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Abstract

Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of
epilepsies. An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the
brain. Because the EEG signal is complex, its interpretation is known to produce moderate inter-observer agreement
among neurologists. This problem can be addressed by providing clinical experts with the ability to automatically
retrieve similar EEG signals and EEG reports through a patient cohort retrieval system operating on a vast archive
of EEG data. In this paper, we present a multi-modal EEG patient cohort retrieval system called MERCuURY which
leverages the heterogeneous nature of EEG data by processing both the clinical narratives from EEG reports as well
as the raw electrode potentials derived from the recorded EEG signal data. At the core of MERCURY is a novel multi-
modal clinical indexing scheme which relies on EEG data representations obtained through deep learning. The index
is used by two clinical relevance models that we have generated for identifying patient cohorts satisfying the inclusion
and exclusion criteria expressed in natural language queries. Evaluations of the MERCURY system measured the
relevance of the patient cohorts, obtaining MAP scores of 69.87% and a NDCG of 83.21%.

Introduction

Clinical electroencephalography (EEG) is an electrophysiological monitoring method used to record electrical activity
of the brain. Clinical EEG is the most important investigation in the diagnosis and management of epilepsies and can
also be used to evaluate other types of brain disorderst. An EEG records the electrical activity along the scalp and
measures spontaneous electrical activity of the brain. Unfortunately, as noted in by Beniczky et al.?, the EEG signal is
complex and inter-observer agreement for EEG interpretation is known to be moderate. Such interpretations of EEG
recordings are available in EEG reports. As more clinical EEG data becomes available, the interpretation of EEG
signals can be improved by providing neurologists with results of search for patients that exhibit similar EEG
characteristics. Searching the EEG signals and reports results in the identification of patient cohorts that inform the
clinical decision of neurologists and enable comparative clinical effectiveness research?. For example, a neurologist
suspecting that her patient has epilepsy potential formulated the query (Q1) History of seizures and EEG with TIRDA
without sharps, spikes, or electrographic seizures. When inspecting the EEG signals and reports of the resulting patient
cohort, the neurologist was able to observe the specific features of the EEG for patients that exhibited epileptic
potential. In another search instance, a neurologist researcher was interested in one of the research priorities for
improving surveillance and prevention of epilepsy as reported by England et al., namely, to identify effective
interventions for epilepsy accompanied by mental health comorbidities. This researcher formulated the query (Q2)
History of Alzheimer and abnormal EEG. The patient cohort that was identified enabled the researcher to observe the
treatment outcomes as well as the clinical correlations documented in the EEG reports.

To ensure that patients from a cohort satisfy the criteria expressed in the natural language queries formulated by
neurologists, it is important to not only consider the narrative from EEG reports, but also the EEG signal data.
Searching for patient cohorts by considering EEG signals and reports relies on (1) an index of the EEG clinical
information and (2) relevance models that identify records of relevant patients against a query. Indexing EEG clinical
information requires organizing both narratives from the EEG reports and signal data from the EEG recordings.
Consequently, the EEG index needs to capture multi-modal clinical knowledge processed both from the reports and
the signal recordings. While medical language processing enables the indexing of information form the EEG reports,
the index must also comprise a representation of EEG signal recordings. In addition, the relevance models used by the
patient cohort retrieval system must account for inclusion and exclusion criteria inferred from processing the natural
language query. To address these problems, we have developed a patient cohort retrieval system which produces a
multi-modal index of big EEG data. We have also implemented two relevance models to identify the most relevant
patients based on their EEG reports and also based on the properties of the EEG signal recordings. The patient cohort
retrieval system, called MERCuRY (Multi-modal EncephalogRam patient Cohort discoveRY)), uses medical language
processing to identify the inclusion and exclusion criteria from the queries and to index the clinical knowledge from
the EEG reports. In addition, MERCURY has two novel aspects not present in previous approaches for patient cohort
retrieval: (1) it uses deep learning to represent the EEG signal and to produce a multi-modal EEG index; and (2) it
operates based on two EEG relevance models — one that uses only the clinical information from the EEG reports, and
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a second one which also considers the EEG signal information. We evaluated MERCURY by using expert judgements
of queries against a collection of nearly 20,000 EEGs.

