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Abstract 

An important aspect of post-marketing drug surveillance involves identifying potential side-effects utilizing adverse 
drug event (ADE) reporting systems and/or Electronic Health Records. These data are noisy, necessitating 
identified drug/ADE associations be manually reviewed – a human-intensive process that scales poorly with large 
numbers of possibly dangerous associations and rapid growth of biomedical literature. Recent work has employed 
Literature Based Discovery methods that exploit implicit relationships between biomedical entities within the 
literature to estimate the plausibility of drug/ADE connections. We extend this work by evaluating machine learning 
classifiers applied to high-dimensional vector representations of relationships extracted from the literature as a 
means to identify substantiated drug/ADE connections. Using a curated reference standard, we show applying 
classifiers to such representations improves performance (+»37%AUC) over previous approaches. These trained 
systems reproduce outcomes of the manual literature review process used to create the reference standard, but 
further research is required to establish their generalizability. 

Introduction 

In 2007, the Institute of Medicine estimated that 1.5 million preventable adverse drug events (ADEs) occur each 
year in the United States1. One report in JAMA indicated that ADEs are the most common nonsurgical adverse 
events that occur in hospitals,2 and another meta-analysis indicated that ADEs were between the fourth and sixth 
leading cause of patient mortality3. Additionally, 25 drug products were removed from market due to safety issues 
over the last decade, highlighted by high-profile cases such as Vioxx (rofecoxib)4, which was removed from market 
on account of increased risk of potentially fatal cardiovascular side effects. The seriousness and prevalence of post-
marketing ADEs is a motivation for modern pharmacovigilance systems – systems that actively monitor adverse 
event reports and clinical records for the emergence of yet undetected associations between drugs and side effects. A 
key challenge to this process, however, is determining whether there is sufficiently compelling evidence to support 
the belief that an observed drug/side-effect relationship is plausibly causal5. In order to make this assessment, 
information from a variety of data sources, including randomized clinical trials, observational studies, and 
spontaneous ADE reporting systems, is integrated by subject matter experts5. This process is extremely time- and 
resource-intensive, and doesn’t scale well to the vast and growing amount of such data. Though there has been a 
considerable amount of methodological research focused on the problem of signal detection – the selective 
identification of meaningful drug/ADE associations using statistical methods – an urgent need exists for informatics 
methods to support the process of critical clinical review to establish the plausibility of such associations once 
identified6.  

In this paper, we evaluate a novel approach to this problem by applying machine learning methods to vector 
representations of implicit relationship patterns that connect a given drug/ADE pair in the literature. We call this 
approach "Classification-by-Analogy", as classification is thought to occur on the basis of the alignment between the 
relational structures connecting pairs of entities - a defining characteristic of analogical reasoning7. Our hypothesis 
is that the structure (rather than just the content) of the relations that connect pairs of entities in the literature can 
serve as a meaningful basis for categorization of the nature of the relationship between them. As an initial case 
study, we set out to determine whether a drug/ADE pair has a plausibly causal relationship substantiated in the 
literature, as determined by expert review. 

Background 

In the field of Literature-based Discovery (LBD), relationships extracted from the literature are used to establish the 
plausibility of an observed or hypothetical relationship (known as “closed discovery”)8-10. The main idea is that two 
concepts (such as a drug and disease) that are not connected directly in the literature, may be connected implicitly by 
relations involving other concepts (for example a drug might inhibit a gene associated with a disease). Though 
originally intended to assess potentially therapeutic relationships10, this approach can also be applied to drug/ADE 
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relationships11,12. Several systems have been deployed in an effort to automate LBD analyses, many of which 
operate on a co-occurrence based approach13-16. In this paradigm, co-occurrence of concepts or terms are taken as 
indications of relationship between concepts of interest. In general, these methods do not consider the nature of a 
particular relationship, even if assertions that specify it occur in the text. These linking words are of particular 
interest in LBD methods, however, as they can add additional information to constrain the search space of 
intermediate concepts. Natural language processing systems such as SemRep have been developed to extract these 
relational assertions from the biomedical literature17. SemRep preserves relational assertions by extracting concept-
predicate-concept triplets – such as (ibuprofen-TREATS-pain) – which have been used effectively for LBD in a 
number of applications15,18. As noted by LBD’s originator, Don Swanson, however, exhaustive exploration of every 
implicit relationship occurring between concepts is unlikely to be computationally tractable10, motivating the 
development of methods that operate on reduced-dimensional approximations of the relationship matrix between 
concept pairs19,20. In one approach, concept-predicate-concept triplets form the basis for a vector representation 
scheme, Predication-based Semantic Indexing (PSI)19,21, that encodes concepts and their relational connections (or 
predicates) in a hyper-dimensional semantic vector space. These PSI encodings can be used to query the 
relationships between concepts by using an approximate form of reasoning in which the potentially intractable task 
of exploring large numbers of implicit relationships is converted to the computationally convenient task of 
comparing the similarity between semantic concept vector representations21. Although PSI represents concepts as 
vector encodings in a high-dimensional vector space similar to those of neural embedding approaches (e.g. 
word2vec22), these encodings are derived differently. Neural word embeddings are derived directly from natural 
language using a neural network optimized to predict the context of a given term (or vice versa). In contrast, PSI 
representations are derived from semantic predications by explicitly encoding the nature of the relationships 
between concepts using compositional operators. 

