Controlling testing volume for respiratory viruses using machine learning and
text mining

Mark V. Mai, MD, MHS', Michael Krauthammer, MD, PhD’
'The Children’s Hospital of Philadelphia, Philadelphia, PA; ?Yale School of Medicine, New

Haven, CT
Abstract

Viral testing for pediatric inpatients with respiratory symptoms is common, with considerable associated charges. In
an attempt to reduce testing volumes, we studied whether data available at the time of admission could aid in
identifying children with low likelihood of having a particular viral origin of their symptoms, and thus safely forgo
broad viral testing. We collected clinical data for 1,685 pediatric inpatients receiving respiratory virus testing from
2010-2012. Machine-learning on the data allowed us to construct pre-test models predicting whether a patient
would test positive for a particular virus. Text mining improved the predictions for one viral test. Cost-sensitive
models optimized for test sensitivity showed reasonable test specificities and an ability to reduce test volume by up
to 46% for single viral tests. We conclude that diverse forms of data in the electronic medical record can be used
productively to build models that help physicians reduce testing volumes.

Introduction

Upper respiratory infections comprise one of the most common emergency department (ED) diagnoses in the
pediatric population accounting for up to 25% of visits during influenza seasons'?. In the majority of children, the
respiratory viral infection is mild and considered self-limiting with adequate supportive care®>. A large variety of
viruses may cause respiratory symptoms and routine testing for key viruses is now available for children visiting the
EDG—I l.

The clinical utility of routine virus testing has been demonstrated previously, with children testing positive receiving
less antibiotics and incurring fewer overall charges'>". Also, children with positive results that are admitted after
their ED visit may be properly isolated to prevent the spread of hospital-acquired infections'. However, with most
children testing negative for the majority of viruses on the routine panels, the high billable charges of these panels,
and the self-limiting nature of most virus infections, there are open questions about the overall utility of routine viral
testing for ED visits.

There has been growing interest in the secondary use of EMR data to aid in clinical decision making and test
ordering. Recognizing the prevalence of overtesting in the ICU setting, one group used fuzzy modeling of readily
available data, like vital signs, urine collection, and transfused products, to identify tests that likely would not
contribute to information gain in patients with gastrointestinal bleeding'>. Other studies have looked to clinical
documentation as a source of variables for developing classifiers that screen for disease. For example, emergency
department free-text reports were used as the source of data for machine learning classifiers that outperformed
expert Bayesian classifiers in the detection of influenza'®. Another study has also employed the use of natural
language processing of clinical notes to identify patients who may have Kawasaki disease, a diagnosis that is
notoriously difficult to make'”.

Our goal was to develop a practice-based workflow for the evaluation and optimization of respiratory virus test
utilization in the pediatric population. The workflow would use data that is available at the time of the ED visit. The
workflow would be helpful in identifying children with low likelihood of having a particular viral origin of their
symptoms, who could safely forgo broad viral testing. The overall goal would be the design of smaller, custom viral
test panels that test only those viruses that are most likely present given the pre-test patient data.

Using a retrospective study design, we collected clinical, seasonal, and demographic data for patients that underwent
viral testing, and identified key characteristics that are indicative for patients with subsequent negative test results.
Using machine learning, we thus optimized a classifier for the robust identification of patients with negative test
results based on pre-test data. Based on current clinical knowledge of pediatric respiratory virus infections, we
hypothesized that age and season would be the strongest predictors of test result when used in machine learning
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classifiers. We also hypothesized that the inclusion of clinical concepts in admission notes as predictive variables
would enhance classifier performance.

Methods

The study population consisted of general pediatric inpatients who received respiratory virus laboratory testing
between March 2010 and March 2012. The following inclusion criteria were employed: adequate nasopharyngeal
swab sample, 18 years of age and younger, general inpatient admission, and test ordering within two days of
admission. The following data were collected and de-identified for each patient: age, gender, season of test
ordering, test results, and history and physical admission notes. Patients were tested with DFA and/or PCR panels.
The DFA panel consisted of tests for adenovirus, influenza A/B, parainfluenza 1-3, and RSV. The PCR panel tested
for the same viruses in addition to human metapneumovirus and rhinovirus. The study was performed using
protocols reviewed and approved by the Yale University Institutional Review Board.

