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Abstract

Observational data recorded in the Electronic Health Record (EHR) can help us better understand the effects of
therapeutic agents in routine clinical practice. As such data were not collected for research purposes, their reuse for
research must compensate for additional information that may bias analyses and lead to faulty conclusions.
Confounding is present when factors aside from the given predictor(s) affect the response of interest. However,

these additional factors may not be known at the outset. In this paper, we present a scalable literature-based
confounding variable discovery method for biomedical research applications with pharmacovigilance as our use
case. We hypothesized that statistical models, adjusted with literature-derived confounders, will more accurately
identify causative drug-adverse drug event (ADE) relationships. We evaluated our method with a curated reference
standard, and found a pattern of improved performance ~ 5% in two out of three models for gastrointestinal
bleeding (pre-adjusted Area Under Curve > 0.6).

Introduction

Confounding is present when factors aside from given predictor(s) affect the response of interest. For example, one
may wish to understand the association between cigarette smoking and the risk of developing cancer while asbestos
exposure or genetic predispositions may be present . Stuart Mill noted a related disparity between laboratory
conditions and raw observation in nature in his System of Logic (1943) 2. Since confounding variables may not be
known at the outset, we propose a scalable and computationally inexpensive method for confounding variable
discovery (CVD). In this paper, we apply our method to pharmacovigilance (PV). However, confounding is a
challenge to multiple fields including epidemiology, biosurveillance and pharmacogenomics.

Pharmacovigilance and FAERS. Some 770,000 adverse drug events (ADEs) occur annually in the United States
alone, resulting in morbidity, mortality, and increased cost **. PV aims to address the set of challenges posed by
ADEs, including those detected after drugs are released to market. Recognizing the need to systematically monitor
adverse effects of drugs, regulatory agencies, such as the US Food and Drug Administration (FDA), have
implemented spontaneous reporting systems, through which physicians and administrators of clinical trials can
report potential adverse events as they are observed. However, spontaneous reporting systems (e.g., FAERS 5) have
limitations, such as incomplete clinical information, under-reporting of side-effects, and unacknowledged sources of
bias *.

Confounding in EHR. Clinical text (notes) recorded in EHRs are another potential primary source of ADE data, yet
drawing reliable conclusions from routinely collected clinical data is notoriously difficult 7. In the PV literature, the
term “signal” refers to data that are pertinent to the therapies or outcomes under study. Unlike the case of clinical
trials where subjects are deliberately monitored for side-effects, clinical data were not collected for the purpose of
pharmacovigilance, and are often beset with redundancy or missing data, use of non-standard abbreviations,
misspellings, and so on. In addition, clinical data contain confounding variables ®. By developing more powerful
methods to identify and adjust for confounding variables, we should be able to discriminate better between
drug-ADE signal and noise. This in turn would facilitate the timely compilation of more comprehensive
pharmaceutical risk profiles and improve public safety.
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Background

Definitions. A confounding variable influences or biases the magnitude of correlation between a predictor variable
(e.g., drug exposure/treatment) and a response variable (i.e. outcome/ADE). In the context of creating models for
PV, when a confounding relationship exists between a falsely associated drug-ADE pair and adjustments are made
to account for its influence, the association strength for that relationship, should be diminished. For example, given a
set of observational clinical notes, it is observed that fish oil intake is highly correlated with acute liver injury (ALI).
However, after adjusting the model for the presence of known causal agents of ALI, (e.g., acetaminophen, liver
cirrhosis, hepatitis c), that correlation should approach zero. Let us consider another example of an acetaminophen
exposure (predictor) and a hepatitis B infection (predictor) where the patient subsequently suffers ALI (response). In
this case, each of these predictors, independently, are sufficient preconditions for ALI. As they occur together, these
two predictors confound each other. When the association of either predictor is adjusted in the absence of the other
predictor, the association may be diminished, but not as dramatically as in the first example. Li et al. introduced a
taxonomy of confounding in PV with the following categories: confounding by indication (e.g., preexisting
conditions), confounding by comorbidity (e.g., diabetes), and confounding by co-medication (e.g., aspirin) 8.