Background

The ability to automatically identify patient cohorts satisfying a wide range of criteria — including clinical,
demographic, and social information — has applications in numerous use cases, as pointed out in by Shivade et al.®
including (a) clinical trial recruitment; (b) outcome prediction; and (c) survival analysis. Although the identification
of patient cohorts is a complex task, many systems aiming to resolve it automatically have used statistical techniques
or machine learning methods taking advantage of natural language processing (NLP) of the clinical documents®.
However, these systems cannot rank the identified patients based on the relevance of the patient to the cohort criteria.
This notion of relevance is at the core of information retrieval (IR) systems. Thus, viewing the problem of patient
cohort identification as an IR problem enables us to not only identify which patients belong to a cohort, but to also
rank patients based on relevance to the inclusion and exclusion criteria used in the query.

Using information retrieval for patient cohort identification was considered in 2011° and 20127 by the Medical Records
track in the annual Text REtrial Conference (TREC) hosted by the National Institute for Standards and Technology
(NIST). When patient cohort identification systems are presented with a query expressing the inclusion/exclusion
criteria for a desired patient cohort, a ranked list of patients representing the cohort is produced where each patient
may be associated with multiple medical records. Thus, identifying a ranked list of patients is equivalent to producing
a ranked list of sets of medical records, each pertaining to a patient belonging to the cohort. In MERCURY, we have
adopted the same framework of identifying patients that are relevant to a cohort and ranking them according to their
relevance to the given cohort criteria. However, unlike the TREC patient cohort retrieval systems, which considered
only the clinical texts available from a large set of electronic medical records, MERCURY uses a multi-modal index
that encodes textual data available from EEG reports as well as signal data produced by EEG signal recordings.

Historically, the majority of multi-modal retrieval systems have operated on text and image data. For example,
Demner-Fushman et al.® designed a biomedical article retrieval system which allows users to not only discover
biomedical articles relevant to a query, but to also discover similar images to those found in any retrieved articles.
Their approach clusters images using a large number of visual features capturing color, edge, texture, and other image
information. By contrast, our approach relies on unsupervised deep learning to generate a fingerprint of EEG data. As
such, although designed for EEG data, our architecture can be easily adapted to support other types of (physiological)
waveform data (such as ECGs). Other forms of physiological waveform data were previously investigated by the
AALIM? system which enabled cardiac decision support by allowing physicians to locate similar patients according
to the ECG, echo, and audio data associated with the patient. However, unlike our approach, their system does not
support search: it can only identify similar patients to provided ECG, echo, or audio recording and thus cannot be
used to discover patients matching arbitrary criteria.

The MERCURY system presented in this paper relies on medical language processing techniques that were informed
by the experience gained from participating in the 2010, 2011 and 2012 Informatics for Integrating Biology and the
Bedside (i2b2) Challenges on NLP for Clinical Records, which focused on the automatic identification of medical
concepts and events in clinical texts. In contrast, the EpiDEA patient cohort identification system which also
retrieves EEG-specific patient cohorts, operates on discharge summaries to recognize patients that are relevant only
to some pre-defined queries obtained by relying on the EpSO ontology*2.

Data

The MERCURY system was developed to identify patient cohorts from the big EEG data available from the Temple
University Hospital (TUH) EEG Corpus® (over 25,000 sessions and 15,000 patients collected over 12 years). This
dataset is unique because, in addition to the raw signal information, physician’s EEG reports are provided for each
EEG. Following the American Clinical Neurophysiology Society Guidelines for writing EEG reports*, the EEG
reports from the TUH corpus start with a CLINICAL HISTORY of the patient, describing the patient’s age, gender, and
relevant medical conditions at the time of the recording (e.g., “after cardiac arrest”) followed by a list of the
medications which may influence the EEG. The INTRODUCTION section is the depiction of the techniques used for the
EEG (e.g. “digital video EEG”, “using standard 10-20 system of electrode placement with 1 channel of EKG”), as
well as the patient’s conditions prevalent at the time of the recording (e.g., fasting, sleep deprivation) and level of
consciousness (e.g. “comatose”). The DESCRIPTION section is the mandatory part of the EEG report, and it provides a
description of any notable epileptiform activity (e.g. “sharp wave”), patterns (e.g. “burst suppression pattern”) and
events (“very quick jerks of the head”). In the IMPRESSION section, the physician states whether the EEG readings are
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normal or abnormal. If abnormal, then the contributing epileptiform phenomena are listed. The final section of the
EEG report, the CLINICAL CORRELATIONS section explains what the EEG findings mean in terms of clinical
interpretation®® (e.g. “very worrisome prognostic features”). Each EEG report in the TUH corpus is associated with
the EEG signal recording it interprets. The signal information consists of 24 to 36 channels of signal data as well as
an additional annotation channel providing markers identifying events of interest to physicians and technicians. EEG
signals are sampled at a rate of 250 Hz or 256 Hz using 16-bits per sample. Each EEG recording from the TUH EEG
corpus contains roughly 20 megabytes of raw data, stored in the European Data Format (EDF+) file schemat®.

