
 

  

Comparing lagged linear correlation, lagged regression, Granger causality, 
and vector autoregression for uncovering associations in EHR data 

Matthew E. Levine, BA1, David J. Albers, Ph.D.1, George Hripcsak, M.D., M.S.1 

1Department of Biomedical Informatics, Columbia University, New York, New York, USA 

Abstract 

Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the 
electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects 
that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate 
and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and 
laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than 
univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs 
produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including 
inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating 
how multivariate lagged regression models’ explicit handling of context-based variables can provide a simple way 
to probe for health-care processes that confound analyses of EHR data. 

Introduction 

With the increasing collection and storage of patient electronic health data around the world comes a proportionally 
growing impetus to use that information to improve clinical care. These improvements can range from workflow and 
operations optimization to pharmacovigilance studies, but the central feature for effectively exploiting the electronic 
health record (EHR) is our ability to learn from the data collected. We hope to move towards reliable high-
throughput methods for determining adverse drug effects that can be applied to large clinical data repositories, like 
that collected by Observational Health Data Sciences and Informatics (OHDSI), which contains over 600 million 
patient records [1]. 

Many research inquiries can be satisfied with simple determinations of whether a patient ever had a particular 
condition, and it is often sufficient to consider events that occur over relevant time windows with respect to a 
condition of interest [2]. However, it can be useful to consider methods with the potential to reveal fine temporal 
structure in EHR data, and recent advances in such methods have been applied to machine-learning approaches 
during phenotyping [3,4], pattern discovery [5–7], temporal abstraction over intervals [8], and dynamic Bayesian 
networks [9]. 

Many of these approaches to time-series analysis rely on assumptions of stationarity (roughly, having consistent 
mean and variance through a time window of interest) that are frequently broken by clinical data—this is to be 
expected, even desired, since the primary goal of medicine is to drive patients from problematic to healthy states. 
This issue is compounded by the simple fact that patients are sampled with greater frequency when they are ill [10]. 
In fact, it appears that clinicians sample patients at rates proportional to their health variability, effectively inducing 
stationarity by indexing the time series not by clock-time, but rather by mere measurement sequence with single 
units of time imposed between each measurement [11].  

Our past work has revealed informative results about temporal processes in the EHR by applying lagged linear 
correlation to time series constructed using linear temporal interpolation and intra-patient normalization of clinical 
signout note and laboratory test data [12]. These results indicated temporal processes that were definitional (e.g. low 
potassium levels associated with hypokalemia), physiologic (e.g. a potassium-sparing diuretic preceded increases in 
potassium levels), or intentional (e.g. a potassium-sparing diuretic was ordered in patients with low potassium 
levels), and used clock-time as the lagged time variable. Similarly, time-delayed mutual information reveal lagged 
linear structure as well as nonlinear dynamical processes related to physiology [13,14] despite EHR-data 
complexities and homo- or heterogeneity among patient populations [11,15–17]. 

Our most recent efforts to characterize temporal processes in the EHR are motivated by our previous findings that 1) 
temporal clinical and physiologic processes can be described through lagged linear correlation of concepts extracted 
from signout notes and laboratory values [12], 2) time series data, under some clinical circumstances, are better 
parameterized by their raw sequence than their clock measurements [11], and 3) health-care process events such as 
inpatient admission are systematically correlated with concepts and laboratory values [18]. 
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In this study, we used multivariate distributed lag models to incorporate additional context-related variables in 
lagged linear analysis of temporal processes to better characterize both intended and unintended physiologic effects 
of drugs. In order to broaden the applicability of the method, we designed a time series preparation methodology 
that can use drug-order records as inputs, which are readily available in more contexts than physician notes. In order 
to evaluate these methods, we applied them to twenty pairings of drugs and laboratory measurements. As part of 
optimizing time series construction methods, we also investigated the effects of two pre-processing steps: intra-
patient normalization of laboratory tests and different data preparation strategies. 