A mediating variable (also called an intervening variable), by contrast, lies distinctly along the causal pathway
between the predictor variable and the response variable themselves and may be neither necessary nor sufficient to
cause an ADE by itself. Mediators may sometimes be thought of as “risk factors” or as aspects of the etiology of the
ADE itself *°. Examples of mediators include bile duct obstruction for ALI or hypertension for myocardial
infarction (MI). Mediators tend to be collinear with both the predictor and the response variable, which is to say they
tend to be observed together. For more detailed discussion of mediation, see Pearl °.

Confounding control in PV. The two most common approaches for the control of confounding are control by
design (which entails the use of case control matching, for example, where patients are matched by practice type and
sometimes demographic cohort) and control by analysis ¢. The main thrust of this paper will be the latter (while still
others exist, such as counterfactual intervention, they are beyond our scope) *'*'*. Control by analysis often implies
the application of domain knowledge and experience to identify proxy variables in order to control for confounding.
Traditionally, statisticians have depended upon the knowledge of domain experts to identify relevant confounding
factors. While this is likely to result in the identification of confounding variable candidates (CVCs) pertinent to an
individual study, it would be financially intractable to hire the quantity and diversity of experts needed to conduct
PV across large numbers of marketed drugs and each of their potential ADEs. Li et al. recently utilized extensive
search for CVCs (of the “comorbidity” subtype in PV) in observational clinical data found in EHR using penalized
multivariate regression methods, specifically lasso regression ®. Lasso regression is a variable selection technique
that shrinks multivariate predictor coefficients that fall beneath a threshold down to zero ™. In general, the lasso
produces results that are easy to interpret and parsimonious and, in this case in particular, the results of this study are
very encouraging. However, Least Angle Regression (LAR), the algorithm that is most commonly used to perform

lasso regression, can be computationally expensive, depending on input, being either quadratic O(n?) or cubic O(n®)
in its computational complexity, though recent innovations such as cyclic coordinate descent, have produced
improvements in this regard '>'®. Other innovative signal detection approaches have involved combining multiple
data sources via meta-analysis, or applying omic or biochemical substantiation techniques to verify the plausibility
of the causal mechanisms that may underlie putative drug-ADE associations * 7%,

The methods of CVD mentioned above are to varying degrees financially intractable or computationally expensive,
and it has been argued that brute force methods miss the “causal story” in the observational data 2. The purpose of
our current work is to assess the extent to which feasibly-sized sets of CVCs that have been observed in the
literature can be used to identify concepts for the task of confounding adjustment of clinical data. In doing so, we
aim to find a middle ground between human-intensive expert-guided CVD, and computationally intensive selection
of such variables based on empirical data alone.
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Literature-based Discovery (LBD) is an idea first developed by Don Swanson as a means of using the biomedical
literature to discover therapeutically useful associations **?!. Swanson's approach involves finding implicit
relationships between concepts that suggest an as-yet undiscovered therapeutic relationship. Recent work has
incorporated semantic relations extracted from the literature using natural language processing to constrain the
search space of associations **?. For example, the pattern of semantic relationships "drug INHIBITS x; x
ASSOCIATED_WITH disease" may indicate a therapeutic relationship between this drug and this disease. These
patterns of relationships are known as “discovery patterns” **?*. Our work in this area leverages high-dimensional
vector space representations of the concept-by-predicate-by-concept relationships concerned to facilitate rapid
search and efficient inference, using an approach called Predication-based Semantic Indexing (PSI) %.

To recap, our operative assumption is that if we can identify plausible therapeutic relationships in a knowledge base
of literature (arguably the main focus of LBD work to date), then we can also identify confounding associations,
such as associations between concepts that are exogenous to the etiology of an ADE of interest. Such concepts may
be predictive of entities that tend to co-occur along with drug-ADE pairs of interest in observational clinical data.
We hypothesize that statistical models of drug-ADE association will more accurately identify causative drug-ADE
relationships in observational clinical data after adjustments have been made for the influence of CVCs.