PSI accomplishes encoding and query functions by leveraging reversible vector transformations provided by a 
family of representational approaches: Vector Symbolic Architectures (VSAs)23-25. The vector transformations are 
algebraic operations, and can be characterized as follows: a bundling operation (+), which adds (or superposes) 
vectors to generate a vector product that is similar to its component vectors; and binding (Ä), which results in a 
vector that is dissimilar from its component vectors and is functionally analogous to multiplication. These vector 
transformations are reversible by subtraction of component vectors and release (Æ) of the binding operation 
respectively, and vary in technical implementation between VSAs. In our work, we employ the Binary Spatter Code 
(BSC) as the VSA, which uses high- (or “hyper-“) dimensional binary vectors with dimensionality on the order of 
1,000s as a representational unit26. On account of the statistical properties of high-dimensional space, large numbers 
of such vectors can be generated stochastically – by randomly assigning a one or zero in each dimension with equal 
probability – with a high probability of their being far apart in space. This means these vectors are exceedingly 
unlikely to be confused with one another, despite their being distorted during the superposition process: large 
numbers of such random vectors can be superposed before their signal is lost. The BSC’s bundling transformation 
takes a majority rule vote between component vectors (ones are assigned to dimensions with more ones than zeros, 
and ties are broken at random), and employs Pairwise Exclusive OR (XOR) to bind and release (since XOR is its 
own inverse). These operations provide the basis for training in PSI. The semantic vector for a concept is generated 
by superposing the bound product of the random vectors for the predicate and argument of each predication it occurs 
in. For example, the predication “ibuprofen-TREATS-pain” would be encoded into the semantic vector for the 
concept “ibuprofen” by superposing the bound product of the random vectors for “TREATS” and “pain”. In 
symbols, where S(concept) is the semantic vector for a concept, and E(concept/PREDICATE) is the elemental (or 
random) vector for a concept or a predicate, S(ibuprofen) += E(TREATS) Ä E(pain). A consequence of this 
encoding process is that when applied to two semantic vectors, the release operator reveals the two-predicate path (if 
any) that connects them: 

If   S(ibuprofen) += E(TREATS) Ä E(pain) 

and S(arthritis) += E(CAUSES) Ä E(pain)  

then S(ibuprofen) Æ S(arthritis) = E(TREATS) Ä E(pain) Æ  ( E(CAUSES) Ä E(pain) )  

    = E(TREATS) Ä E(pain) Æ  E(pain) Æ  E(CAUSES) 

    = E(TREATS) Æ E(CAUSES) 
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For example, in the PSI semantic space for the current work, the nearest-neighboring bound products of predicate 
pairs to the vector product S(valdecoxib) Æ S(gastrointestinal_hemorrhage) are shown in Table 1. Importantly, these 
pathways contain only bridging relationship information (structure), and not the bridging concepts themselves 
(content). 

Once inferred, these predicate based (or reasoning) pathways can be used to direct a search through the space for 
other concepts that relate to a third concept in a manner similar to the relationship between the cue concept pair – a 
process referred to as Discovery-by-Analogy (DbA)27, as the reasoning employed follows the pattern: “what is to 
myocardial infarction as valdecoxib is to gastrointestinal hemorrhage”. We have previously applied this 
methodology to estimate the plausibility of drug/ADE relationships4, using a procedure that restricts the search to a 
small number of two- and three-predicate pathways (termed “discovery patterns”) inferred from known therapeutic 
or drug/ADE relationships.  