Methods

MERCURY is a multi-modal patient cohort discovery system which allows neurologists to inspect the EEG records
as well as the EEG signal recordings of patients deemed relevant to a query expressing inclusion and exclusion criteria
through natural language. As illustrated in Figure 1, the neurologist query is analyzed to identify the inclusion and
exclusion criteria. The results of query analysis inform two different relevance models (illustrated as Case 1 and Case
2 in Figure 1) which rely on the multi-modal EEG index encoding information identified in the EEG reports and signal
recordings. When EEG reports are indexed, the sections of the EEG reports are identified and medical language
processing is performed to identify the terms and phrases of the dictionary and to create tiered inverted lists. When
the EEG signal recordings are processed, they are represented by EEG signal fingerprints which are produced by deep
learning methods. EEG signal recordings are converted into low-dimensional fingerprint vectors which are included
in the multi-modal index. Additional details of the index are provided later in the paper. As shown in Figure 1, in
MERCURY we considered two relevance models designed to identify and rank patients based on their relevance to
the patient cohort query: Case 1, in which the EEG signal fingerprints are ignored and only the EEG reports are used,
and Case 2 in which both the EEG fingerprints and reports are used. These two cases allowed us to experimentally
evaluate the impact of the EEG signal fingerprint representation on the overall performance of MERCURY in
identifying patient cohorts.
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Figure 1: Overview of the MERCURY Patient Cohort Discovery System

A. Indexing the EEG Big Data

The multi-modal index used by the MERCURY system organizes the information from the EEG reports as well as the
information from the EEG signal recordings. It contains both a term dictionary and a medical concept dictionary,
listing all the terms and medical concepts discerned from the EEG reports. We considered five medical concept types:
(1) medical problems, (2) medical tests; (3) medical treatments (including medications); (4) EEG patterns and
activities; as well as (5) EEG events. Because medical concepts often are multi-term expressions (e.g. “spike and slow
waves”), the medical concept dictionary used term IDs to associate a concept with all terms expressing it (e.g. “spike
and slow waves” is associated with the terms “spike”, “slow” and “wave”). Moreover, as illustrated in Figure 2, each
entry from the term dictionary is linked to a pair of inverted lists: the first corresponding to positive polarity associated
with the term while the second corresponding to negative polarity. By using polarity information (which is
automatically processed from the medical language used in the EEG reports), we have designed a multi-tiered index.
Each of the tiered inverted lists is implemented as a linked list. Each cell of those lists indicates for every occurrence
of the term: (1) in which EEG report the term was observed; (2) the EEG signal fingerprint of that EEG report; (3) in
which section of the EEG report was the term observed; (4) in which position of the EEG section; (5) whether the
term belongs to a medical concept identified in the EEG report; and (6) if so, what position does the term have in the
concept.
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Figure 2: The Multi-Modal Tiered Index used in the MERCURY Patient Cohort Discovery System

The EEG signal fingerprints are representations of the EEG signal recordings obtained through deep-learning
techniques (described later in the paper) and organized in a similarity-based hierarchy which enables the discovery of
relevant patients when the EEG signal recordings are also considered (Case 2 illustrated in Figure 1). When the EEG
signal recordings are not used for identifying patient cohorts (Case 1 illustrated in Figure 1) only the term dictionary,
the medical concept dictionary, and the tiered inverted lists from the index are used. Creating the multi-modal tiered
index for the MERCURY Patient Cohort Discovery System involves (1) the recognition of sections of the EEG reports;
(2) medical language processing to determine (a) the terms from the dictionary, (b) their polarity and (c) the medical
concepts; (3) generating the fingerprints for the EEG recording; and (4) organizing the EEG signal fingerprints in the
similarity-based hierarchy.

Section Identification. Sections were identified through a rule-based section segmentation approach. Our rules were
defined after manually reviewing 300 randomly sampled EEG reports. We detected a set of candidate headers by
discovering all sequences of all capitalized words ending in a colon or line break, and normalized section titles based
on simple regular expressions. For example, “description of the record”, “description of record”, and “description of
the recording” would all be normalized to DESCRIPTION.

Medical Language Processing. In order to build (1) the term dictionary; (2) the medical concept dictionary and (3)
the two polarity-informed posting lists we have used the following sequence of steps:

(Step 1) Tokenizing the EEG reports: we relied on Stanford’s CoreNLP pipeline? to detect sentences and tokens from
every EEG report.