Methods

Derivation of CVCs from the literature. We developed an LBD-based method that automates CVD using “false
discovery patterns” (FDPs), leveraging existing NLP tools and knowledge resources.

From Predications to FDPs. MedLEE was used to perform automated coding of concepts of interest in our EHR
collection. MedLEE has been shown to perform accurately on clinical notes (for example recall of .77, and
precision: ~.89 for the task of extracting clinical concepts, and coding them with concept unique identifiers from the
Unified Medical Language System (UMLS) 2?72 The purpose of SemRep, a publicly available NLP system
developed intramurally at the US National Library of Medicine (NLM), is to identify and normalize predications -
relationships in which pairs of concepts are connected by predicates (or “verbs”, e.g., “TREATS”, “CAUSES”) in
biomedical literature . SemRep operates with low recall, but high precision: Kilicoglu et al. reports precision
of.745, recall of.640, and an F-score of .689 *. SemMedDB, used as our knowledge base of biomedical literature, is
a publicly-available NLM product that contains the output of SemRep processing of the entirety of MEDLINE,
where concepts and predicates have been recognized and normalized, and all extracted propositions can be retrieved
from a MySQL database in the following form: ARGUMENT, + PREDICATE + ARGUMENT, "2 This
representation disallows semantic constructs such as degree, tense, narrator reliability, or verb ditransitivity. From a
practical perspective, such predication representations are computable, since the concepts and predicates are
normalized, and they facilitate our method’s inferential power.

Vector Symbolic Architectures. To process SemMedDB, which is used as our biomedical knowledge repository,
we apply a representational technique called Predication-based Semantic Indexing, or PSI *. PSI owes its existence
ultimately to a contentious debate within the cognitive and neuroscience community in the 1980s over what became
known as the parallel distributed processing (PDP) or connectionist paradigm *-*. A number of scalable approaches
to the problem of efficiently representing nested compositional structures (such as those encountered in natural
language) in neural networks emerged following Smolensky’s seminal work, which utilized the tensor product as a
compositional operator (Holographic Reduced Representations [HRR], Binary Spatter code, Multiply Add Permute
[MAP]) *-8, This is the origin of vector symbolic architectures (VSAs), described in detail elsewhere *.

PSI for efficient inferences. VSA theory provides the infrastructure for PSI. In PSI, concepts are represented by
randomly generated real, binary, or complex values of high dimensionality (the more dimensions that are used
generally, the better the recall and precision of the model, with a tradeoff against computational efficiency). These
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are called “elemental vectors”. These elemental vectors can be superposed upon each other to generate composite

semantic structures called semantic vectors ¥

Random vectors are an effective way to represent elemental components, since there is a high probability of mutual
near-orthogonality, particularly in higher dimensions. Semantic vectors on the other hand are composed as
superpositions of the “bound products” of the elemental vectors of predicate-argument pairs (as extracted from
literature using SemRep). The binding operator, which varies in implementation across VSAs, is a
multiplication-like operator that provides the means to encode additional information, such as the nature and context
of a relationship, into the resulting vector space. Since the same predication can be encountered in multiple
documents, PSI can be thought of as a distributional model of predications. Critical to PSI, semantic representations
of concepts are built up as vectors from relations found in the literature. PSI facilitates rapid search for, and retrieval
of, concepts that are related to one another in particular ways (i.e., through particular predicates). As such a space is
distributional, concepts in which a relationship of interest occur more frequently will be retrieved first (analogous to
the way in which other information retrieval systems facilitate ranked results). In the current work, PSI is used to
facilitate rapid retrieval of concepts related to other concepts in specific ways. PSI can be used to retrieve the most
strongly associated concepts (called “bridging terms”) across any particular predicate pathway of interest. A
discussion of predicate pathways that indicate FDPs will follow. PSI and its applications are discussed in detail
elsewhere 25341,

SemRep Predications. For the current work, we used a PSI vector space derived from the version 24 32 of
SemMedDB (processed June 20th, 2014 with version 1.5 of SemRep), containing 23.9 million citations and 70.4
million semantic predications *'. The PSI space was built using the Semantic Vectors package (version 5.9), with
48,000-dimensional binary vectors as the elemental vectors *. A small number of predicates were excluded,
indicating negation (such as DOES_NOT_TREAT). Terms with occurrence > 500,000 were excluded.

