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Abstract

In blood transfusion studies, plasma transfusion (PPT) and bleeding are known to be associated with risk of prolonged
ICU length of stay (ICU-LOS). However, as patients can show significant heterogeneity in response to a treatment,
there might exists subgroups with differential effects. The existence and characteristics of these subpopulations in
blood transfusion has not been well-studied. Further, the impact of bleeding in patients offered PPT on prolonged
ICU-LOS is not known. This study presents a causal and predictive framework to examine these problems. The
two-step approach first estimates the effect of bleeding in PPT patients on prolonged ICU-LOS and then estimates
risks of bleeding and prolonged ICU-LOS. The framework integrates a classification model for risks prediction and
a regression model to predict actual LOS. Results showed that the effect of bleeding in PPT patients significantly
increases risk of prolonged ICU-LOS (55%, p=0.00) while no bleeding significantly reduces ICU-LOS (4%, p=0.046).
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Introduction

Great progress has been made in improving patient outcomes associated with major surgical operations in recent years.
This has been manifested by the reduction in intraoperative and postoperative mortality and the overall reduction in
transfusion requirements1. Despite these advances, bleeding is still the most frequent serious complication during
or early after major surgical procedures. For example, bleeding in the immediate postoperative period occurs in
approximately 20% of patients undergoing liver transplant and about 12% in patients exposed to cardiopulmonary
bypass2. Bleeding in the perioperative 1 period has been found in many studies to be significantly associated with
increased health care resource utilization as reflected by increased intensive care unit (ICU) length of stay (LOS)3;4,
morbidity and mortality5.

After major surgical operations patients are typically managed in the ICU, thus the duration of stay is an important
indicator of the quality of care a patient receives as well as resource utilization. Patients with prolonged ICU-LOS
generally comprised a very small proportion of all ICU patients, yet studies have repeatedly shown that they consume
a significant share of ICU resources6;7. Early identification of patients who might stay longer in the ICU can help
improve resource utilization and efficiency of ICU care.

Many studies have reported risk factors for prolonged ICU-LOS and bleeding and a few have reported accurate models
for early identification of patients who might experienced these outcomes6–8. The majority of these studies have
considered the outcomes independently. Little attention has been given to the identification of patients groups with
prolonged ICU-LOS or increased risk of bleeding attributable to other important clinical outcomes or interventions.
A number of studies have investigated the attributable mortality and ICU-LOS of major bleeding using matched
cohort analysis or Cox regression models3;4;7. In the analysis, variables observed in the intraoperative and early
postoperative periods are typically incorporated in the models for improved performance. For example, in Kramer and
Zimmerman 7 predictive models for prolonged ICU-LOS that incorporate patient data observed as late as day 5 of ICU
admission produced more accurate results than day 1 data. However, as such studies assume the availability of intra-
operative and/or post-operative data they are inapplicable when only preoperative data is available. The authors of this
study are unaware of any study that has investigated the causal relationship between prolonged ICU-LOS in patients
intervened on with a treatment as plasma transfusion, and methods to early identify patients who might experienced
these outcomes using only predictor variables observed at the preoperative period.

1Unless otherwise mentioned, any reference to bleeding will be understood as perioperative bleeding.
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A key step to identify patients who might stay long in the ICU attributable to bleeding is to assess preoperatively,
patients who might bleed during or early after surgery. Across many centers in the US, substantial emphasis is often
placed on preoperative screening tests, such as the international normalized ratio (INR): a major driver of decisions
about preoperative plasma transfusion9. Fresh frozen plasma (FFP) infusions are commonly used to improve co-
agulation or clotting and are the main therapy option for patients with elevated INR. A large proportion of plasma
components are transfused in the perioperative environment9;10, however, they are frequently administered prophy-
lactically in the absence of significant active bleeding. This practice persists despite a growing body of literature
questioning its efficacy10;11. Through the use of machine learning methods, a recent study12 conducted by the au-
thors confirmed previous findings that population wise, preoperative plasma transfusion (PPT) significantly increases
the risk of bleeding, ICU-LOS, re-operation due to bleeding, and other important outcomes for patients undergoing
non-surgical procedures.