Because our goal is to minimize bias and confounding, we employed two techniques to minimize bias. We used a 
particular form of lagged regression, known as Granger causality [19], to assess the effect of one variable (drug) 
over another (laboratory measurement) beyond that accounted for by the target variable’s autocorrelation. We used 
an extension of Granger causality, vector autoregression [20], to also account for a third variable (inpatient 
admission) as an example of a health care process confounder. 

Methods 

Experimental design  

We used the 27-year-old clinical data warehouse at NewYork-Presbyterian Hospital, which contains electronic 
health records for over 3 million patients, to examine pairwise relationships between drug order records and 
laboratory measurements. We considered five drugs—simvastatin, amphotericin B, spironolactone, and warfarin—
and four laboratory tests (total creatine kinase (CK), creatinine, potassium, and hemoglobin), and a patient cohort 
was identified for each of the 20 drug-lab pairs in the experiment. We identified eight drug-lab pairs for which 
clinical evidence suggested significant physiologic associations (shown in Table 1); we did not find conclusive 
evidence for associations between the remaining 12 drug-lab pairs. Patients were included in a drug-lab cohort if 
they met the following criteria: 1) at least 2 of the laboratory measurements of interest on record, 2) at least 1 order 
for the drug of interest, and 3) more than 30 combined data points between laboratory measurements of interest and 
total drug orders (any drug). No attempts were made to remove or correct outliers. 

Building a time series from clinical data 

Laboratory measurements, drug orders, and inpatient admission events for each patient in each cohort were extracted 
from the clinical data warehouse. A piecewise-defined linear drug-lab timeline was constructed for each patient as 
described by Hripcsak et al. using linear temporal interpolation (see Figure 1 in Hripcsak et al. for an example) [12]. 
Laboratory values were continuous, and orders for the drug of interest were represented as 1 (present), whereas 
orders for other drugs were represented as 0 (absent). Although orders for other drugs do not necessarily indicate 
cessation of a drug of interest, such orders were treated as evidence of absence to avoid incorporating external 
domain knowledge about drug administration that might produce artifact associations. Inpatient admission timelines 
were defined with a 1 at the time of admission, and zeros at 24hrs before and after admission, effectively creating 
spikes at times of admission. Smoothness and differentiability of the admission spike are unimportant when using 
discretized convolutional approaches, and there are many ways of constructing the spike such that it has mass to 
contribute during the convolution. For every time point where there was a concept (lab, drug, or inpatient 
admission), the values of each other variable at that time point were interpolated as the clock-time weighted mean of 
the preceding and succeeding value of each respective variable (or as the closest measurement if there was no value 
on one side). Clock-time weighting is computed by weighting the 2 bordering values by their temporal distances 
from the time-point at which we interpolate. Thus, all concepts, whether from categorical or real-valued sources, 
took on rational values that were paired at each time point. Because each time-point typically has only 1 reported 
event, each time-tuple is comprised of 1 true data point and 2 interpolated values. 

Pre-processing of time series data 

Two types of pre-processing of interpolated time series were designed and evaluated. First, each patient’s time series 
of laboratory values were normalized to have 0 mean and 1 variance by subtracting the mean and dividing by 
standard deviation [12]. This operation removed inter-patient effects. Second, we replaced each interpolated value in 
the time series with its difference from the immediately preceding interpolated value, such that time series values 
represented changes in values. This was an important means of reducing dependence between lagged variables in 
our novel application of multivariate lagged regression models to interpolated clinical data. As such, we effectively 
considered 4 time series construction methods—1) no pre-processing, 2) intra-patient normalization, 3) differences, 
and 4) normalization and differences.  
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Sequence time 

Although clock-time was used for weighted interpolations and pre-processing steps, it was discarded in favor of raw 
sequence time for subsequent lagged linear analyses due to recent examples that demonstrated greater information 
and greater stationarity in clinical time series data that are parameterized by their sequence [11]. Real-time may 
prove to be a more sensible choice in other circumstances, especially when data is stationary. All time intervals 
between interpolated, pre-processed values were set to unit 1 length, effectively converting from clock-time to 
sequence time. 