FDPs for CVD. A browser interface called EpiphaNet has been developed for querying PSI-based representation of
SemMedDB using a query language with meta variables that specify predicate vectors, elemental vectors, semantic
vectors along with binding and superposition operators 4445 We can query our PSI vector space model of
SemMedDB to identify CVCs (the “bridging terms” mentioned above) for each drug-ADE pair with PSI queries that
represent FDPs. Below in Table 1, we present the FDP queries that we used to evaluate our CVD method. We
identified these FDPs while studying how expert users of the EpiphaNet interface interpret results of drug-ADE
queries, when we noticed that EpiphaNet would generate reasoning pathways that suggest confounding
relationships. Also, note that “DRUG TREATS x; x COEXISTS_WITH ADE” is referred to as a “double predicate” in
that it is composed of two predicates that yield CVCs that link to both the drug and ADE cue terms.

Table 1. FDPs that were used to identify CVCs and how they may relate to different types of confounding.

FDP PV Confounding Type Examples (drug: allopurinol, ADE:liver failure)
“x CAUSES ADE” co-medication, comorbidity transplantation, embolism, cirrhosis

“x PREDISPOSES ADE” co-medication, comorbidity infection, sodium

“DRUG TREATS x; comorbidity gout, kidney failure, pericarditis

x COEXISTS_WITH ADE”

In our evaluation, In order to exclude spurious associations (as all vectors in the space are a measurable distance
apart) from our CVCs, we made use of a frequency threshold, such that only bridging terms with association
strengths > 2.5 standard deviations were included.
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Figure 1. This graph illustrates EpiphaNet queries in the context of our method.
Data and Analysis

Reference Set and Data Collection. To derive our data set, we used a reference set of curated drug-ADE
associations that was developed by Patrick Ryan and his colleagues as a standard for evaluating PV methods *. This
reference set includes 399 medications/ADE pairs and 4 ADEs with both positive (drug-ADE relationships
supported by the literature and other sources, including package labeling events) and negative (drug-ADE
relationships without support) control groups per ADE. The four ADEs are as follows: acute kidney injury (AKI),
acute liver injury (ALI), gastrointestinal bleeding (GIB), and acute myocardial infarction (AMI). These ADEs were
chosen for their importance to PV space, their diagnostics, and their impact on financial and personal cost.
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Figure 2. This graph illustrates our workflow.

Analysis of Observational Clinical Data. The steps that we took for evaluation of our method are as follows both
in the text below and in the corresponding items in Figure 2:

1. Map and expand drug/ADE synonyms to expose data of interest in the EHR index for extraction and
additional processing [1]. We used RxNorm to identify drug synonym CUIs in the UMLS *’. For ADEs, we
mapped the reference set’s OMOP terms (several are provide for each ADE of interest) to concepts in the
UMLS, using exact string match of the preferred name field 4,

2. Process EHR with MedLEE to represent concepts (drugs, ADEs, CVCs) as CUIs in the UMLS 2, This is
a subset (~2.1 million documents from ~364,000 in- and outpatients in the Houston metropolitan area
between 2004 and 2012) of records from the UTH BIG * clinical data warehouse.