(Step 2) Discovering the Dictionary Terms: Each token was normalized in order to account for any lexical variation
(e.g. “waves” and “wave” or “markedly and “marked”) using Stanford’s CoreNLP lemmatizer”. The resultant
lemmatized terms formed the basis of the dictionary.

(Step 3) Identifying the Polarity: Term polarity was cast as a classification problem implemented as a conditional
random field® (CRF). Leveraging our previous experience with the i2b2 challenge, the CRF assigned a binary polarity
value (i.e. positive or negative) to each term based on feature vector containing lexical information as well as
information from external resources, such as the NegEx negation detection system®, the Harvard General Inquirer®,
the Unified Medical Language System (UMLS) meta-thesaurus®, and MetaMap?. Specifically, we considered nine
features: (1) the section name, (2) whether the term was considered a modifier by NegEX, (3) whether the term was
within a NegEx negation span, (4) whether the term was in the ‘IF’ category of the Harvard General Inquirer, (5) the
part-of-speech tag assigned to the token by Stanford’s CoreNLP part-of-speech tagger, (6) whether the term belonged
to a UMLS concept, (7) whether the term belongs to a MetaMap concept, (8) the original cased term before
lemmatization, and (9) the lowercased and lemmatized form of the term. The classifier was trained using 2,349 manual
annotations.

(Step 4) Identifying Medical Concepts: An automatic system for medical concept recognition previously developed
for the 2010 i2b2 challenge® recognized medical problems, tests, treatments. In addition, we have produced 4,254
new annotations for EEG patterns and events as well as EEG activities and re-trained the concept recognizer to identify
all these types of concepts. Concept extraction was cast as a classification task, in which a CRF was used to detect
medical concept boundaries. A support vector machine* (SVM) was used to classify each concept into one of five
types: medical problem, medical test, medical treatment, EEG activity, or EEG event.
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Generating Fingerprints of EEG Signal Recordings. In the TUH EEG corpus, the EEG signals are encoded as
dense floating-point matrices of the form D € RV*L, where N € [24, 36] is the number of electrode potential channels
in the EEG and L is the number of samples (such that duration of the EEG recording in seconds is equal to L / 250
Hz). Thus D;; encodes the magnitude of the potential recording on the i-th channel during the j-th time sample. Both
the number of channels and the number of samples vary not only across patients, but also across EEG recording
sessions. These variations, particularly when considered with the large amount of data encoded in each matrix
(typically 20 megabytes), make it difficult to not only characterize the relevance EEG signals to a particular patient
cohort, but also to determine the similarity between two EEG signals. For example, consider that a single naive pass
over the TUH EEG corpus requires considering over 400 gigabytes worth of information. Consequently, we devised
a representation of the EEG recordings that not only requires less memory, but enables rapid similarity detection
between EEG signal recordings. This allows us to compactly encode the information from the EEG signals (reducing
20 megabytes of signal data to a few hundred bytes). Our representation is based on EEG signal recording fingerprints
obtained with a recurrent neural network. Recurrent neural networks are deep learning architectures which enabled us
to generate fingerprints for each EEG in the TUH EEG corpus in a matter of hours instead of weeks. Because
traditional neural networks have difficulty operating on sequential data (e.g. EEG signals) as they cannot consider
relationships between successive inputs (e.g. between successive samples), we have used a recurrent neural network?
(a neural network with a loop) which allowed information learned at each sample to persist between samples in the
same EEG signal. The learned information (known as the internal memory state) is updated with each sample until
ultimately becoming the fingerprint for that EEG recording. Figure 3 illustrates the recurrent neural network used for
EEG fingerprinting. As shown, the unrolled network (on the right) processes each sample from the EEG signal and

predicts the value of the next sample (h;,,) according to both the current sample (x;) and the current fingerprint (f).
f
[ LSTM ] =

B
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Figure 3: The recursive neural network used for generating EEG signal fingerprints.

Recursive neural networks are able to connect information from the previous sample to the current sample, allowing
them to consider the structure of the EEG waves in each channel. However, interpreting EEGs requires considering
not just the immediately adjacent signal information but also long distance signal patterns (e.g. alpha waves being
interrupted by a sharp and slow wave complex or repeated bursts of high amplitude delta waves). In order to allow
our EEG fingerprints to consider this type of long-distance information — that is, to consider the context of the entire
signal when predicting the next sample, we adapt a special form of recursive neural network cell — the Long Short
Term Memory? (LSTM) cell — which are able to remember information for long periods of time.