Of the clinical natural language processing (NLP) tools available, MetaMap 2013 was used to identify medical
concepts in the History of Present Illness of each note. MetaMap 2013 is a program made available by the National
Library of Medicine that allows users to map biomedical text to the Unified Medical Language System
Metathesaurus'®'?.  While clinical NLP frameworks exist that are arguably more powerful, like cTAKES, HITEX,
and Sophia, MetaMap was chosen for its ease of implementation. The following options were used in MetaMap:
restriction of terms to the SNOMED CT terminology, limitation of semantic types to “signs and symptoms” and
“diseases and syndromes”, utilization of all derivational variants of a word, allowance for concept gaps, expansion
of acronyms and abbreviations, and identification of negated concepts. The presence or absence of each mapped
concept was added as additional variables for model development. To determine the precision of the MetaMap
software when run on the corpus of clinical notes, concepts identified by MetaMap were compared to the original
text. For 100 randomly selected notes, the identified concepts were reviewed and compared to the original
statements by the physicians. Partial-match precision was calculated, as previously published®. Recall was not
calculated because we were primarily interested in the concepts that MetaMap was actually able to identify and not
terms outside of its matching capabilities.

Based on these variables, we developed models using machine learning algorithms to predict the likelihood that a
given patient would test positive or negative for a specific virus. For each viral diagnosis, three models were built
based on: 1) billing data alone, 2) MetaMap concepts, and 3) billing data in addition to MetaMap concepts. For this
task, we used Weka 3.7.9, a freely available Java based implementation that implements numerous machine learning
algorithms, as well as common tools for data mining, such as data pre-processing and attribute selection*'. Using
Weka, we performed attribute selection on the variables to determine which variables provided the greatest gain of
information, given the specific viral test to be modeled*?. Attribute selection reduced the number of variables for
inclusion in each model from over 400 to less than 20, depending on the test. A cost sensitive classifier was applied
on top of machine learning algorithms to weigh against false negative model predictions with varying cost
thresholds®*. The decision tree learning algorithm, J48 (the Java implementation of C4.5), was chosen for use in the
development and evaluation of each model”. To reduce the likelihood of overfitting, we employed ten-fold
cross-validation. Hyperparameter optimization was not explored in this study.

Using the sensitivities and specificities resulting from the numerous cost thresholds, we constructed a specialized
receiver operating characteristic (ROC) curve, also referred to as an ROC instance-varying transformation®. We
calculated the area under the curve (AUC) for each model using the trapezoidal rule. The standard error for each
model’s ROC was calculated, as previously published”’. To simulate a scenario in which tests can be selected
individually for a customized panel (e.g. in house PCR vs. multiplex PCR), we created three different types of
customized panels and modeled the performance of the panels on the study sample. For each type of customized
panel, a given patient would be serially tested until either a test returned positive or the patient had received all of
the recommended testing. We created a control panel in which patients were assigned a panel with a random order.
A second panel was composed of a fixed order based on the prevalence of diagnoses. The third and experimental
panel took into consideration the predictions generated by the decision tree models. Patients would be tested for
viruses, based on the recommendation of the model and then ordered from highest to lowest prevalence, and testing
would cease after a positive result or all negative results for the recommended tests.
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Results

In total, 1,972 orders for respiratory virus testing were placed during 1,848 visits. For each patient, the test consisted
of a panel of 6 viruses - adenovirus, influenza, parainfluenza, RSV, hMPV, and rhinovirus. Each hospital visit was
associated with 1 or more orders for respiratory virus testing. Table 1 summarizes the age, gender, and season of the
study population by etiology. Negative test results accounted for 69.5% of all tests ordered during the study period.
Males comprised around half of each viral diagnosis except for adenovirus diagnoses of which males comprised
68.8%. The mean age for all viral diagnoses was less than 5 years of age, except for positive cases of influenza,
where the mean age of diagnosis was 8.24.