Univariate lagged linear regression (ULLR) 

We compute lagged linear regression coefficients, βτ, for the following distributed lag model [20], where yt 
represents a laboratory value at sequence time t and x represents the interpolated drug value at time t-τ . This model 
performs the same computations as our previous lagged linear correlation experiment [12], but supplies a different 
statistic, namely the lagged drug coefficient βτ. 
  (1)  

 

Multivariate lagged regression (MLLR) 

We aim to leverage the relationship between the context of each data point and the variables they predict by 
including context-dependent factors in multivariate autoregressive models. In general, a multivariate distributed lag 
model for L lags and N variables (for which the ith variable is denoted ui), can be used to define the lagged 
coefficient for each variable ui at each lag τ (denoted as ), and is written as [20] 

 (2)  

,where  is the coefficient for lag τ of the variable ui. Because the parameters of these models are estimated 
jointly, adding explanatory variables that are related to both the predicted variables and variables of interest can 
change the values of coefficients of interest. Concretely, we considered a simple multivariate lagged regression that 
only incorporates lagged drug values, and jointly estimates all lagged drug coefficients βτ, with L=30, according to 
the following model, which we refer to as the “multivariate lagged drug model” 

  (3) 
We then evaluated how adding lagged terms to represent previous laboratory values affects drug coefficients by 
fitting the following “autoregressive drug and lab” model with L=30; this is in the form of Granger causality [19]. 

  (4) 
We also introduce an additional context variable, z, to represent the inpatient admission timeline, and fit a further 
augmented “autoregressive drug, lab, and context” model with L=30; this is in the form of vector autoregression 
[20]. 

  (5) 
Intuitively, this model uses the last 30 interpolated laboratory values, the last 30 interpolated drug values, and the 
last 30 interpolated admission values from the constructed time series to predict a present measurement. This 
alignment of previous data is performed for each laboratory measurement, and is aggregated within each patient, 
then across patients, creating a matrix with 91 columns (90 explanatory values and 1 predicted value) and a length 
equivalent to the number of qualifying laboratory measurements in the cohort. We did not perform any feature 
selection procedures, such as Bayesian information criterion, as this was out of the scope of our case study for 
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method comparison—employing such selection criteria is a key step in determining true Granger causality, which 
we did not attempt. 

Bootstrap 

After cohort identification, timeline construction, and pre-processing, we aggregated pairs of lagged interpolated 
values across patients to construct a sparse model matrix for each drug-lab pair that conformed to the specified 
dimensionality of each model. Coefficients for each model were estimated by performing sparse linear least squares 
regression with Cholesky factorization from the MatrixModels package in R [21]. One hundred iterations of a 
bootstrap were performed for each matrix by sampling patients with replacement [22] in order to obtain empirical 
estimates of statistical significance. Coefficient estimates were labeled as statistically significant if zero was not 
included in their 95% Confidence Interval (CI) as computed by the bootstrap, which was defined as 

. 

In our evaluation, we focus on the estimates of lagged drug coefficients, and evaluate the effect of additional 
variables not by examining their coefficients directly, but rather by evaluating how their presence affected the drug 
coefficients. 

Results 

Intra-patient normalization in univariate lagged linear regression 

Univariate lagged linear regression (ULLR) with intra-patient normalization was performed for each of the 20 drug-
lab pairs of interest, eight of which we hypothesized, based on clinical literature, to have a significant directional 
(i.e. increasing or decreasing) effect. The number of significantly positive and negative lagged drug coefficients are 
compared with results that could be expected from the literature in Table 1. Analysis of normalized data with ULLR 
detected 4 out of 8 expected signals correctly with appropriate directionality (3 positive relationships and 1 

negative), and reported all other cases to have statistically 
significant relationships. While this demonstrates real statistical 
correlations between variables, it does not necessarily implicate 
a physiologic association. The many biases in EHR data can be 
misleading when drawing statistical conclusions, so it is 
important to find ways of systematically focusing the analysis 
to reveal only the effects of interest—in this case, ones rooted 
in physiology. 