The recursive neural network shown in Figure 3 is formally defined as follows. We define the parameter K as the
fingerprint dimensionality, or the number of dimensions of the finger-print vector such that K « N x L (where N is
the number of channels and L is the number of samples). This allows us to determine the fingerprint vector f € R1*K
for an EEG D € RM*L by using the fingerprint as the internal memory state of the LSTM chain. In order to ensure that
the fingerprint can be used to reconstruct portions of the EEG data, we define an additional parameter, W, the sample
window, which indicates the number of subsequent samples which should be predicted from each cell. This allows us
to learn the optimal fingerprint for each document by determining the vector f which minimizes the cosine distance
between the predicted values for each sample (h;, h;41, ---, i) @nd the actual values (x;,1, Xj12, -, Xy w+1)- NOte,
that the fingerprint vector and prediction vector are both K-dimensional, while each sample vector is only N-
dimensional. Thus, before comparing, we must project the output vector h; into N dimensions by defining a projection
matrix W € R¥*N and a bias vector b € R™". Unlike the fingerprint vectors, which are optimized for each individual
EEG, W and b are optimized over the entire corpus. Thus, the optimal fingerprint vector f for each document was
computed by minimizing the cosine distance between the output of the LSTM cell and the next W samples:
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where Istm(f, DT) refers to the standard LSTM loss function®. As defined, the recurrent neural network allows us to
generate the optimal fingerprint f for each EEG signal by discovering the vector f which is best able to predict the
progression of samples in each EEG recording according to the LSTM. In this way, the fingerprint is able to provide
a substantially compressed view of the EEG signal while still retaining many of the long-term interactions and
characteristics of the signal.

Organizing EEG fingerprints in a similarity-based Hierarchy. Rapid computation of similarity between EEG
signals (or their fingerprints) is facilitated by the Fast Library for Approximate Nearest Neighbors?” (FLANN).
FLANN provides implementations of a variety of highly-efficient structures for computing (or approximating) the
nearest neighbors of vectors in high dimensions. This allowed us to not only compactly store the EEG signal
information, but also to retrieve, for any EEG fingerprint, the most similar EEGs (i.e. the nearest neighbors) as
measured by cosine distance. We used a k-means tree which allows for high precision retrieval of the nearest EEGs
to any fingerprint by recursively clustering the fingerprint vectors using k-means clustering. The number of clusters
is determined by FLANN’s auto-tuning mechanism.

B. Query Analysis

The purpose of query analysis is to identify the inclusion and exclusion criteria expressed in the query.
For example, in the query “patients with shifting arrhythmic delta suspected of underlying cerebrovascular disease”
two separate inclusion criteria are detected: “shifting arrhythmic delta” and “cerebrovascular disease”. Similarly, in
the query “patients with dementia and no abnormal EEG”, there is one inclusion criterion, namely “dementia” and
one exclusion criterion, namely “abnormal EEG”. To detect automatically the criteria, the following steps are used:
(Step 1) Term Filtering: Tokenization, lemmatization, and part-of-speech tagging using Stanford’s CoreNLP pipeline?’
enables the filtering of terms that are not identified as a noun, verb, adverb, adjective, or preposition.

(Step 2) Query Formulation: Our approach for determining inclusion and exclusion criteria in the query relied on the
same polarity and medical concept classifiers used (and previously described) for building the inverted index from
EEG reports. Specifically, we considered two methods for recognizing inclusion and exclusion criteria: (a) phrase
chunking using Stanford’s CoreNLP pipeline and (b) medical concept detection using the previously described
classifier. In both cases, we relied on the previously described polarity classifier to distinguish between inclusion
criteria (positive) and exclusion criteria (negative) based on the polarity of each phrase or concept.

(Step 3) Query Expansion: In order to account for the fact that many medical concepts can be expressed in multiple
ways, we perform query expansion using the Unified Medical Language System (UMLS) to detect synonymous
criteria. This is accomplished by expanding each criterion to include the set of all atoms in UMLS which have the
same concept unique identifier (CUI) as the criteria. For example, “cerebrovascular disease” would be associated with
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110 expansions, including “cerebral aneurysm”, “vascular ischemia”, “brain stem hemorrhage”, etc.

C. Relevance Models

The inclusion and exclusion criteria discerned from the query analysis were used by MERCuRY’s relevance models
to assess the relevance of each EEG report against the given query. Two relevance models were considered (as
illustrated in Figure 1): Case 1, which ignored the EEG signal fingerprints and Case 2, which incorporates them.

