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Abstract 
We have sought to replicate and extend the Season-wide Association Study (SeaWAS) of Boland, et al1 in identifying 
birth month-disease associations from electronic health records (EHRs). We used methodology similar to that 
implemented by Boland on three geographically distinct cohorts, for a total of 11.8 million individuals derived from 
multiple data sources. We were able to identify eleven out of sixteen literature-supported birth month associations 
as compared to seven of sixteen for SeaWAS. Of the nine novel cardiovascular birth month associations discovered 
by SeaWAS, we were able to replicate four. None of the novel non-cardiovascular associations discovered by 
SeaWAS emerged as significant relations in our study. We identified thirty birth month disease associations not 
previously reported; of those, only six associations were validated in more than one cohort. These results suggest 
that differences in cohort composition and location can cause consequential variation in results of hypothesis-free 
searches. 
 
Introduction 
The human urge to assign importance to birth season is well-documented: astrologists have been attempting to 
divine human fates based on birth timing for millennia2. Such endeavors were put on solid scientific footing in 1929, 
with the publication of a work on the connection between mental disorders such as schizophrenia and birth month3. 
Little doubt remains that birth month does have a measurable impact on many facets of life; over 250 studies had 
confirmed the importance of birth season before the year 20004. Links have been established between disease 
prevalence and birth month for numerous conditions: allergies and rhinitis5,6, reproductive performance7,8, attention 
deficit hyperactivity disorder (ADHD)9, dermatitis10, Crohn's disease11, and otitis media12, among others. Studies 
have also suggested connections between birth month and height13, life expectancy14, and life events15. Potential 
explanations for the observed links have incorporated diverse causes such as neonatal vitamin D exposure16, 
exposure to allergens17, and the impact of social age15. 
 
In 2015, Boland et al1 implemented a hypothesis-free, phenome-wide method to systematically identify associations 
between birth month and disease prevalence. Their work is part of a growing acceptance of using electronic health 
record (EHR) data to conduct retrospective studies.  EHRs have been mined to better understand health care 
utilization of diabetic patients18, detect adverse drug events19, and find health care fraud20. “Hypothesis-free 
systems,” algorithms which proceed systematically through a dataset without a priori hypotheses, have achieved 
success in identifying clinically relevant associations. For example, EHRs were used in conjunction with genetic 
data to validate associations between single nucleotide polymorphisms and specific diseases21. 
 
As the authors of SeaWAS admitted, EHR observational studies have limitations—the existence of bias in health 
care data is well-known and well-documented22. Comparison of large-scale EHR research with gold-standard, 
manually curated research has demonstrated that the two can produce inconsistent results23. Known examples of 
systemic biases in EHRs include selection bias24, coding bias25, and missing or inaccurate records26,27. In addition to 
EHR biases, retrospective studies in general may overstate effects and be subject to confounding factors28. However, 
EHR research has been shown to provide an approximation to traditional research and has had several successful 
replications of large studies24,25. 
 
Boland, et al’s hypothesis-free methodology was able to confirm known disease-birth month associations, discover 
new associations, and find clusters of birth month dependencies among disease types1. Their work was significant 
because it applied sophisticated statistical techniques to a large dataset to derive novel insights. However, their work 
was limited by the cohort to which they applied their method. The SeaWAS study investigated records of 1.7 million 
individuals at New York-Presbyterian/Columbia University Medical Center. Observed associations from this 
population may be local effects that do not generalize to a more general population. 
 
We conducted a retrospective study to apply the SeaWAS approach to larger cohorts from different geographical 
regions. By simultaneously applying this methodology to three separate cohorts, we were able to discern the effect 
of geographical, administrative, and population-based cohort differences. The increased sample size of our cohorts 
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allowed increased power in detecting birth month associations. In addition, we proposed a change to the 
methodology used by SeaWAS to address statistical concerns first raised by Boland, et al and tested the impacts of 
its implementation. 
 
Methods 
Data Preparation 
The individuals of interest were derived from the Explorys platform31. Patients were separated into three cohorts 
based on ZIP3 codes corresponding to regions in three different states. The first cohort (C1) consisted of patients in 
a southern US state at approximately 31° N latitude. The second cohort (C2) was constructed of patients from a 
midwestern US state around 40° N. The third cohort (C3) included patients from a western US state at 
approximately 38° N. Each of these cohorts represents an aggregation of multiple clinical and claims data sources, 
grouped by patient. In order to match patients across data sources, demographic records were matched on date of 
birth, gender, ZIP3, and the New York State Identification and Intelligence System (NYSIIS)32 representation of the 
patient’s name. All records were de-identified prior to analysis and all records derived from Centers for Medicare & 
Medicaid Services (CMS) data were excluded from the study. 
 