In this paper, we take previous PSI approaches a step further: rather than inferring and applying discrete reasoning 
pathways from known examples (the “discovery patterns”), we evaluate the utility of applying machine-learning 
methods to the vector products of semantic PSI representations directly. As these vector products represent patterns 
of relationships (predicates), we call this approach Classification-by-Analogy (CbA). Our hypothesis is that this will 
lead to improved performance in a classification task, as the distribution of reasoning pathways between pairs of 
concepts, rather than the strength of relatedness across a set of discrete pathways, is considered. 

By way of novelty, these models have not yet been utilized as a representational framework for machine learning in 
the biomedical domain, aside from in the context of DbA, so the literature provides little guidance as to which 
algorithms might be best applied to them. For the current analyses, we chose to utilize k-Nearest Neighbors (kNN),  
a support vector machine (SVM), and a logistic regression (LR) model. kNN is a nonparametric classifier that 
functions in simple deployments by taking a majority vote amongst the closest k-neighbors to an unknown data 
point. Since VSAs generate a vector space populated by vectors in such a way that similar vectors co-localize to a 
similar geometric region, we anticipated that kNN would provide reasonable performance. SVMs are parametric 
models that learn a dividing hyperplane defined by a subset of the data (so-called support vectors) in high 
dimensional spaces to classify examples occurring on either side. As one previous example exists of an SVM applied 
to vector symbolic representations with success on a text categorization task28, an SVM with similar parameters was 
chosen. Finally, LR was chosen due to both its popularity and its simplicity in defining a classifying hyperplane as a 
function of coefficients on the input data alone (i.e., it does not learn the hyperplane as a function of support 
vectors). Cost functions differ between SVMs and LR, and they differ slightly in their handling of regularization 
despite sharing the same hyperparameter, C, a term to encourage sparsity. 

Labeled data are required input for these supervised machine learning algorithms. In pharmacovigilance, such 
labeled data has historically been difficult to acquire, as it requires the very human-intensive process that makes 
pharmacovigilance itself a costly expenditure. The Observational Medical Outcomes Partnership (OMOP)5,29,30 
research initiative endeavored to meet this data need, and produced a drug/side-effect database to facilitate 
methodological research for drug safety surveillance. This manually curated reference set consists of 165 positive 

Rank (std > mean) Neighboring Predicate Pathway Explanation 

1 (4.979988) E(COMPARED_WITH)  
Æ E (PREDISPOSES-INV) 

Valdecoxib was compared with (e.g. in a clinical 
trial) a drug that predisposes toward gastrointestinal 
hemorrhage (gih). 

2 (4.031143) E(COMPARED_WITH)  
Æ E(CAUSES-INV) 

Valdecoxib was compared with a drug that causes 
gih. 

3 (2.931345) E(ISA) Æ E(CAUSES-INV)  Valdecoxib is of a class of agents that causes gih. 

4 (2.801957) E(COMPARED_WITH)  
Æ E(TREATS-INV) 

Valdecoxib was compared with an agent that treats 
gih. 

5 (2.780393) E(COEXISTS_WITH) 
Æ E(PREDISPOSES-INV) 

Valdecoxib coexists with a condition that 
predisposes toward gih. 

Table 1. The closest five predicate paths to S(valdecoxib)ÆS(gastrointestinal_hemorrhage). –INV indicates 
directionality, such that CAUSES-INV can be read as “is caused by”. The rank amongst predicate pathways, 
and the standard deviation above the mean similarity score across these vectors are shown in the first column. 
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and 234 negative test cases. Each test case is a drug-ADE pair, and each drug is one of 181 unique drugs in the set, 
including NSAIDs, beta-blockers, ACE inhibitors, antidepressants, antibiotics, and more. The four side-effects 
chosen – acute myocardial infraction, acute renal failure, acute liver failure, and gastrointestinal bleeding – are four 
of the most significant ADEs for a risk identification system31. Together, these combinations provide a widely used 
methodological evaluation set and the current benchmark in PV. 