Case 1. This relevance model assigns a score to an individual EEG report based on the BM25F ranking function®.
BM25F measures the relevance of an EEG report based on the frequency of mentions of each inclusion criterion and
the absence of each exclusion criterion. Moreover, BM25F is capable of adjusting the score for each criterion based
on the tiers in the posting list: that is, a criterion mention is scored according to both the polarity and the section in the
document. Formally, for an EEG report r and a query g = {c;, ¢, ... } composed of individual inclusion and exclusion
criteria (c), the BM25F relevance score is computed as:

xT,C .
BMZSF(T’, q) = Z mldf(C)
cEq
where idf (c) is the inverse-document frequency of criterion c (i.e. the inverse of the number of documents mentioning
c), K; is a structuring parameter (in our case set to the standard® value K; = 1.2) and X, . is a tier-normalizing
criterion frequency measure. The tier-normalizing criterion frequency measure, ;. ., adjusts the frequency of criterion
¢ in report r according to the polarity and section of each mention. Before defining this measure, we must account for
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the fact that query analysis described above considers two ways of representing inclusion and exclusion criteria — (a)
by phrases and (b) by typed medical concepts; thus, the tier-normalizing criterion frequency measure changes
depending on which of these methods is used:

_ X
(a) Xrc = Zp,s( ek

1
1+b( r'”’—l))
lsp

(Case 1a) When an inclusion or exclusion criterion are expressed as a phrase, we defined X, . (used by the BM25F
function) in Equation (a), where x,. . s, is the number of occurrences of criterion ¢ with polarity p in section s of report
7, b is a normalizing parameter (in our case using the standard® value b = 0.75), [, ; is the number of terms with
polarity p in section s of report r, and [, ,, is the average number of terms with polarity p in section s across all reports.

(b) %= Zp,t<—

(Case 1b) Inthis case, each criterion is represented as a medical concept. For this method, the tier-normalizing criterion
frequency measure is restricted only to the sections pertinent to the type of medical concept. That is, medical problems,
and medical tests are only searched in the HISTORY and CORRELATION sections; medical treatments are searched
in the MEDICATIONS and CORRELATION sections; while EEG activities and EEG events are searched only in the
DESCRIPTION and IMPRESSION sections. Consequently, the tier-normalizing criterion frequency measure (used in
the BM25F function) is computed using Equation (b) where t indicates a section pertinent to the type of the medical
concept used to express the criterion c.

Case 2. The second relevance model considers both the information from EEG reports as well as the EEG signal
fingerprints. It starts with the candidate patients discovered based on Case 1. The ranked list of patients is then updated
based on the fingerprints associated with the most relevant patients’ EEGs. The rank updating procedure relies on two
parameters: (1) A, the rank threshold parameter indicating how many of the initially retrieved patients should be used
for re-ranking (in our experiments we set A = 5), and (2) &, the fingerprint selection parameter which determines the
number of similar fingerprints to consider for each patient (in our experiments we set § = 3). The updated patient
ranking is obtained as follows: for each patient p, of the A-highest ranked patients, we (i) find the fingerprint f,
associated with p,, (ii) use the hierarchy of EEG signal fingerprints (illustrated in Figure 2) from the multi-modal
index to discover the o most-similar fingerprints to f,, and (iii) insert the patients corresponding to these fingerprints
into the ranked list of patients immediately after the patient p,,, thus generating a new ranked list of patients.

Evaluation
We evaluated two aspects of the MERCURY system: (1) the overall quality of patient cohorts discovered by the system
and (2) the quality of the polarity classifier used to process the EEG reports and to detect exclusion criteria in queries.

A. Evaluation of Patient Cohort Discovery

We primarily evaluated the MERCURY system according to its ability to retrieve patient cohorts. To this end, we
asked three neurologists to generate a set of 5 evaluation queries each and then used them for evaluation. A sample of
these queries is illustrated in Table 1. For each query, we retrieved the ten most relevant patients as well as a random
sample of ten additional patients retrieved between ranks eleven and one hundred. We asked six relevance assessors
to judge whether each of these patients belonged or did not belong to the given cohort. Moreover, the order of the
documents (and queries) were randomized and judges were not told the ranked position of each patient. Each query
and patient pair was judged by at least two relevance assessors, obtaining an inter-annotator agreement of 80.1%
(measured by Cohen’s kappa).