3. Build Lucene EHR index (software that efficiently tabulates the concept co-occurrence so as to facilitate
rapid document retrieval) ¥.
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4. Query PSI vector space for CVCs given each drug-ADE pair for CVCs and extract data from index.
5. Extract drugs, ADEs, and CVCs from the EHR index (as lists of document IDs where respective concepts
are in evidence) into concept-by-document vectors.
6. Establish baseline and CVC-adjusted scores for co-occurrence of drug-ADE pairs by constructing
contingency tables [6a] and by computing area under curve (AUC) from receiver operator characteristic
(ROC) curves from ranked-order of coefficients from logistic regression models [6b]. In descending order
of co-occurrence count between drug, ADE, and CVC concepts (with an intersection threshold of 10),
construct contingency tables as input for statistical models (using forward stepwise logistic regression), and
calculate aggregated performance statistics from AUCs of ROCs. Finally, compile results into tables [6c].
In the course of building models iteratively in step 6 above, when or if a model that has incorporated a new CVC
statistically converges, that CVC would be incorporated into subsequent models. This process continued for each
drug-ADE pair until CVCs have been exhausted for that FDP. When such models fail to converge, the offending
concept is added to a list of exclusions for that pair so that it would not be included in subsequent builds and for
manual investigation of interesting patterns. If none of the models for a drug-ADE pair converge using CVCs, then
the score from the unadjusted, or baseline, logistic regression coefficient is used to calculate AUC.

Results and Discussion

Table 2. This table presents the baseline and adjusted AUCs from ROCs that were calculated from ranked order of
drug coefficients from logistic regression models from each ADE and FDP combination. caus="x CAUSES ADE”,
pred="x PREDISPOSES ADE”, tcoe="DRUG TREATS x; x COEXISTS_WITH ADE”. Counts=number of
positive/negative examples. AUCs in bold indicate that an adjusted model drug coefficient is higher than baseline.

Complete Results Constrained Results
ADE FDP Counts (+/-) Baseline Adjusted Counts (+/-) Baseline Adjusted
AKI caus 5853 11/13 .6573 .6643
pred 24/64 584 584 NA NA NA
tcoe 6126 18/40 6972 6125
ALI caus S15 44 /14 .5536 5568
pred 81/37 5167 5297 50/24 4992 4825
tcoe 492 58/25 .509 5303
GIB caus .6418 20/48 .6073 5792
pred 24/67 .653 .699 20/49 .5949 6571
tcoe 7189 20/50 .5964 .69
AMI caus 5158 24/41 .6026 .6148
pred 36/ 66 5112 5196 30/47 5319 5574
tcoe .5032 27/45 .5687 5835
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There are two groupings of result data in Table 2, labeled Complete Results and Constrained Results. Complete
Results indicates that the AUCs have been calculated from the full data set without imposing any additional criteria.
In the Constrained Results, the following criteria were applied to calculate performance metrics values for each field
per ADE/FDP row: all logistic regression models must have converged, the count for drug instances was > 100, the
count for intersections was > 10 between med-ADR pair, and that the calculations derive exclusively from cases
where CVCs were included in the logistic regression models. As a result, the count of positive and negative controls
for the same ADE will vary, since CVCs differ between FDPs.

Wordclouds. We have generated word clouds below in Figure 3. The first two word clouds represent the CVCs of
ALI and GIB with the “x CAUSES ADE” pathway. The third and fourth show the word clouds for the AMI groups
using the “x CAUSES ADE” FDP. The fifth word cloud represents the CVCs that were excluded in building the
logistic GLMs for GIB using “DRUG TREATS x; x COEXISTS_WITH ADE” FDP. The reader will notice that CVCs
from single predicate FDPs (e.g., “x CAUSES ADE”) that were associated only with the ADE were of both the
comorbidity and co-medication confounding subtypes, whereas CVCs from “DRUG TREATS x; x COEXISTS WITH
ADE” are constituted exclusively by comorbidities. The fourth word cloud from the left is interesting in that the most
prevalent CVCs are comorbidities and likely mediators of myocardial infarction.
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Figure 3. These word clouds represent CVCs for ADEs and FDPs with font size proportional to aggregated term
frequency (across all drugs for a group [positive or negative control] of a given ADE and FDP) in the EHR index.

Observations. There were ~55,000 instances in our EHR index for each of ALI, AMI, and GIB. AKI was the outlier
with only ~5,000 instances. In the case of AKI for the “x PREDISPOSES ADE” pathway, no co-occurring CVCs were
identified, so no adjustment could be made. In the case of ALIL one might reason that the set is heavily weighted
toward the positive examples, so little gain is to be had by adjusting with CVCs.