Methods 

To facilitate our research, we utilized the semantic predications extracted from the literature by SemRep housed in 
the Semantic Medline Database (SemMedDB) version 2.2 database and the 2012 MetaMapped Medline Baseline 
(MMB) for PSI and co-occurrence approaches respectively. The SemMedDB extractions were generated by 
SemRep version 1.5. The MMB was derived from 20,494,848 citations up to November 2011, and contains 399,701 
distinct concepts, while SemMedDBv2.2 was derived from 22,252,812 citations up to March 2013, and contains 
63,795,467 predications spanning 58 predicates and 257,350 distinct concepts. These versions are identical to those 
used in the previously published analyses, and were chosen to facilitate methodological comparison. As in previous 
work, negative predications, such as drug DOES NOT TREAT side-effect, were excluded, comprising only 1.2% of 
the total predications.  

Of the OMOP data set, we utilized 164 positive and 230 negative test cases. For our analysis, we did not use test 
cases for the drugs darunavir and sitagliptin, as they did not occur in the vector representation stores used for the 
analyses. The four side-effects in the OMOP set can be defined by a list of International Classification of Diseases 
(ICD) 9 codes, and so we expanded the list of terms encompassing each ADE to all of its ICD-9 codes and sub-
codes. Table 2 represents some of the expanded query terms used for myocardial infarction. Drug names were not 
expanded, and were queried in all cases as named in the OMOP reference set except for niacin, which was translated 
to nicotinic acid. 

OMOP Term ICD-9 Code Expansion Term 

acute myocardial infarction 410 acute_myocardial_infarction 

 411 acute_coronary_syndrome 

 414 silent_myocardial_infarction 

Table 2. Example expanded terms for myocardial infarction. 

As our co-occurrence approach, we employed reflective random indexing (RRI) which considers both direct co-
occurrence and indirect relatedness (between terms co-occurring with the same other terms). RRI was implemented 
using the Semantic Vectors package version 3.7 with 32,000 dimensional binary vectors in accordance with the 
BSC. Briefly, document vectors are built by superposing the elemental vectors for each distinct concept that occurs 
in each document in the MMB, using a log entropy weighting metric (which reduces the effect of high-frequency 
terms across and within documents). Semantic concept vectors – i.e. S(concept) – are then built by superposing the 
document vectors that the given concept occurs in. These semantic vectors are then rank ordered based on (1 – the 
normalized Hamming distance), a similarity measure, between drugs and (expanded) ADEs in the reference set. To 
expand each ADE into a query that reflected the sum of its ICD-9 codes, we superposed the available vector 
representations of expanded list terms reflecting the given condition.  

For both producing results as in previous PSI analyses using discrete pathways (i.e. DbA) and for our classification 
analysis, we utilized vector stores from previous analyses, whereby 32,000 dimensional binary vectors were 
generated consistent with the BSC using Semantic Vectors version 3.711. A maximum frequency threshold of 1M 
terms was used to prune uninformative high-level concepts, and negative predications were removed as mentioned 
above. In order to further mitigate the effect of highly frequent, uninformative terms, superposition of bound 
products were weighted by predicate frequency multiplied by the sum of the inverse document frequency of the 
predicate and bound concept such that (using ibuprofen as an example): 

   S(ibuprofen) += E(TREATS) Ä E(pain) × fTREATS × (idfTREATS+idfpain) 

 where fTREATS = log(1+occurrences of predication ibuprofen-TREATS-pain) 

 idfTREATS = log(number of total predications / number of predications containing TREATS) 

 idfpain = log(number of total predications / number of predications containing pain) 
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Predicate Subspace Component Explanation 

P(INTERACTS_WITH)ÄP(CAUSES-INV) Valdecoxib interacts with something that causes gih. 

P(ASSOCIATED_WITH)ÄP(COEXISTS_WITH) Valdecoxib associated with something that coexists with 
gih. 

P(COMPARED_WITH)ÄP(CAUSES-INV) Valdecoxib compared with something that causes gih. 

P(ASSOCIATED_WITH)ÄP(INTERACTS_WITH) Valdecoxib associated with something that interacts with 
gih. 

P(ISA)ÄP(CAUSES-INV) Valdecoxib is a type of something that causes gih. 

Table 3. The double predicate discrete reasoning pathways that make up the subspace for DbA. gih = 
gastrointestinal hemorrhage. 

Additionally, ADE terms were expanded as in RRI for DbA and CbA. For each drug/ADE pair in the reference set, 
the semantic vectors for the respective drug and ADE are then released as shown above (Table 1), giving us the 
abstract pathway vector representation for that pair. This vector is then projected into a subspace composed of two 
predicate discrete reasoning pathways (Table 3) and rank ordered by magnitude to generate DbA results, and passed 
as input to the machine learning algorithms in our CbA work. Only double predicate pathways were utilized for 
DbA to facilitate a fair comparison with CbA (in previous work, triple-predicate pathways were also considered). 
With our goal to classify these vectors according to ground truth relationship, we labeled the vectors representing 
each drug/ADE pair relationship with the OMOP ground truth state (Figure 1) for input into machine learning 
algorithms. 