Patient Cohort Description (Queries)

History of seizures and EEG with TIRDA without sharps, spikes, or electrographic seizures

History of Alzheimer dementia and normal EEG

Patients with altered mental status and EEG showing nonconvulsive status epilepticus (NCSE)

Patients under 18 years old with absence seizures

Patients over age 18 with history of developmental delay and EEG with electrographic seizures
Table 1: Example queries used to evaluate the MERCURY system

oW e

This experimental design allowed us to evaluate not only the set of patients retrieved for each cohort, but also the
individual rank assigned to them. Specifically, we adopted standard measures for information retrieval effectiveness,
where patients labeled as belonging to the cohort were considered relevant to the cohort query, and patients labelled
as not belonging to the cohort were considered as non-relevant the cohort query. Because the relevance of a patient to
a particular cohort can be difficult to automatically measure, we report multiple measures of retrieval quality.
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Moreover, because our relevance assessments consider only a sample of the patients retrieved for each topic, we
adopted two measures of ranked retrieval quality: the Mean Average Precision® (MAP) and the Normalized
Discounted Cumulative Gain* (NDCG). The MAP provides a single measurement of the quality of patients retrieved
at each rank for a particular topic. Likewise, the NDCG measures the gain in overall cohort quality obtained by
including the patients retrieved at each rank. This gain is accumulated from the top-retrieved patient to the bottom-
retrieved patient, with the gain of each patient discounted at lower ranks. Lastly, we computed the “Precision at 10”
metric (P@10), which measures the ratio of patients retrieved in the first ranks which belong to the patient cohort.
Although less statistically meaningful, the precision is the easiest to interpret in terms of clinical application in that a
100.00% Precision at 10 indicates that all of the patients returned above rank 10 completely satisfy all the criteria of
the given cohort. By comparison, the other measures indicate the quality of the ranking produced by our system such
that the MAP and NDCG scores capture the degree that a patient retrieved at each rank will more closely match the
cohort criteria than patients retrieved at low ranks.

We measured the performance the MERCURY system configured for the two relevance models illustrated in Figure
1: Case 1, in which only the EEG reports are considered and Case 2, in which both the EEG reports and EEG signal
information is considered. In both cases, we considered both methods of representing inclusion and exclusion criteria:
(a) using phrases composed of terms, and (b) using typed medical concepts. We compared these four combinations
against three competitive baseline systems for text retrieval: Okapi BM25% (BM25), language model retrieval using
Dirichlet smoothing® (LMD), and the Divergence from Randomness* (DFR) framework using Poisson smoothing,
Bernoulli and Zipfian normalization. Table 2 illustrates these results.

As shown, both configurations vyield promising | Relevance Model MAP NDCG | P@ 10
performance. Moreover, case 2 obtains the highest | Baseline 1: BM25 52.05% | 66.41% | 80.00%
quality patient cohorts as measured by all three metrics. | Baseline 2: LMD 50.37% | 65.90% | 80.00%
This shows that the multi-modal capabilities enabled by | Baseline 3: DFR 46.22% | 59.35% | 70.00%

the EEG fingerprinting approach are able to identify [ MERCURY: Case 1 (a) | 58.59% | 72.14% | 90.00%
patients who were missed when only the EEG reports ["\JERCuRY: Case 1 (b) | 57.95% | 70.34% | 90.00%
were considered. The poor performance obtained by the  "MERCURY: Case 2 (a) | 70.43% | 84.62% | 100.00%

baseline ~ systems highlights the difficulty of [ ERCURY: Case 2 (b) | 69.87% | 83.21% | 100.00%
automatically discovering patient cohorts. Moreover, Table 2: Quality of patient cohorts

the increase in performance obtained by MERCuURY
Model 1 compared to Baseline 1 highlights the importance of medical language processing on EEG reports —
particularly the role of the tiered index and the incorporation of exclusion spans. The highest performance was
obtained by MERCURY Model 2, showing the promise of including EEG signal information when discovering patient
cohorts. This suggests that the content of EEG reports alone is not enough to adequately determine if a patient satisfies
particular inclusion criteria. This finding is not surprising, as EEG reports were not written to completely replace the
EEG signal, but rather to describe the important characteristics of the EEG recording which may be of interest to other
neurologists. As such, EEG reports typically document only notable findings making it difficult to exclude patients
based only on the text in the EEG reports. The superior performance obtained by MERCURY Model 2 indicates that
EEG fingerprinting is able to supplement the information in the EEG reports and bridge the gap between the high
level description of EEG information in the text, and the low-level electrode potentials recorded in the EEG signal.