Table 1. Summary basic clinical variables of general admission pediatric inpatients by etiology (2010-2012)

Cases Adenovirus Influenza Parainfluenza RSV hMPV Rhinovirus Multiple Negative

(n=32) (n=40) (n=93) (n=234) (n=29) (n=180) (V““S;’*;) (n=1519)
n =

Males, 22 (68.8)  21(52.5) 47(50.5) 125 15 91 (50.6) 31544 gs58(56.5)

No. (%) (534)  (51.7)

Age,  3.75+378 824+  299+410 214+ 489+  440+474 239F 4884

mean + 6.53 3.20 5.00 339 529

SD

Both DFA and PCR panels are ordered throughout the year and show similar patterns in peak months of test
ordering, during the winter seasons. DFA panels (n =2152) were ordered 3.9 times more often than PCR panels (n
= 550). Figure 1 shows the distribution of positive test results aggregated by month during the study duration.
Adenovirus and rhinovirus are detected in all months with no clear pattern. Cases of co-infection, influenza, h\MPV,
parainfluenza, and RSV demonstrated regular seasonal fluctuations. The distribution of co-infected cases were
present at low rates during the entire year, although demonstrated peaks in the winter months of each year. No cases
of influenza occurred outside the winter or spring months in the study population. Test results for hMPV had a
similar distribution to influenza infections. Cases of RSV arose primarily during the winter months, although the
onset of the RSV season differed between the two years.
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Figure 1. Positive test results as a proportion of all test results for each detectable virus, by month.

In order to reduce viral testing in patients, we evaluated models for their predictive ability, based on pre-test data, to
identify patients with low likelihood of a particular virus. Some models consumed data from text mining clinical
notes. We evaluated the performance of the MetaMap program in identifying concepts by calculating the
partial-match precision. The partial-match precision was calculated to be 0.724 across a random sample of 100
notes.
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Figure 2. J48 decision tree classifier models predicting the outcome of laboratory tests for individual viruses.

Using Weka, models based on the decision tree algorithm, J48, were derived. By varying the type of data used to
derive the models, three types of models were developed for the detection of each virus. A basic model was derived
using age, gender, and season. A text-mining model was derived using MetaMap concepts as predictive variables.
A combined model was derived using age, gender, season, and MetaMap concepts. The ROC curves are depicted in
Figure 2 and the corresponding AUC values are presented in Table 2. Basic models showed some predictive ability
(AUC > 0.65) for four of the six viruses under study: influenza, parainfluenza, RSV, and hMPV. The text-mining
models showed no predictive ability, except for RSV, where the text-mining model performed similarly to the basic
model (AUC: 0.661 vs. 0.658, respectively). The combined models showed similar discriminative ability to the
basic models for all viruses, except for RSV, where the combined model outperformed both the basic and
text-mining.

Table 2. Receiver operator characteristic curve characteristics

ROC curve AUC (SE)
Basic model ~ MetaMap Combined
model model
Adenovirus 0.568 (0.114)  0.480 (0.099)  0.532(0.108)
Influenza 0.743 (0.126)  0.451 (0.084)  0.715(0.122)
Parainfluenza  0.686 (0.078) 0.510 (0.061)  0.694 (0.078)
RSV 0.658 (0.048) 0.661 (0.048)  0.722 (0.051)
hMPV 0.713 (0.143)  0.474 (0.103)  0.682 (0.138)
Rhinovirus 0.549 (0.047) 0.471(0.041)  0.570 (0.048)

To determine how the MetaMap terms factor into the combined model for RSV, we mapped out the decision tree of
the combined model (Figure 3). Age was the first branching point followed by branching points based on a
combination of season, MetaMap concepts, and other age ranges.
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Figure 3. The graphical representation of the J48 decision tree classifier for RSV when based on both billing data
and MetaMap concepts. Thresholds for age and season were determined by the J48 algorithm based on the
information gain provided by the attribute splits. These are denoted by the single lines. The presence or absence of
clinical terms in the HPIs are shown as branching nodes, followed double lines and dashed lines, respectively.