The goal of this study is to present a causal and predictive framework where in a first step, the causal effect (attributable
risk) of bleeding in patients offered PPT on prolonged ICU-LOS is estimated. Then in a second step, a predictive model
estimates the risk of (1) bleeding and prolonged ICU-LOS attributable to bleeding in patients offered PPT, and (2) all
causes of prolonged ICU-LOS. The predictive risk modeling step is designed as a two level structure where in the first
level, a classification model estimates the probability of bleeding given that a patient was offered PPT. In the second
level, a regression model is constructed specifically for patients identified by the first level model to be at high risk
of bleeding to predict the actual ICU-LOS. Given that bleeding patients tend to have longer ICU-LOS as determined
by the causal framework, the regression model therefore targets a more homogeneous group of patients at risk of
prolonged ICU-LOS compared to the overall heterogeneous ICU population.

Prediction results for patients undergoing non-surgical procedures from the Mayo Clinic perioperative datamart showed
that the classification model can effectively identify patients at risk of all courses of prolonged ICU-LOS and bleeding
in patients offered PPT with AUC as high as 0.84, sensitivity of 0.79 and G-mean of 0.75. The regression model on
the other hand can identify patients at risk of prolonged ICU-LOS attributable to bleeding in patients offered PPT
with acceptable accuracy (MAE=0.86 , median predictions within 2 day of true median ICU-LOS). Through a simple
transformation of the bleeding and PPT variables, the causal inference showed that the effect of bleeding in PPT pa-
tients significantly increases the risk of prolonged ICU-LOS (55%, p=0.00) and “no” bleeding in patients offered PPT
significantly reduces ICU-LOS (4%, p=0.046).

Study Setting and Datasets

Over the past few years, there has been a significant increased in the application of machine learning methods to solve
medical and health care problems. Often the problem reduces to applying standard classification or regression models.
However, there are some problems that challenges standard application of machine learning methods. Two of such
problems are considered in this study: to find a meaningful association between longer ICU-LOS and bleeding due
to PPT before surgery, and to identify patients who are at elevated risk of bleeding due to PPT and those at risk of
all causes of extended ICU-LOS. This section presents a causal and predictive framework in attempt to address these
problems.

Outcome-Treatment Variable Transformation

To facilitate the estimation of the effect of bleeding in patients offered PPT on prolonged ICU-LOS and prediction
of the risk of bleeding, the training data is grouped into 4 mutually exclusive classes as shown in Table 1. Class A
represents patients who bled and were given PPT while class B are patients who did not bleed but were also given
PPT. A similar interpretation can be made for the other classes. Using baseline covariates measured before PPT, causal
and predictive models can be constructed to to make inference on the four classes. Specifically, the causal inference
considers each of the classes in Table 1 as a treatment or exposure variable and then computes its effect on prolonged
ICU-LOS. Thus estimates of the treatment effect in class A can be interpreted as the cuasal effect of bleeding as a
“complication” of PPT on prolonged ICU-LOS. The predictive inference on the other hand simply constructs binary
classification models for each of the four classes. A multiclass classification model can equally be constructed for the
4 classes.
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Table 1: Outcome-Treatment Variable Transformation

PPT

bleeding

1 0

1 A
p(bleeding = 1|X, PPT = 1)

B
p(bleeding = 0|X, PPT = 1)

0 C
p(bleeding = 1|X, PPT = 0)

D
p(bleeding = 0|X, PPT = 0)

p(bleeding = 1|X, PPT = 1) = probability of bleeding given patient was offered PPT

Effect of Bleeding as complication of PPT on prolonged ICU-LOS

The standard approach to investigate the causal relationship between a treatment or exposure (e.g PPT or bleeding) and
an outcome (e.g ICU-LOS) is to construct statistical regression models in which the outcome is regressed against base-
line covariates and the treatment variable. The attributable effect of the treatment is then read off as the corresponding
regression coefficient. This study takes a different approach and estimates the treatment effect through application of
machine learning methods. The theory of causal inference or technical details of the considered estimation procedure
are beyond the scope of this study. The interested reader is referred to13–15 for more details. However, for the purposes
of this study, a brief discussion of the data structure required to compute these estimators is presented next.

Data structure and likelihood. The observations for each patient in the data set can be written as O = (X, Y, Z) where
Z ∈ {0, 1} is the treatment indicator (e.g. class A, B, C or D in Table 1 ) with Z = 1 if patient was treated and Z = 0
if patient was not treated. X is a vector of baseline covariates that records information specific to each patient prior to
treatment. Y is the outcome such as prolonged ICU-LOS (e.g. Y = 1 if ICU-LOS ≥ 7 days and Y = 0 if ICU-LOS <
7 days). The relationship between the observed variables in O can be written in a factorize data likelihood as

Pr(X, Y, Z) =

g︷ ︸︸ ︷
Pr(Z|X)

Q︷ ︸︸ ︷
Pr(Y|X, Z) Pr(X) . (1)

Pr(X) and Pr(Y|X, Z) are referred to as theQ component of the likelihood while Pr(Z|X) is the g component. g(Z|X)
represents the propensity or the causal disposition of the treatment to produce some outcome. Q(Z, X) = E[Y|Z,X]
is the expected potential outcomes conditional on the observed characteristics. Estimates of g and Q can be obtained
by standard regression or machine learning methods.