Demographic information about both the original and replication cohorts is summarized in Table 1. 
  
Table 1. Demographic information about original and replication cohorts.  
 SeaWAS (NY) Replication (C1) Replication (C2) Replication (C3) 
Total Individuals [ Count ] 1,749,400 4,588,300 4,840,500 2,331,000 
Sex [ Count (%) ]     
 Female 956,465 (54.67) 2,598,592 (56.64) 2,597,027 (53.65) 1,275,957 (54.73) 
 Male 791,534 (45.25) 1,988,451 (43.34) 2,240,720 (46.29) 1,054,662 (45.25) 
 Other/unidentified 1,401 (0.08) 1,289 (0.02) 2,757 (0.06) 362 (0.02) 
Race [ Count (%) ]     
 White 665,366 (38.03) 2943136 (64.14) 3,087,731 (63.79) 1,563,300 (67.07) 
 Other/unidentified 842718 ( 48.18) 951485 (20.74) 983,021 (20.31) 623,719 (26.76) 
 Black 189,123 (10.81) 553,657 (12.07) 752,837 (15.55) 56,987 (2.44) 
 Declined 29,747 (1.70) 350,33 (0.76) 48,903 (1.01) 38,336 (1.64) 
 Asian 20,746 (1.19) 69,909 (1.52) 48,523 (1.02) 38,162 (1.64) 
 Native American/Indian 1,511 (0.09) 15,704 (0.34) 9,147 (0.19) 10,486 (0.45) 
 Pacific Islander 189 (0.01) 19,376 (0.42) 971 (0.02) 0 (0.00) 
Ethnicity [ Count (%) ]     
 Non-Hispanic 590,386 (33.75) 2,831,416 (61.71) 2,559,409 (52.87) 1,282,259 (55.01) 
 Unidentified 458,071 (26.18) 1,177,856 (25.67) 2,066,994 (42.70) 693,478 (29.75) 
 Hispanic 361,123 (20.64) 560,298 (12.21) 83,991 (1.74) 277,226 (11.89) 
 Declined 339,820 (19.42) 18,730 (0.41) 1,301,06 (2.69) 78,037 (3.35) 
Other [ Median (IQR†) ]     
 Age 38 (22-58) 45 (27-62) 49 (29-66) 46 (29-64) 
 Years of follow-up 1 (1-3) 1 (0-3) 3 (0-7) 1 (0-3) 
† Interquartile range 
 
A list of diagnoses was derived from each patient's medical history documents, problem lists, billing records, and 
other clinical findings. All patient records that contained an International Classification of Diseases, version 9 or 
version 10 (ICD-9, ICD-10) code were aggregated. Using a custom map based on the Common Data Model (CDM) 
mapping33 and Intelligent Medical Objects (IMO) data34, ICD concepts were converted to Systemized Nomenclature 
for Medicine-Clinical Terms (SNOMED) codes. The ICD to SNOMED map used in this study is not one-to-one; 
that is, an ICD code may map to more than one SNOMED code. In this case, all relevant SNOMED codes were 
recorded and included in analysis. 
 
Statistical Methodology 
For each SNOMED code with more than 1,000 distinct patients, a Pearson’s chi-squared test of independence35 was 
performed comparing the birth month distribution of patients with the condition to the birth month distribution of all 
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patients with records in the given system. In each cohort, a different number of SNOMED codes met the sample size 
restriction. In the original SeaWAS study, 1,688 conditions met the sample size cutoff. In the C1, C2, and C3 
replication cohorts, 4,218, 6,379, and 2,973 SNOMED codes were evaluated, respectively.  
 
Boland, et al applied the Benjamini-Hochberg36 (BH) multiplicity correction to the p-values resulting from the chi-
squared test. The BH multiplicity correction is a sequential hypothesis rejection procedure designed to control the 
False Discovery Rate (FDR) of independent test statistics. However, as Boland states, “Study limitations include the 
lack of condition independence […] potentially affecting multiplicity correction” (1051). We applied a more 
conservative multiplicity correction to our p-values, the sequential Holm multiplicity correction37. To evaluate the 
impact of the change in multiplicity correction, we calculated the results using both multiplicity corrections and 
compared the output of the different methodologies. 
 