In Figure 1, we show that univariate LLR analysis of 
normalized data reveals clinically characterized trends, such as 
amphotericin B’s tendency to decrease potassium levels and 
increase creatinine. It shows an overall trend linking 
spironolactone to increases in creatinine levels (a known 
phenomenon), but also finds a statistically significant negative 
relationship at lag of 1 in sequence time. Figure 1 also indicates 
a significant association between simvastatin and increases in 
hemoglobin levels, for which we do not have a particular 
biological interpretation. This result is characteristic of the 
significant signals detected by ULLR in the 12 drug-lab pairs 
for which we did not expect a physiologic association. These 
results suggest that univariate LLR analysis, like other analytic 
approaches to clinical data, is vulnerable to health-care process 
effects in EHR data. For example, the short-term negative 
relationship of spironolactone and could be attributed to a 
treatment pattern in which patients first prescribed the drug are 

likely to be sick (possibly with high creatinine) and subsequently improve due to treatment. Creatinine elevation due 
to the drug, then, would be on a longer time scale than creatinine-lowering treatments. Table 1 shows that the 
multivariate models remove this effect, likely by jointly considering previous orders of the drug. 

Figure 1. The lagged drug coefficients for four drug-lab 
pairs are plotted, and statistically significant (95% CI does 
not include 0) coefficients are denoted with points on the 
line plots. Lag number 1 indicates the interpolated drug 
values immediately preceding each laboratory 
measurement, and lag number 30 indicates the interpolated 
drug value 30 points in sequence time preceding each 
laboratory measurement. Significance on the left of the plot 
indicates rapid effects, while significance on the right 
indicates slower effects. Amphotericin B is shown to 
increase creatinine and decrease Potassium, as expected 
[23,24]. Simvastatin is shown to increase Hemoglobin 
levels early on, and spironolactone is shown to decrease 
creatinine initially, then raise it. These latter effects are 
likely explained, at least in part, by health care processes. 
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Adding autoregressive terms: multivariate lagged linear regression 

We adopted a multivariate LLR model in order to address the confounding effects of health care process when 
tasked with detecting true physiologic effects of drugs. We first considered a model that estimates all lagged drug 
coefficients jointly (equation 3, “multivariate lagged drug model”) with the intent of incorporating drug timeline 
history into each prediction. We also evaluated an augmented version of this model that adds autoregressive terms of 
previous laboratory values as well as drug orders (equation 4, “autoregressive drug and lab model”)—this 
formulation is very similar to the autoregressive model used in Granger causality, although we do not perform 
model selection to choose the number of lags, nor do we address potential unit root issues as is typical in Granger 
causal analysis [19]. We used intra-patient normalization and applied the differences pre-processing step described 
earlier (replacing values of the time series with their difference from the previous value) in all multivariate LLR 
analyses to reduce dependence between interpolated values (independence of lagged variables is an important 
requirement in multiple regression). 

The multivariate lagged drug model showed statistically significant relationships with correct directionality between 
6 of the 8 drug-lab pairs with known biological activity and rejected 3 of the 12 uncharacterized pairings. The 
autoregressive model of drug and lab histories detected the same 6 of the 8 known pairs, and also rejected 3 
uncharacterized pairings. Moreover, in cases of true associations, drug and lab autoregression revealed, on average, 
more significant coefficients with greater magnitude. This finding suggests that the multivariate drug and lab model 
will have better sensitivity than the lagged drug model without sacrificing specificity. 

Figure 2 shows how univariate LLR, multivariate LLR with drugs, and multivariate LLR with drugs and labs 
describe two cases: 1) ibuprofen predicting creatinine levels, and 2) simvastatin predicting changes in hemoglobin. It 
is known that ibuprofen can cause acute renal failure, for which high creatinine is a common symptom, and indeed 
we see that multivariate LLR (and not ULLR) predicts the correct directionality of the effect, with larger and more 
significant coefficients produced when using autoregressive terms of lab and drug values. An effect of simvastatin 
on hemoglobin levels, however, was not supported by evidence from our literature search, suggesting that apparent 
effects are attributable to non-biological phenomena. Figure 2b shows that the MLLR drug model predicts a 
significant negative effect, whereas the lab and drug model indicates no significant relationships. This implies that 
previous hemoglobin measurements helped to explain future drops in hemoglobin (i.e. this model may account for 
the number of anemic patients on simvastatin). The univariate model, however, showed a positive effect during early 

time points, indicating something more 
likely related to health care processes 
that were accounted for by the 
multivariate models through joint 
parameter estimation. 