For a binary outcomes and in the presence of no confounding variables, a straightforward approach to obtain the
treatment effect is to compute the expectations ψ1 = E[YZ=1] and ψ0 = E[YZ=0], where E[YZ=1] is the mean of
Y assuming every patient in the population was exposed at level Z = 1. These two statistics can then be combined
in useful ways to assess the effect of different levels of the treatment. Three commonly reported summary statistics
include; (1) Additive Treatment Effect : ATE = ψ1 − ψ0, (2) Risk Ratio : RR = ψ1/ψ0 , and (3) Odds Ratio: RO =
RR× (1− ψ0)/(1− ψ1).

The ATE quantifies the additive effect of every patient being exposed to the event versus not being exposed. Thus
if the event is class A i.e. bleeding as a complication of PPT, a meaningful interpretation of ATE = 0.05 could read:
“being exposed to the event of bleeding as a complication of PPT versus not increases the risk of prolonged ICU-LOS
by 5%”15. The RR quantifies the multiplicative effect of being exposed versus not. A RR of 5 can be interpreted as:
“ being exposed to the event of bleeding as a complication of PPT versus not would lead to a 5 times increase in the
risk of prolonged ICU-LOS”. Since the OR is a function of RR, a similar interpretation can be given for OR.

Targeted maximum likelihood estimation. In observational studies, estimators of treatment effect need to account for
possible confounding, i.e the (apparent) effect of the treatment is actually the effect of another characteristic which
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is associated with the treatment and with the outcome. Several methods have been proposed for the estimation of
ATE, RR and OR that can mitigate the effects of confounding (and model misspecification), e.g. G-computation
formula, propensity score matching, inverse probability of treatment weighting (IPTW), and doubly-robust estimation.
See13;14 for more in-depth discussion of these estimators. In this study, the Targeted maximum likelihood estimation
(TMLE)15;16 method is considered because of its double robustness and bias reduction properties. TMLE is a two stage
doubly robust semi-parametric estimation methodology designed to minimize the bias of the parameters of interest.
The first stage of the method estimates the density of the data generating distribution (specifically Q) while the second
stage solves an efficient influence curve estimating equation. The influence curve describes the behavior of the target
parameter under slight changes of the initial density estimates. In TMLE, if either g or Q are consistently estimated,
then the TMLE estimator is guaranteed to be asymptotically unbiased. However, TMLE will not return consistent
estimates of the parameter of interest when both g and Q are misspecified. Thus it is important to avoid overfitting
these measures.

As discussed above, estimating the two statistics ψ1 and ψ0 allows for calculating any of the causal effects ATE, RR
and OR. The TMLE estimate of ψz (z ∈ {0, 1}) is given by

ψ̂z =
1

n

n∑
i=1

Q̂∗(z, xi) (2)

where Q̂∗(z, xi) is an update of Q̂(z, xi)
2. The targeting step for updating Q̂(z, xi) is done by fluctuating Q̂(z, xi)

through a parametric sub-model of the form: logit(Q̂∗(z, x)) = logit(Q̂(z, x))+εĤz(z, x), where ε is the fluctuation
parameter, Ĥ(z, x) = I(Z = z)/ĝ(z, x) is the efficient influence curve equations, and I is the indicator function. The
MLE of ε is obtained by a logistic regression of Y on Ĥz(z, x) with offset logit(Q̂(z, x)). Confidence intervals and
p-value for TMLE can be obtained through the variance of the influence curve.

TMLE can use initial estimates of Q and g from any fixed parametric model such as generalized linear models (GLM)
(e.g logistic regression). However, parametric models require assumptions regarding the functional form, distribution
of variables and variable selection which are often not realistic such that model misspecification is difficult to avoid.
It is therefore recommended to used machine learning methods that makes little or no assumptions and are able to
estimate complex relationships between the outcome and observed variables.