Results 
In all replication cohorts, we identified several literature-supported birth month-disease associations. We used the 
curated reference set of literature-supported associations from Boland, et al as a baseline to compare the results from 
the four cohorts. SeaWAS identified seven out of sixteen associations. Using the same multiplicity correction as the 
original study, the replication cohorts identified ten, eleven, and three associations at the adjusted p<.05 significance 
level. When considering associations only identified using the more conservative Holm correction, the replication 
cohorts identified nine, seven, and one of the literature-supported associations. The literature-supported associations 
identified in each cohort are given in Table 2. 
 
Table 2. Recall of literature-supported birth month-disease association in original and replication cohorts. “X” 
represents an exact match and “(BH)” represents a match only significant with the Benjamini-Hochberg multiplicity 
correction. 
Literature-Supported 
Association 

SeaWAS (NY) Replication (C1) Replication (C2) Replication (C3) 

Allergy/Asthma/Rhinitis X X X (BH) 
Reproductive Performance X X (BH)  
Eye Problems X X X  
Schizophrenia  (BH) (BH)  
Diabetes  X X  
Respiratory Syncytial Virus X X X X 
Depression  X   
Colitis X    
Leukemia     
ADHD X X X (BH) 
Atherothrombosis   (BH)  
Atopic Dermatitis   X  
Crohn’s Disease     
Lung Fibrosis     
Otitis Media X X X  
Rheumatoid Arthritis  X (BH)  
Multiple Sclerosis     
Type 1 Diabetes     
Autism     
 
In addition to identifying correlations from the literature, we evaluated the previously unidentified associations 
discovered in each cohort. Out of the sixteen new associations from SeaWAS, four of them were replicated in at 
least one of the replication cohorts. All of these replicated findings were cardiovascular conditions. None of the non-
cardiovascular associations discovered by SeaWAS were replicated. Out of the thirty-five unique conditions 
identified in an Explorys cohort, eight were replicated in another cohort. A summary of these findings, broken down 
by multiplicity correction and cohort, is presented in Table 3. The list of conditions identified is in Appendix A. 
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Table 3. Comparison of results for Holm and Benjamini-Hochberg (BH) multiplicity corrections. SeaWAS results 
are given in columns labeled “NY”; replication results given in “C1,” “C2,” and “C3” columns. 
 Total Number of Associations Identified   Number of Novel Associations Discovered 
 NY C1 C2 C3   NY C1 C2 C3 
Holm - 39 16 5  Holm - 30 9 4 
BH 55 81 46 9  BH 16 71 35 6 
           
 Number of Literature Supported 

Associations Identified [ # (%Recall) ] 
  Number of Novel Associations Validated in 

Other Cohort [# (%Precision) ] 
 NY C1 C2 C3   NY C1 C2 C3 
Holm - 9 (56) 7 (44) 1 (6)  Holm - 6 (20) 6 (67) 3 (75) 
BH 7 (44) 10 (63) 11 (69) 3 (19)  BH 4 (25) 8 (11) 14 (40) 4 (67) 
 
 
Discussion 
In this replication attempt, we considered fifty data sources in three widely separated regions. The results differed 
greatly between different geographic regions. The most striking difference between cohorts in different geographical 
areas is the relatively few associations detected in cohort C3. Cohort C1 produced almost eight times more 
associations than did the C3. It has been shown that the strength of a birth month-disease association depends on the 
latitude38, but birth month effects are typically stronger in higher latitudes. It is unclear why cohort C3, which is at a 
higher latitude than C1, produced fewer associations. It may be due to different health care processes used in 
different locations, or it may be related to differences in the characteristics of the individuals in the cohort.  The 
variation in total number of associations observed and the fact that only six out of thirty newly observed associations 
were statistically significant in more than one cohort suggests that differences between cohorts may be a driver of 
substantial variation in the results of hypothesis-free searches. 
 
Despite the lack of associations produced in C3, we have confidence that the replication cohorts were well-suited to 
test the hypothesis-free search. The C1 and C2 cohorts identified more of the literature-supported associations than 
did SeaWAS. This indicates that the sample size and extent of data was sufficient to detect legitimate birth month 
associations present in the cohorts. 
 
In all of the cohorts tested, we failed to replicate the non-cardiovascular novel associations discovered by SeaWAS. 
These conditions include common ailments such as bruising, nonvenomous insect bite, vomiting, and venereal 
disease screening. Because these conditions are not typically very serious, their inclusion in an EHR may be 
dependent on the completeness of documentation and may suffer from seasonal bias.  
 