The performance of multivariate LLR 
methods was dependent on both intra-
patient normalization and taking 
differences of the time series data sets. 
Omitting both pre-processing steps 
resulted in 0 correctly identified signals 
for the drug-only model, and 1 correctly 

identified signal for the 
drug and lab model. 
Using normalization 
without differences 
allowed the drug and lab 
model to detect 1 

additional signal (2 in total), while using differences without normalization restored performance closer to levels 
seen with both pre-processing steps. The drug-only model detected the same 6 of 8 hypothesized drug-lab pairs, and 
had 10 apparent false positives. The lab and drug model significantly underperformed without both differences and 
normalization, detecting half the number of expected associations when used without normalization. 

Furthermore, the combination of normalization and differences yielded more robust signals. Figure 3 illustrates that 
the combination of both pre-processing steps produces the most robust signal for predicting creatinine elevation by 

Figure 2. a) Ibuprofen is shown to predict elevated levels of creatinine when using multivariate lagged 
linear regression (MLLR) models, with a more robust signal coming from the lab and drug model. 
Univariate LLR (ULLR) predicted a negative relationship, with only 5 significant coefficients. b) 
Simvastatin is suggested to have a short-term positive effect on hemoglobin by ULLR, and a sustained 
negative effect by drug MLLR. MLLR with lab and drug terms, however, reports no significant drug 
coefficients.  
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amphotericin B, as measured by the number and magnitude of correctly oriented significant coefficients. In this, 
example both differences and normalization are required to identify a positive signal with confidence.  

Adding context-related variables to multivariate 
lagged linear regression 

We evaluated lagged drug coefficients for a 
multivariate autoregressive model that incorporates 
patients’ admission timelines as well as drug and lab 
measurement histories for all 20 drug-lab pairs using 
intra-patient normalized time series of differences. 
This allowed us to consider the extent to which 
contextual information, like inpatient admission, can 
recalibrate estimated effects of drugs on physiologic 
measurements. Using this method, we detected the 
same 6 known drug effects that were captured using 

the autoregressive drug and lab model. Little difference 
was seen in number or magnitude of significant drug 
coefficients between the autoregressive drug and lab model 
and the context model in cases of expected physiologic 
drug effects. However, the context model did produce 
significantly different results for some of the 
uncharacterized drug-lab pairs. 

Figure 4a demonstrates that autoregressive context terms 
“explain away” the effect of simvastatin on creatinine, 
potassium, and hemoglobin (hemoglobin has only 1 
significant coefficient in the context model) by adjusting 
the lagged drug coefficients to insignificant quantities, 
while keeping intact simvastatin’s propensity to increase 
Total CK via muscle damage. Figure 4b shows that 
admission does not, however, contribute additional 
information toward studying the effect of ibuprofen on the 
four considered lab tests. This result is striking, and 
suggests that inpatient admission is an important 
confounding variable to consider when analyzing temporal 
effects of simvastatin, but is largely unimportant for 
analyzing the effects of ibuprofen. While the significant 
relationships for ibuprofen may in fact be legitimate, it is 
equally possible that they are explained away by other 
process-related context variables. 