Two Level Predictive Model

Classification Model
(All patient population)

(X, Y) 

Test Data 
(X*)

Predictions
(X*, Ŷ)

Regression Model
Patient at risk of bleeding as a 

complication of PPT 
(X, Y = 1, icu-los)

Patient not at Risk

Predicted patient at risk of 
bleeding as a complication 

of PPT
(X* |Ŷ = 1)

(X*, Ŷ = 1, icu-los)

(X*, Ŷ=0)

Training Data
(X, Y, icu-los)

Training

Testing

Testing Final Predictions

Figure 1: Two Level Predictive Model

In the proposed two level predictive model, classification models are constructed to predict each of the classes in Table
1. Specifically, a classifier is trained on a modified training set defined by {X, Y}, where X is a matrix containing the
patients baseline covariates and Y is a binary variable representing one of the classes in Table 1 such that Y = 1 for all

2the hat ( ˆ ) notation represents estimates of a parameter from the data
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patients in the corresponding class and 0 otherwise. During training, the classifier is trained on the complete training
set to predict Y and a regression model is trained to predict ICU-LOS using a subset of the training set for which Y = 1.
In the case where class A is the outcome of interest, the second level regression model is trained to specifically target
patient at high risk of longer ICU-LOS. This is as a consequence of the known relationship between PPT, bleeding,
and prolonged ICU-LOS from the literature3;4;12, and specifically from causal relationship between these variables
derived in this study.

Model validation proceeds as follows; given a new patient, the classification model is first applied to predict the
outcome Ŷ for the patient. If Ŷ = 1, then the regression model is applied to predict the corresponding ICU-LOS.
Figure 1 illustrates the training and testing steps of the two level predictive model.

Predicting prolonged ICU-LOS attributable to Bleeding as a complication of PPT. Given that class A in Table 1
represents patients who bled and were administered PPT and the fact that bleeding has been found to be significantly
associated with prolonged ICU-LOS3;4;12, a regression model to predict ICU-LOS is constructed only for patients in
this sub-population. The rationale behind this strategy is that since this sub-population is relatively homogeneous, the
approach allows for optimal targeting of patients at risk of longer ICU-LOS attributable to bleeding as a complication
of PPT compared to a model constructed on the general ICU population. Similar regression models can also be
constructed for patients identified in each of the other classes in Table 1 to predict the actual ICU-LOS. Class B is
of particular interest as these patients did not bleed but were administered PPT. The study of these sub-groups with
respect to prolonged ICU-LOS could potentially shed lights on the characteristics of patients who stand to benefit from
plasma transfusions.

Predicting all causes of prolonged ICU-LOS. Without taking into account any particular cause, prolonged ICU-LOS
was defined as ICU-LOS ≥ 7 days and classification models were constructed to predict this binary outcome. The
7 days threshold was chosen because it represented a reasonable number of days where physicians might be concern
about a prolonged stay. This variable was also used in TMLE estimation to estimate the effects of the four exposures
in Table 1 on ICU stays of 7 days or more.

Experiments

This section describes the study population and presents empirical evaluation results.

Study Population

The data used in this study are derived from the Mayo Clinic transfusion datamart17 that captures demographics,
disease conditions, laboratory test results, medications, operative and postoperative measurements and outcomes for
all patients admitted to acute care environments. To be considered for study participation, patients must meet the
following criteria: age ≥ 18 years, noncardiac surgery and an INR ≥ 1.5 in the 30 days preceding surgery. Between
2008 and 2011, a total of 1,233 patients were identified and comprised the study population.

Baseline Variables. Baseline patient demographics include age, height, weight, gender and the ASA status I-V clas-
sifcations. Disease conditions included myocardial infarction, congestive heart failure, cerebrovascular disease, de-
mentia, chronic pulmonary disease, diabetes mellitus, etc. Preoperative laboratory values included INR, hemoglobin,
platelet counts, creatinine, albumin, and APTT. A total of 51 predictors were considered for inclusion in the analyses.
Table 2 presents the characteristics segmented according to the four classes in Table 1. The table show that the four
groups are significantly different across demographics (except gender), laboratory, medications, and planned proce-
dure types. The groups are however similar across majority of disease conditions. Further, patients who bled and were
offered PPT had significantly longer ICU-LOS compared to those who did not.