Analysis of Complete Results. Our method performed the best when there was sufficient baseline support (AUC >
0.6). For example, gastrointestinal bleeding had the best baseline AUCs, and there were notable gains in both
Complete Results and Constrained Results for both “x PREDISPOSES ADE” and “DRUG TREATS x; x

COEXISTS_ WITH ADE” FDPs. In general, CVCs that derived from the double predicate “DRUG TREATS x; x
COEXISTS_WITH ADE” FDP were more effective than those from single predicate FDPs. Such FDPs discover
concepts with associations with both predictor and response variables, what Turing award winner Judea Pearl, a

seminal influence on the field of causal reasoning, refers to as “true confounders” ®.
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Analysis of Constrained Results. In the Constrained Results, for models that include CVC adjustments,
performance improved in 8 of 11 cases. The “DRUG TREATS x; x COEXISTS_WITH ADE” FDP improved
performance in 3 of 4 cases, while same can be said in 2 of 4 for “x PREDISPOSES ADE”. In only one case, AKI, was
there an improvement using the “x CAUSES ADE” FDP.

Error Analysis. While using the single predicate FDPs that imply causation or risk factors, e.g., “x CAUSES ADE”,
“x PREDISPOSES ADE”, respectively, make sense in terms of their ostensible causal association for adjusting negative
controls, this intuition was not supported by the results of our analysis. Such FDPs uncover concepts that exist in the
gray area between mediators, risk factors (Pearl’s “indirect effects” predictors), and concepts which could manifest
confounding effects, €.g., smoking with respect to a positive control drug and AMI °. For example, the following
examples of mediation-like CVCs from this FDP were identified: stenosis, obstruction, thrombosis, and thrombus.
Such concepts are suggestive of mediating concepts that relate to the causal mechanisms for AMI. Since mediators
tend to be collinear with response variables, inclusion of such CVCs may be detrimental to performance.

One perplexing CVC from “DRUG TREATS x; x COEXISTS WITH ADE” FDP for acute myocardial infarction is
fibroid tumor. Fibroid tumors of the gastrointestinal tract are relatively rare and usually appear on the uterus.
However, review of the predication database suggested that at times anti-inflammatory agents may occur in TREATS
relationships with fibroid tumors, as they are used to control the pain associated with this condition. Though the
“DRUG TREATS x; x COEXISTS WITH ADE” FDP is intended to retrieve terms that are associated with both the
drug and the ADE, the underlying implementation involves vector superposition - so though we would anticipate
terms that are bilaterally connected being retrieved first, terms that are unilaterally connected may still meet the
threshold. Such spurious CVCs could be eliminated by using a higher threshold of associational strength than the
2.5 standard deviation level and by making bilateral connection a prerequisite for retrieval.

Future Work. In future iterations of our research in this area, we hope to explore more FDPs, to put in place
temporal feasibility constraints, and to experiment with other reference sets 332, We plan to incorporate data from
other sources (e.g., FAERS, plausibility models), apply causal Bayesian networks instead of regression models,
explore automatically inferring FDPs from strongly associated False Positives, and experiment with interactive
refinement of literature-derived CVCs.

Conclusion

With the aim of surmounting the obstacle of confounding, a phenomenon which diminishes the validity of
information that can be extracted from observational data, we have proposed a scalable and computationally
inexpensive LBD-based CVD method. Our results show when there is sufficient support above random for an ADE,
i.e., AUC > .6, that statistical models that incorporate adjustments for the influence of dual-predicate FDP-derived
CVCs exhibit modest (.05 AUC or higher) performance gains for the task of re-identifying drug-ADE pairs from
observational clinical data. While in the current paper we have presented a use case for our method in the domain of
PV, we posit that our method is of potentially broader applicability as a tool complementary to other tools for tasks
that involve enhancing signal detection from observational data within biomedicine.
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