertheim’s
Association Theory Applied to One Site Patchy Colloids: Beyond the
Single Bonding Condition. J. Chem. Phys. 2012, 137, 104909.
(28) Carnahan, N. F.; Starling, K. E. Equation of State for
Nonattracting Rigid Spheres. J. Chem. Phys. 1969, 51, 635−636.
(29) Snodin, B. E. K.; Randisi, F.; Mosayebi, M.; Šulc, P.; Schreck, J.
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(48) Rovigatti, L.; Šulc, P.; Reguly, I. Z.; Romano, F. A Comparison
between Parallelization Approaches in Molecular Dynamics Simu-
lations on GPUs. J. Comput. Chem. 2015, 36, 1−8.

ACS Nano Article

DOI: 10.1021/acsnano.6b08287
ACS Nano 2017, 11, 2094−2102

2102

http://dna.physics.ox.ac.uk
http://dx.doi.org/10.1021/acsnano.6b08287