Outcomes and Treatment. Bleeding was taken as the World Health Organization (WHO) grade 3 bleeding events,
defined as the need for early perioperative RBC transfusion18. The term perioperative RBC transfusion was defined
as the administration of allogeneic RBC components during the interval beginning with entry into the operating room
and ending 24 hours after exit from the operating room. ICU-LOS is the number of days spent in the ICU after surgery.
The treatment indicator PPT indicates if a patient was offered plasma transfusion after INR test and before surgery.
ICU-LOS
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Table 2: Patient characteristics by classes in Table 1
A B C D p-value

N = 73 N = 66 N = 349 N = 745

Demographics

Age 51 61 72 62 73 81 52 62 74 57 69 80 P < 0.0011

Weight 69 85 97 71 83 104 69 82 95 74 87 102 P < 0.0011

Gender: M 62% 64% 59% 60% P = 0.922

ASA Physical Status

2 1% 12% 5% 19% P < 0.0012

3 33% 74% 46% 68% P < 0.0012

4 52% 14% 46% 12% P < 0.0012

5 12% 0% 3% 0% P < 0.0012

Disease conditions

Cancer 23% 32% 27% 28% P = 0.712

Cerebrovascular Disease 22% 23% 14% 23% P = 0.0062

Congestive Heart Failure 36% 41% 26% 36% P = 0.0072

Pulmonary Disease 18% 17% 12% 12% P = 0.332

Chronic Renal Failure 32% 17% 23% 18% P = 0.0112

Dementia 0% 5% 3% 2% P = 0.182

Diabetes 40% 30% 35% 36% P = 0.712

Leukemia 0% 2% 2% 2% P = 0.62

Connective Tissue Disease 10% 5% 3% 5% P = 0.0812

Lymphoma 5% 2% 3% 3% P = 0.562

MI 19% 15% 12% 15% P = 0.452

Peptic Ulcer 4% 5% 3% 5% P = 0.822

Peripheral Vascular Disease 5% 3% 3% 5% P = 0.422

Mild Liver Disease 18% 9% 37% 8% P < 0.0012

Moderate/Severe Liver Disease 11% 2% 20% 3% P < 0.0012

Charlson score 1 4 8 1 3 9 1 4 7 1 3 8 P = 0.0911

Laboratory test results

INR 1.6 1.8 2.0 1.6 1.7 1.9 1.5 1.8 2.1 1.5 1.7 2.1 P = 0.341

Platelets Transfusion 11% 3% 3% 1% P < 0.0012

APTT 95 167 233 128 184 244 66 129 224 160 205 251 P < 0.0011

Creatinine 0.9 1.4 2.0 0.8 1.1 1.6 0.9 1.2 1.7 0.8 1.0 1.3 P < 0.0011

Hemoglobin 8.7 10.1 11.9 10.8 12.9 14.0 8.6 9.8 11.2 10.9 12.3 13.6 P < 0.0011

PLT 29% 14% 41% 8% P < 0.0012

Medications

Aspirin 68% 53% 62% 52% P = 0.0022

Clopidogrel 8% 8% 3% 4% P = 0.0532

Coumadin 55% 71% 43% 69% P < 0.0012

Heparin 36% 24% 20% 19% P = 0.0062

Planned Procedure

ENT/Oral 0% 6% 4% 10% P < 0.0012

General 58% 59% 25% 28% P < 0.0012

Neurology 3% 3% 1% 2% P = 0.772

O/G 1% 2% 1% 4% P = 0.0782

Orthopedic 4% 5% 16% 22% P < 0.0012

Thoracic 10% 5% 4% 5% P = 0.242

Transplatation 19% 2% 37% 2% P < 0.0012

Urology 1% 3% 2% 9% P < 0.0012

Vascular 3% 9% 6% 5% P = 0.292

Emergency 63% 38% 48% 12% P < 0.0012

ICU LOS 1.2 5.1 8.4 0.0 0.0 1.8 0.0 1.1 2.9 0.0 0.0 0.0 P < 0.0011

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables. Tests used: 1 Wilcoxon test; 2Pearson test

Figure 2 shows the distribution of observed ICU-LOS for the entire population truncated at 250 patients with no ICU
admission and 30 days length of stay. It can be seen that the distribution of ICU stays is highly skewed to the right.
Learning to identify extreme values at the tail of the distribution can be a very challenging task for a regression model
constructed using the entire data. However, this task can be made easier if one focuses only on the extreme values.

Results

To demonstrate the effectiveness of the two level approach in identifying patients at risk of longer ICU-LOS at-
tributable to bleeding as a complication of PPT, the second level regression model is compared with a regression
model trained on the complete training data.