 

 

 

 

 

 

 

 

 

 

 

All machine learning development and deployment was done in the Python programming language version 3.5 using 
the scikit-learn32 package. The specific Python deployment was from Continuum Analytics Anaconda33 platform, 
version 2.5, and a development environment was created using the conda command line utility packaged with 
Anaconda specifically for the purpose of these analyses and to ease reproducibility. This environment file, along 
with saved data arrays, code files used, and additional information on software versions utilized, are available upon 
request.  

Within scikit-learn, we utilized the LibLinear library through the scikit-learn.LinearSVC() front end; for k-Nearest 
Neighbors (kNN) we utilized the scikit-learn.kNN() front end; and for LR we utilized the LibLinear library through 
the scikit-learn.LogisticRegression() front end. Hyperparameters for the SVM (the regularization C parameter), for 
LR (C parameter) and for kNN (the k number of neighbors) were chosen using cross-validation grid search 
functionality built into the scikit learn package (scikit-learn.GridSearchCV). For the SVM and LR, an L1 penalty 
parameter was chosen to enforce sparsity in the learned model. ROC AUC curves for SVM and LR models were 
generated by passing the results of the decision function, which calculates the distance from the dividing hyperplane 

Relationship	
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Abstract	Vector	
for	Pairs

Ground Truth	
Labels	for	
Pairs

PubMed OMOP	
Reference	Set

Vector | Label
101010101	 | 1
100010001	 | 0

Figure 1. Feature vectors, 
which represent the abstract 
pathways that link concepts, 
are derived from processed 
literature. The OMOP 
reference assertions are then 
used to label these feature 
vectors as either positive or 
negative examples. 

~22M Articles 
~64M 

Predications 
 
 

394 drug/ADE 
Pairs 
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of the classifier for each example in the case of the SVM, as the rank ordering. Additionally, Stratified 5-Fold cross-
validation was used to generate the mean ROC AUC curve by averaging each fold’s performance on a held out test 
set. Learning curves were generated for the F1 metric by varying the number of training examples and the 
dimensions of the data. Test data was never utilized in the training phase of any supervised machine learning 
approach in an attempt to mitigate over-fitting. All plotting was done using the matplotlib package in Python. 

Results 

A comparison of kNN performance results with 5, 10, and 15 nearest neighbors are reported below in Table 4. kNN 
typically performed best with k»5 in our analysis. For comparison, see F1 scores in Figure 4. 

k Neighbors Precision Recall F1 Score 

5 0.88 +/- 0.06 0.87 +/- 0.06 0.87 +/- 0.06 

10 0.86 +/- 0.05 0.86 +/- 0.05 0.86 +/- 0.05 

15 0.83 +/- 0.05 0.81 +/- 0.06 0.82 +/- 0.05 

 

 

A summary of the ROC results between DbA, RRI, and SVM and LR models both utilizing a C of 1, including 
AUCs, can be found in Figure 2. All variants of CbA outperformed DbA (+»37% over 0.68 AUC) and RRI (+»48% 
over 0.63 AUC) models, with AUCs around 0.93-0.94. Additional context for these results can be found in the 
learning curves presented in Figure 4.  

 
For C=1, SVM coefficient vectors contained approximately 300/32000 nonzero weights when trained, with similar 
levels of nonzero weights in LR models. Coherence of nonzero features, including sign and strength of weight, is 
shown in Figure 3. These nonzero features are distributed across the coefficient vectors for these models. There are 
approximately 70% shared nonzero positions between them. 

 

 

Figure 2. ROC Curves for 
tested models. AUCs are 
listed +/- two times the 
standard deviation (across 
cross-validation runs).  

Table 4. kNN precision, recall, and F1 scores reported with two times the standard deviation across cross-
validation runs in error per number of k neighbors used. 
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LR and SVM models both have one hundred percent accuracy on training sets when trained with full dimensional 
vectors with C=1. Cross-validation performance is consistently above 0.80 when considering an F1 scoring metric 
with even a small portion of the training data set and significantly diminished input vector dimensions. 