To assess how the models would perform as “in silico” screening tests prior to actual diagnostic testing, we
computed the test characteristics for the combined models. Unlike the general model presented above, we would
assess models with specific performance thresholds. At a target sensitivity of > 95% for the combined models for
each virus, we calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value
(NPV) (Table 3). The target of > 95% sensitivity (i.e. no more than 5% of cases with a respiratory infection are
missed) was achieved by using a cost sensitive classifier that was applied on top of machine learning algorithms to
weigh against false negative predictions. As detailed in Table 3, specificity ranged from 3.7% to 45.5% for all of
the models at a sensitivity ~95%. A cost-sensitive classifier was thus able to safely sort patients into those that will
eventually test positive for a virus (with at least 95% sensitivity), while robustly identifying patients that will not test
positive (no viral infection). Some models were able to identify up to 45.5% of patients with no viral infection, and
thus would lead to a sizeable reduction in test volume, as no testing is warranted. Models for adenovirus and
rhinovirus showed the lowest specificities. While the PPV ranged from 50.1% to 64.7% for all models, the NPV
ranged from 52.1% to 100%. For influenza, parainfluenza, RSV, and hMPV, the NPV was above 80.7%.

Table 3. Test characteristics of combined model for each of the viruses

Virus Sensitivity Specificity PPV NPV

Adenovirus 0.966 0.037 0.501 0.521
Influenza 1.00 0.455 0.647 1.00
Parainfluenza 0.965 0.198 0.546  0.850
RSV 0.953 0.196 0.542  0.807
hMPV 0.974 0.205 0.551 0.887
Rhinovirus 0.943 0.076 0.505  0.571
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*A minimum threshold sensitivity of 95% was set for each of the combined models (sensitivity of Rhinovirus was
slightly below the set threshold)

In order to assess how model predictions might be useful in clinical practice, where patients are routinely tested for
all 6 viruses, we simulated the effects of “customized panels” on the average number of tests that a given patient in
the study population would need to undergo. In an environment where tests for individual viruses could be serially
performed without being prohibitive in regard to time, we developed three types of customized panels that might be
employed, as described in the methods section: 1) random order, 2) order based on the prevalence of a virus, 3)
order based on model predictions. Each panel would test a patient serially until either a positive test result was
returned or all tests on the panel had been performed. For the model based on random order, an average of 4.93 tests
(SD = 1.69) would be performed; for the model based on prevalence, 4.52 tests (SD = 2.03; p <0.001); and for the
model based on the predictive models, 3.93 tests (SD = 1.64; p < 0.001). For the customized panel based on the
predictive models, 22 patients would have been untested, who would have otherwise tested positive for a virus and
57 patients would have been missed for an additional viral co-infection.

Discussion

This retrospective study evaluated respiratory virus testing in the general pediatric population at a tertiary academic
children's hospital. Of the tests that were ordered, the vast majority resulted in a negative finding. Our objective
was to develop clinical models using information available at the time of test ordering that might reduce test volume,
while ensuring that patients with detectable infections are still tested, given the previously published
benefits”'>'**2*  This study found that predictive models built on clinical variables were able to discriminate
patients who should receive testing better than chance. For 4 out of 6 viruses included in our study, age, season, and
gender could be used to build models with fair predictive ability. We also hypothesized that concepts contained in
the history of present illness portion of the clinician’s admission documentation could improve the predictive ability
of our models. In the case of RSV, a model based only on concepts in the HPI had the same predictive power as the
model based on billing data. Combining these two sources of data improved prediction of RSV. The precision of
our concept matches via MetaMap were in line with previously published results**~¢. Our findings suggest a useful
role for admission notes, aside from documentation.

Effective implementation of these predictive models as screening tests requires practical understanding of the test
characteristics as they relate to an institution’s clinical goals. By limiting testing of patients who would otherwise
test negative, the population receiving diagnostic testing would be enriched for positive cases. A practical,
cost-saving clinical model would thus strive for the highest possible sensitivity that is associated with a reasonable
specificity. That is, high test sensitivity (almost no patient missed that will test positive) may be achieved while still
achieving above zero specificity (patients with low likelihood of testing positive). We show, for example, that for
influenza testing, we could achieve 100% sensitivity at 46% specificity. In other words, we can build a pre-test
model that safely identifies all patients that are going to test positive for influenza, while identifying many patients
that will not test positive, and for which no testing needs to be carried out. The model, as seen in Figure 1, is mostly
determined by assessing the season of the patient visit.