The AUC, sensitivity, and geometric mean (G-mean =
(√

sensitivity × specificity
)
) are used to evaluate the classifi-

cation models, while mean absolute error (MAE) and root mean square error (RMSE) are used to evaluate regression
models. The median predicted ICU-LOS and the true median ICU-LOS are also reported for the complete test set and
for the top 75% percentile of the true distribution of ICU-LOS.
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Figure 2: ICU-LOS Distribution

The random forest (RF) and the gradient boosting machine (GBM) algorithms were considered for classification and
regression. The algorithms were trained and evaluated using 100 bootstraps. On each bootstrap iterate, the algorithms
are trained on approximately 63% of the data and the left out samples was used for testing. Model selection, i.e.
hyperparamter tuning (by grid search) was done using a 5-fold cross-validation procedure. Random forest was trained
with 1000 trees.

In calculating estimates of TMLE, RF and GBM along with 6 other algorithms: logistic regression, k-nearest neigh-
bors, support vector machines, neural networks, decision trees, and lasso and elastic net were combined in a Super
Learner algorithm15. Super Learning is a strategy for combining several data-adaptive estimators into one improved
estimator. Specifically, the functions g andQz in equation (2) are each estimated by these algorithms and combined by
the Super Learner to produce better estimates. For comparison, estimates of TMLE are also computed using standard
logistic regression (GLM).

Table 3: Effect of bleeding as a complication of PPT on prolonged ICU-LOS

Super Learner GLM

Exposure ψ estimate p.value estimate p.value

A

ATE 0.57 (0.55,0.59) 0.00 0.14 (0.08,0.21) 0.00

RR 8.43 (6.973,10.20) 0.00 2.97 (2.11,4.18) 0.00

OR 22.17 (17.95,27.37) 0.00 3.52 (2.32,5.34) 0.00

B

ATE -0.04 (-0.08,00) 0.05 -0.07 (-0.09,-0.05) 0.00

RR 0.52 (0.22,1.26) 0.15 0.17 (0.08,0.38) 0.00

OR 0.50 (0.20,1.26) 0.14 0.16 (0.07,0.35) 0.00

C

ATE 0.09 (0.07,0.11) 0.00 -0.09 (-0.17,-0.01) 0.04

RR 2.08 (1.71,2.53) 0.00 0.49 (0.28,0.86) 0.01

OR 2.31 (1.86,2.88) 0.00 0.45 (0.23,0.85) 0.01

D

ATE -0.03 (-0.05,-0.01) 0.00 -0.03 (-0.064,0.00) 0.07

RR 0.69 (0.56,0.86) 0.00 0.65 (0.39,1.08) 0.10

OR 0.67 (0.53,0.85) 0.00 0.6319 (0.37,1.08) 0.10

bleeding

ATE 0.17 (0.15,0.20) 0.00 -0.27 (-0.38,-0.15) 0.00

RR 3.57 (2.86,4.44) 0.00 0.29 (0.20,0.44) 0.00

OR 4.38 (3.44,5.58) 0.00 0.21 (0.12,0.36) 0.00

PPT

ATE 0.04 (0.04,0.08) 0.00 0.02 (-0.03,0.06) 0.43

RR 1.73 (1.40,2.147) 0.00 1.23 (0.76,2.01) 0.39

OR 1.85 (1.45,2.35) 0.00 1.26 (0.74,2.15) 0.40

Effect of Bleeding as a complication of PPT on prolonged ICU-LOS. Table 3 presents the TMLE estimates of ATE,
RR, and OR quantifying the effect of each of the exposures in Table 1, all causes of bleeding, and PPT on prolonged
ICU-LOS. Results for TMLE using the Super Learner and a simple main effect GLM are shown for comparison.
However, it should be noted that diagnostic tests to ensure that the GLM model fit the data were not performed, thus
subsequent discussions will be based on the Super Learner. To save on space, the discussions will also be restricted to
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the ATE summary statistics; interpretations for RR and OR can be similarly made.

Results in Table 3 show that bleeding as a complication of PPT (exposure A in Table 1), all causes of bleeding, and PPT
significantly increases the risk of prolonged ICU-LOS by 57%, 17% and 4% respectively (95% confidence intervals
are shown in brackets). The event of no bleeding in patients offered PPT (exposure B) was found to reduce the risk
of prolonged ICU by 4% (p-value = 0.05) while the event of bleeding when no PPT was administered (exposure
C) increases the risk of prolonged ICU-LOS by 9%. These results illustrates that by a simple transformation of the
treatment variable, one can identify groups of patients with differential effects of the treatment. Patients identified in
group B might show beneficial effects of PPT and thus can be targeted for treatment to mitigate bleeding and reduce
ICU-LOS.