B. Evaluation of Polarity Classification
We evaluated the quality of our automatic polarity

detection approach by performing 10-fold cross Label_ Precision | Recall | Fy-Measure
S ; Baseline: Word Only | 24.50 29.65 | 59.35

validation on the 2,349 manual annotations we —

produced and measured precision, recall and F;- Baseline: UMLS Only | 37.08 1422 | 20.55

measure, as shown in Table 3. We compared our MERCURY 86.82 70.10 | 76.20

classifier against two baseline classifiers, (a) Table 3: Polarity classification performance

“Baseline: Word Only” which uses only word

features, and (b) “Baseline: UMLS Only” which uses only UMLS concept features. The MERCURY classifier obtains
substantially higher performance. Moreover, the poor performance of the baseline systems suggests that determining
exclusion spans in text requires more information that lexical context and can be improved by incorporating NegEx
and medical ontologies.
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Discussion

In terms of polarity classification, the most common types of error were due to confusion regarding the exact boundary
of negative regions of text, for example, the sentence ‘“No focal or epileptiform features were identified in this record”
was classified such that only “no focal” was negative, rather than the entire phrase “no focal or epileptiform features.”
This indicates a failure by the incorporated standard natural language processing modules (part of speech and phrase
chunking) to adapt to the clinical domain. One obvious path to improvement would be to annotate basic linguistic
information on clinical documents — particularly on EEG reports.

Another common type of error was related to the binary granularity of polarity. For example, the excerpt there is a
suggestion of a generalized spike and wave discharge in association with photic stimulation” the phrase “generalized
spike and wave discharge” was labelled as having a negative polarity, despite the physician clearly indicating the
possibility of such an activity. This implies that future work would be well supported by a more fine-grained approach
to capturing the physicians’ beliefs, for example, by considering the assertions used in the 2010 i2b2 challenge®.
Unfortunately, introducing assertions requires overcoming additional barriers including increased risk of
misclassification, and accounting for the degree of similarity between different assertion values.

In terms of patient cohort retrieval, it is clear that the two methods of representing inclusion and exclusion criteria —
(a) using phrases of terms and (b) using typed concepts — do not provide any significant changes to cohort performance.
Based on our analysis, we believe this is primarily due to the fact that there is little ambiguity in the types of concepts
used in EEG reports: a particular phrase or term (e.g. heart attack) was always associated with the same concept type.
Moreover, the types of concepts are almost completely restricted by the section they occur in (e.g. EEG activities and
events do not occur in the HISTORY, MEDICATION, or CORRELATION sections). This suggests that considering
EEG concepts alone does not provide any additional value to considering terms directly. Moreover, because the index
records positional information, multi-term concepts (e.g. “slow and sharp wave”) are handled identically to multi-term
phrases. Despite this, a number of errors were observed. First, neither phrase chunking nor concept detection is
sufficient to fully capture the semantics of all inclusion criteria. For example, epileptiform activities were often
described as attributes of a particular wave (e.g. “slow rhythmic delta [waves]”) where the individual concept (i.e.
“delta [waves]”) is far less meaningful than its attributes (“slow” and “rhythmic”). This suggests that performance can
be improved by not only accounting for the attributes of epileptiform activities but by adjusting the relevance model
to ensure that mentions of attributes actually modify the correct term — that is, to ensure that “slow” actually modifies
the same wave as “rhythmic”.

Finally, the substantial increase in performance when using the full multi-modal index shows that EEG fingerprints
are able to recover relevant information omitted from EEG reports. Unfortunately, as the rank of retrieved patient’s
decreases, the quality of the cohort obtained by finding similar patients using EEG fingerprints decreases. We
investigated multiple values of A (the number of patients to be used for re-ranking) and o (the number of similar
fingerprints to retrieve), and found that increasing these values can result in a decrease in performance. Regardless,
we did observe that the fingerprints often identify patients which were not retrieved using the report text alone.
Moreover, we believe that by further refining the fingerprints we can improve the quality of patients retrieved with
higher values of A.

Conclusion

In this paper we describe a patient cohort retrieval system that relies on a multi-modal multi-tiered index that organizes
clinical information automatically processed from a big data resource of EEGs. Generating the index involved both
medical language processing on EEG reports, but also a novel and highly efficient representation of the EEG signal
recordings provided by a highly-performant Long Short Term Memory network. When evaluating the quality of
patient cohorts obtained when considering both EEG reports and signal recordings, we have a Mean Average Precision
of 70.43%. This high performance highlights the promise of multi-modal retrieval from text and signal data. The
remaining barriers of high-accuracy patient cohort identification from EEGs that need to be removed will rely on: (1)
incorporating a more fine-grained representation of inclusion and exclusion semantics discerned from EEG reports,
(2) extending medical language processing for capturing spatial and temporal information, and (3) tightly correlating
the information from EEG reports with the EEG signal recordings. In future work, we plan to address these barriers
using recent developments in neural learning.
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