 

 

Discussion 

To our knowledge, these results represent the first evaluation of classification based on vector representations of 
abstract relational structures. kNN performance indicates that relational neighborhood as defined by abstract 
predicate pathways is of value for this task. Although we believe that performance metrics indicate the LR and SVM 
models are over-fitting, the strong cross-validation performance implies remarkable self-consistency in the 
representations of the literature for the OMOP reference set. Additionally, LR and SVM models both have striking 

SVM LR 

Figure 3. Coherence 
among LR and SVM 
models. Negative weights 
are colored in white, zero 
values colored in grey, and 
positive values colored in 
black. In either case, the 
32k weights - one for each 
dimension of input data - 
are reshaped into a 
200x160 matrix for 
visualization. Nonzero 
elements are distributed 
across the weight vectors. 
Contrast adjusted for 
visibility. 

Figure 4. The effect that truncating dimensions (a) and limiting training samples (b) has on cross-validation 
performance of CbA parametric methods, as measured by an F1 metric.  

a b 
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coefficient vector homology. Since the OMOP set derived its positive examples using automated NLP methods to 
extract drug reactions from package inserts as the first pass, and then incorporated manual review; and since 
negative examples were likewise selected as those that did not show up in drug packaging inserts, Tisdale evidence, 
and had nonexistent or only negative linkings to the ADE in question in the literature during manual review, it is 
possible that their selection criterion generated a reference set that is internally coherent amongst examples of each 
class. While more work needs to be done to assess generalizability, presented results indicate that there exists a self-
consistent structure to the OMOP reference set as represented here that provides CbA approaches sufficient 
information to make accurate classifications on it. 

The machine learning algorithms we chose are particularly simple and incorporate no prior information; we 
anticipate the incorporation of priors will improve performance and likely lend to more generalizable models. 
Unsurprisingly, it also seems that the models would be well served with additional examples, as evidenced by the 
learning curves. Such examples would ideally introduce more variance, and trained models would be less prone to 
over-fitting. Experimentation with additional weighting strategies within the representation itself may also be 
warranted, as the weighting procedures can influence which predicate pathways are encoded more influentially. 

In addition to only being characterized in the context of a single data set, our study has other limitations worth 
mentioning. First, we didn’t attempt to optimize any statistical weighting metrics or other PSI parameters in the 
development of this work. Second, we didn’t systematically evaluate how performance changes cross different 
initializations of the random vectors, opting instead for pseudo-random instantiation per [33]. Additionally, work is 
presented in comparison to similar approaches that operate on literature information exclusively; other studies have 
been published on the data set utilizing different methods and data, including observational data34,35, which is not 
considered here. 

One major benefit of the DbA approach, and one current limitation to CbAs, is clearly defined interpretability. For 
DbA, confidence scores are generated based on vector-subspace similarity, and the subspace is constructed from 
elected double predicate pathways. If something has high similarity to the subspace, then the interpretation is that it 
has high similarity to those predicate pathways which make up the subspace. In our CbA approaches, it is difficult to 
directly map nonzero coefficients to interpretable pathways or features. Since a fully distributed representation 
encodes information across vectors, individual features are primarily important in their context of other features. The 
primary challenge we see facing this work is in mapping learned nonzero parameters from these classifiers back to 
more interpretable predicate pathways, and to the literature sources that plausibly link these entities themselves. In 
this same vein, it is likely that more information than just common relations are being utilized by classification 
algorithms as presented here. The vector space, as a function of its structured encoding scheme, likely incorporates 
common object information as well when comparing our derived relational representations. For example, in 
comparing drugs A and B that inhibit the same target C, AÄC would be similar to BÄC, and is functionally similar 
to a direct object comparison in that context (i.e. similarity(AÄC, BÄC) = similarity(A,B)). The information used in 
this case is not exclusively relational, though relational information plays a role (A inhibits y, A causes C; B inhibits 
Y therefore B may cause C).  Further research is needed to identify the extent to which these different sorts of 
information contribute toward classifier performance. 

Conclusion 

Each model accurately predicted across a variety of drugs and four ADEs, learning only one set of parameters to 
distinguish between plausibly causal as defined by the OMOP set and not, substantiating that the representation 
itself is a meaningful basis for classification tasks. Our original hypothesis that the basis of the relational structure 
between pairs of biomedical entities could provide the necessary information for categorization of higher level 
relational status was substantiated by our results on the OMOP reference set.  
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