Table 4: Performance of classification models

Model Class AUC sensitivity G.mean

RF

A 0.82 (0.76,0.88) 0.67 (0.20,0.94) 0.72 (0.43,0.79)

B 0.67 (0.55,0.79) 0.50 (0.06,0.83) 0.58 (0.25,0.70)

C 0.83 (0.77,0.88) 0.72 (0.56,0.85) 0.74 (0.69,0.79)

D 0.84 (0.79,0.86) 0.78 (0.59,0.89) 0.75 (0.70,0.79)

GBM

A 0.80 (0.72,0.88) 0.65 (0.19,0.95) 0.70 (0.41,0.81)

B 0.65 (0.51,0.73) 0.48 (0.13,0.75) 0.58 (0.35,0.68)

C 0.83 (0.80,0.87) 0.69 (0.56,0.87) 0.74 (0.69,0.78)

D 0.83 (0.80,0.86) 0.79 (0.66,0.89) 0.74 (0.70,0.78)

Muticlass RF 0.78 (0.75,0.81) 0.38 (0.35,0.42) 0.57 (0.54,0.60)

All causes of prolonged ICU-LOS (ICU-LOS ≥ 7 days)

RF 0.80 (0.79,0.80) 0.69 (0.68,0.74) 0.74 (0.74,0.74)

GBM 0.79 (0.73,0.79) 0.70 (0.45,0.72) 0.70 (0.61,0.72)

Performance of Classification Models. Table 4 presents performance results for predicting the four classes in Table
1. Overall, the models performed very well. Best results for all classes was obtained for RF with AUC as high as
0.84 (class A) and 0.67 (class B). However, no significant difference was observed in the performances. For complete-
ness, Table 4 also show the average per-class performance of a multiclass RF model trained using all four classes in
Table 1. The the sensitivity of the multiclass model is however inferior to that of the least performing binary RF model.

Table 5: Performance of regression models for predicting log(ICU-LOS)

TwoLevel Model OneLevel Model

Model Class MAE RMSE MAE RMSE

RF

A 0.86 (0.59,1.04) 1.04 (0.73,1.19) 1.00 (0.77,1.36) 1.16 (0.99,1.51)

B 0.71 (0.53,1.01) 0.88 (0.61,1.30) 0.64 (0.42,0.86) 0.81 (0.53,1.13)

C 0.68 (0.61,0.76) 0.85 (0.77,0.96) 0.66 (0.57,0.78) 0.85 (0.74,1.02)

D 0.44 (0.39,0.48) 0.68 (0.59,0.77) 0.48 (0.44,0.54) 0.68 (0.61,0.79)

GBM

A 0.88 (0.66,1.01) 1.05 (0.80,1.19) 0.99 (0.80,1.23) 1.18 (0.97,1.42)

B 0.69 (0.42,0.97) 0.85 (0.56,1.30) 0.64 (0.41,0.87) 0.79 (0.58,1.13)

C 0.70 (0.61,0.77) 0.87 (0.77,0.97) 0.67 (0.60,0.81) 0.86 (0.75,1.07)

D 0.42 (0.37,0.47) 0.70 (0.61,0.78) 0.46 (0.41,0.52) 0.69 (0.60,0.77)

Performance of Regression Models. Results for the two level predictive model (TwoLevel) as previously described is
compared with regression models trained on the complete training set (OneLevel). Table 5 shows that the TwoLevel
training approach makes smaller errors for classes A and D while OneLevel training makes smaller errors for classes
B and C. These differences were however not significant. A close look at the actual predicted median ICU-LOS in
days (see Table 6) for the top 75% percentile of the true distribution of ICU-LOS (i.e. longer ICU-LOS) show that
TwoLevel regression models tend to make smaller errors for all classes. Overall, the predicted median ICU length of
stay from the TwoLevel model were off from the observed median value by less than 2 days while OneLevel was at
least 4 days.
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Table 6: Predicted and observed median ICU-LOS (in days)

Model Class TwoLevel OneLevel Observed

RF

A 3.99 (2.55,5.36) 1.86 (1.00,2.42) 5.00 (2.18,6.66)

B 0.83 (0.48,1.40) 0.70 (0.41,1.53) 0.00 (0.00,0.98)

C 1.36 (1.12,1.50) 1.19 (0.95,1.37) 1.15 (0.93,1.73)

D 0.26 (0.20,0.36) 0.37 (0.28,0.46) 0.00 (0.00,0.00)

GBM

A 4.05 (2.70,5.90) 1.78 (1.08,3.15) 5.14 (2.26,7.01)

B 0.69 (0.47,1.31) 0.71 (0.37,1.39) 0.00 (0.00,0.81)

C 1.31 (1.05,1.53) 1.07 (0.75,1.29) 1.11 (0.83,1.60)