Four new associations were discovered in the replication cohorts that were statistically significant in more than one 
geographical: coronary arteriosclerosis, tobacco use, hypoxemia, and reversible ischemic neurologic disease 
(RIND). The first association, coronary arteriosclerosis, may share a mechanism with the other cardiovascular 
conditions identified in SeaWAS. Although tobacco use has no obvious biological connection to birth month, the 
connection may be cultural, related to the impact of relative social age (as in Halldner9 or Skirbekk15). The 
association of hypoxemia and birth month is mostly seen in individuals younger than five, suggesting that the 
observed effect may be transient. We are not aware of any explanation for the observed association of RIND with 
birth month. 
 
The results discussed above strongly suggest that the Holm correction is an appropriate multiplicity correction to use 
for this hypothesis-free search. Although the recall of the search was higher with the Benjamini-Hochberg 
correction, there were many more non-replicable potential false positives identified using that correction. In addition 
to the non-replications of SeaWAS associations, the BH correction produced non-replicated associations in the new 
cohorts such as constipation, diaper rash, tinnitus, and headache. There is naturally a trade-off in choosing any 
threshold for significance; we suggest that the Holm multiplicity correction more accurately represents the 
uncertainties involved in this context. 
 
This study had several limitations that could be overcome with future work. All the cohorts considered were in the 
northern hemisphere and the United States. Results from different regions of the globe may reveal different cultural 
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or environmental impacts on birth month associations. In addition, there were several confounding factors that we 
were unable to control in this retrospective study; two of which, age and coding differences between data sources, 
are known to impact studies39,25. Future studies should more closely examine the impact of those confounding 
factors on the results of hypothesis-free searches. 
 
Conclusion 
This study is the largest of its kind with over 11 million unique patients, and is the first to include results from 
geographically distinct data sources. The size and breadth of this study allowed it to identify subtle trends and 
associations over large populations. We identified new birth month-disease associations and showed that results 
from a previous hypothesis-free search may not be generalizable. We have shown that the Benjamini-Hochberg 
multiplicity correction may not be well suited to a hypothesis-free search with dependent test statistics and shown 
that the Holm multiplicity correction is a better choice. It is clear that this approach can be a powerful hypothesis 
generator and tool for investigating the role of seasonally dependent early developmental mechanisms in general 
health, but obtaining generalizable results requires evaluating different sets of data and accounting for potential 
biases. 
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Appendix A: List of conditions with statistically significant associations with birth month 
SeaWAS Replication 

Description p-value 
(BH) 

Replicated? SNOMED ID Description p-value 
(Holm) 

Validated? 

Atrial fibrillation <.001 Yes 55822004 Hyperlipidemia <.001 No 
Essential hypertension <.001 Yes 387712008 Jaundice <.001 No 
Congestive cardiac 
failure 

<.001 Yes 53741008 Coronary 
arteriosclerosis 

<.001 Yes 

Angina <.001 No 399269003 Arthropathy <.001 No 
Cardiac complications of 
care 

0.027 No 90708001 Kidney disease <.001 No 

Cardiomyopathy 0.009 No 92065004 Neoplasm of colon <.001 No 
Pre-infarction syndrome 0.036 No 89765005 Tobacco use <.001 Yes 
Chronic myocardial 
ischemia 

0.022 No 40930008 Hypothyroidism <.001 No 

Mitral valve disorder 0.024 Yes 73430006 Sleep apnea <.001 No 
Acute upper respiratory 
infection 

<.001 No 43339004 Hypokalemia <.001 No 

Bruising 0.015 No 93796005 Malignant neoplasm 
of female breast 

<.001 No 

Nonvenomous insect bite 0.001 No 198036002 Impotence <.001 No 
Venereal disease 
screening 

0.003 No 201101007 Keratosis <.001 No 

Primary malignant 
neoplasm of prostate 

0.002 No 22325002 Abnormal gait <.001 No 

Malignant neoplasm of 
overlapping lesion of 
bronchus and lung 

0.014 No 414916001 Obesity 0.003 No 

Vomiting 0.029 No 193462001 Insomia 0.001 No 
   2169001 Radiculitis 0.001 No 
   363746003 Pharyngitis 0.001 No 
   389087006 Hypoxemia 0.002 Yes 
   48694002 Anxiety 0.002 No 
   62315008 Diarrhoea 0.007 No 
   42345000 Polyneuropathy 0.013 No 
   2776000 Delirium 0.016 No 
   8186001 Cardiomegaly 0.024 No 
   11381005 Acne 0.027 No 
   57406009 Carpal tunnel 

syndrome 
0.028 No 

   36179005 RIND syndrome 0.028 Yes 
   23056005 Sciatica 0.032 No 
   52767006 Hypoglycemia <.001 No 
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