It is important to note that the presented predictive models are not designed to predict positive cases with high
accuracy. While we sought models that resulted in the highest sensitivities, these models often had very high false
positive rates. Thus, in our models, the predictive model should be considered to predict “high risk for positive
result” and “low risk for positive test result.” The distinction is important to the proposed function of the models, as
the models were intended to aid the practitioners in reducing the number of overall tests that they order.

From a practical point of view, predictive models could act as “in silico” screening tests for whether or not patients
should receive testing. If the models are validated against a prospective dataset, they might find practical
application via integration into the electronic medical record, running in the background as the clinician is entering
data about a patient. At the time of test ordering, the physician would be presented with information regarding what
tests are likely negative or potentially positive. As a clinical decision tool at the point of care, the results of this
model might encourage providers to limit testing to only those cases where the results would change clinical
management. The use of basic variables, as well as documented clinical symptoms, can reduce test volume for
certain tests by up to nearly half with a low false negative rate. In addition, the use of customized panels based on
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the predictive models would further reduce test volume. While the actual cost of testing is not transparent at most
institutions, the amount charged for performing a respiratory virus panel is estimated to be around $1500, although
this varies by institution and the exact type of testing performed. Ordering clinicians and patients could therefore
expect the average charge to drop to $1000 if customized panels were employed. Future work will focus on refining
the text mining approach and concept identification, as well as exploring the concept of customized panels, based on
the prediction results of the models.

Our study has several limitations. The study population included only patients who received respiratory virus testing
and selection criteria were not based on diagnostic codes. As a result, the seasonal prevalence of test results may not
be reflective the true prevalence of viral infections. Furthermore, the focus on pediatric patients only accounted for
about 20% of total respiratory virus testing volume, whereas testing on adults comprises the majority of testing. In
addition, the numerous exclusion criteria may limit the generalizability of the models. While the billing data are true
independent variables, the variables collected by text mining with MetaMap may not be fully independent. Because
the timing of when admission notes were written could not be controlled, there is the possibility that some notes may
have been written after test results were communicated. We took several measures to prevent this, including
selecting the oldest admission note on record and manually reviewing notes for mention of testing. The text mining
approach recorded concepts as “mentioned” versus “unmentioned,” which may not fully capture the whole clinical
picture for a patient, as pertinent positives or negatives may have been unknowingly omitted by the author of the
HPI. Our study also did not differentiate between different strains of viruses, which some of the tests are able to do
(i.e. influenza A and B, parainfluenza 1-3). Initially, we expected that concepts from clinical notes would provide
more robust prediction performance than we encountered. The reasons are likely multifactorial. First, the sample
size that we used was small, compared to other NLP and machine learning efforts, making it less likely that we
would be able to find concepts that would be able to differentiate between viruses. Second, given the high
variability between providers’ styles when writing notes, the values for many concepts were left blank and were not
subsequently imputed. Finally, the clinical manifestations of upper respiratory viruses are very similar with few
distinguishing symptoms (i.e. barky cough for parainfluenza, gastrointestinal symptoms with adenovirus, and
myalgia for influenza), making it difficult for physicians or the program to accurately diagnose viruses based on
clinical history and exam alone, thus giving value to respiratory virus testing as a means of making a final diagnosis.

Conclusion

The results presented here offer a new perspective on analyzing testing practices for respiratory viruses using data
mining and natural language processing techniques. We find that in a tertiary academic children’s hospital, the
majority of respiratory virus testing returns negative. Furthermore, our results suggest that additional clinical factors
may be used in a clinical model to predict the likelihood of an infection and the need for further diagnostic testing.
Text mining of clinical notes may augment the predictive power of future models, as demonstrated in our models of
RSV. This work contributes to the growing body of evidence that diverse forms data in the electronic medical
record, not just billing data, can be used productively to build models that aid physicians in decision making, and
may help in reducing test volumes.
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