D 0.22 (0.14,0.31) 0.32 (0.25,0.41) 0.00 (0.00,0.00)

Top 75% predicted and observed median ICU-LOS

RF

A 12.08 ( 8.67,37.04) 9.01 (8.44,9.57) 15.19 ( 8.41,47.63)

B 2.91 (1.85,9.54) 2.65 (1.84,4.53) 4.37 ( 1.79,50.33)

C 3.97 (2.95,9.84) 3.59 (2.96,7.08) 5.99 ( 2.93,37.02)

D 0.33 (0.02,1.94) 0.48 (0.03,2.72) 0.00 ( 0.00,12.96)

These results show that using only pretreatment variables, with the TwoLevel model one can predict with high accu-
racy the risk of a patient bleeding as a complication of PPT and then use this information to determine if the patient is
likely going to stay longer in the ICU with sufficient accuracy.

Important Characteristics of Patients at Risk of Prolonged ICU-LOS. Table 7 presents the top 10 important variables
for the RF regression model (averaged over 100 bootstrap). The TwoLevel model identified the INR for patients who
bled and PLT (platelet count) for patients who did not bleed in the case where these patients were offered PPT as the
most predictive variables. Hemoglobin level was the most predictive characteristics for all patients. Though appearing
in different order, six top variables are common to all models.

Table 7: Random Forest Regression Model Top 10 Variable Importance

TwoLevel Model OneLevel Model

Class A Class B

Variables Importance Variables Importance Variables Importance

INR 85.6 (60.05,100.00) PLT 95.67 (82.79,100.00) Hemoglobin 99.34 (95.02,100.00)

PLT 77.5 (46.61,100.00) Age 91.95 (78.81,100.00) Emergency 94.29 (82.83,100.00)

Congestive Heart Failure 77.35 (36.50,100.00) Congestive Heart Failure 89.97 (70.63,100.00) PLT 94.22 (85.37,100.00)

Hemoglobin 72.85 (27.30,100.00) Creatinine 87.79 (72.18,100.00) ASA:4 90.13 (82.33, 97.60)

Age 70.91 (42.76, 93.12) Hemoglobin 87.32 (72.42, 98.06) Age 87.96 (79.08, 96.73)

Creatinine 70.2 (40.70,100.00) Charlson score 85.1 (71.45, 98.74) Creatinine 87.87 (77.44, 96.74)

Procedure:ENT/Oral 65.13 ( 0.00,100.00) ASA:3 83.89 (71.70, 96.97) Weight 85.29 (75.03, 94.53)

Emergency 65.02 (30.75,100.00) Weight 82.2 (70.21, 96.69) INR 80.62 (70.96, 89.70)

Weight 62.97 (30.42, 97.50) Liver Disease 81.65 (67.06, 98.39) Charlson score 80.34 (70.47, 90.24)

ASA:3 61.34 (28.24, 92.29) Emergency 80.92 (63.92, 99.55) Heparin 77.45 (59.86, 89.27)

Conclusion

This study establishes a previously unknown causal relationship between prolonged ICU-LOS, bleeding, and PPT.
Through a simple transformation of the bleeding and PPT variables, it was shown that the effect of bleeding in patients
offered PPT more than doubled the risk of prolonged ICU-LOS, and that the event of no bleeding in patients also
offered PPT significantly reduces the risk of prolonged ICU-LOS. Motivated by these results, this study developed
a predictive framework for early identification of patients with (1) increased risk of all causes of prolonged ICU-
LOS, and prolonged ICU-LOS attributable to bleeding as a complication of PPT, and (2) increased risk of bleeding
as a complication of PPT. Given that the performance of models for ICU-LOS often deteriorate for patients with
extended ICU-LOS, a two level predictive modeling approach was proposed to improve performance at the tail of
the ICU-LOS distribution. The two level model was shown through a series of experiments using data for patients
undergoing non-surgical procedures to be capable of identifying patient at risk or bleeding and longer ICU-LOS with
acceptable accuracy. Based on the characteristics and predicted risk scores generated by the framework, patients at
risk of extended ICU stays can be targeted and special intervention procedures implemented to reduce ICU-LOS and
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improve perioperative care.

A possible weakness of this study is the use of the treatment effects ATE, RR and OR. As these are population aver-
ages, their use entails that the effect is uniform across sub-populations or individuals and therefore not very useful for
characterizing the effect of the treatment for each patient. Thus, an interesting potential future study of this work is to
investigate methods of combining the four probabilities in Table 1 to derive individualized treatment effects.
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