Discussion 

By developing a method for constructing time series of 
continuous and categorical variables, we were able to 
compare univariate and multivariate lagged regression 
models that incorporate lab measurements, drug orders, 
and inpatient admissions. All lagged methods showed 
highest specificity and sensitivity, overall, with intra-
patient normalized laboratory values, and multivariate 
methods performed best in these metrics when differences 
were used during pre-processing stages. All multivariate 
methods identified the same six physiologic effects 
documented in clinical literature. Adding variables that 

describe patient context (lagged lab measurements and lagged admission events) increased the number and 
magnitude of significant drug coefficients in the expected cases and improved discrimination against unlikely 

Figure 3. The resulting drug coefficients are plotted for 
amphotericin B predicting creatinine using the autoregressive drug 
and lab model with different pre-processing steps. In this case both 
normalization and differences were necessary to produce the 
expected positive association [37]. 

Figure 4. Drug coefficients estimated from the univariate lagged 
linear regression (ULLR) model, the autoregressive drug and lab 
model (drug + lab MLLR), and the autoregressive context model 
(drug + lab + admit MLLR) (see legend of Figure 3) were plotted 
for all four investigated labs for a) simvastatin and b) ibuprofen. 
The context model accentuated the expected effect on CK by 
corroborating drug coefficient estimates of the other models, but 
rejecting significant signals for the other three labs. The context 
model was less impactful in the case of ibuprofen, in which it 
exclusively corroborates the autoregressive drug and lab model 
without adjustment. This suggests that inpatient admission is 
more relevant for evaluating effects of simvastatin than ibuprofen 
in the EHR. 
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associations. We found that adding context-based variables to autoregressive models allowed for explicit handling of 
confounding variables and provided a simple way to evaluate the temporal effects of ordered drugs on physiology. 

It is useful to note that the inpatient admission variables did not affect drug coefficients for warfarin or ibuprofen for 
most labs. This simply indicates that there is little correlation between admission, the drug, and each lab that cannot 
be explained by the drugs and labs alone. In this study, we are not interested in confounder coefficient magnitude or 
their relative explanatory contributions—rather, we are looking for the co-linearities that eliminate or enable 
rightfully significant drug coefficients (i.e. explaining away). Adding context-variables to autoregressive models 
appears to be a simple way to probe for confounders in EHR data without biasing the analysis. Selecting other 
possible confounders, like surgery, is a worthwhile exercise in better explaining the trends we observed with little 
physiologic interpretation. However, adding multiple new variables effectively adds new time points for 
interpolation in the time series, making each lag represent less average clock-time. It is unclear how many variables 
can be included in the timeline construction without detrimental distortion of results. 

It is difficult to discuss the detected positive associations that are not reported in clinical literature. On one hand, 
data from the EHR are liable to bias, and confounders can only be accounted for explicitly in our formulation. On 
the other hand, subtle drug effects are likely to be unstudied, yet omnipresent in medical practice. For this reason, 
we do not formally compute specificity or sensitivity metrics. We were also unable to detect drops in hemoglobin to 
implicate ibuprofen and warfarin in bleeding events. Our results suggested that warfarin and ibuprofen increase 
hemoglobin levels, which contradicts strong clinical evidence that they are causative agents of intestinal bleeding as 
defined by low hemoglobin levels [23]. It may be that physicians are very careful to maintain normal or even high 
hemoglobin levels when concerned about bleeding. This is an open question that merits further investigation, and we 
hypothesize that introducing relevant context variables (e.g. surgery, other labs) in the autoregression could help 
untangle this problem. In general, different data sources may impose different limitations on inference. It is unclear 
why we did not observe a drop in hemoglobin, but it may be a natural limitation of the data we used, which may lack 
the measurement frequency necessary to capture short-term fluctuations in hemoglobin levels.  

More broadly, we wish to better understand how temporal dependence between lagged variables (even after taking 
differences) manifests in the coefficient estimation. We found that changing the number of estimated lags often does 
not significantly alter the trend of coefficients. Specifically, similar trends for amphotericin B predicting elevated 
creatinine persist whether estimating 10, 30, or 60 lags. The plots, not shown, are all close to zero at their endpoints 
and peak in the middle. This is clearly an effect of co-linearity between lags of a particular variable, and it may be 
important to employ model selection methods, like Akaike information criterion [24] and Bayesian information 
criterion [25], to reduce the number of variables and their co-dependencies. These and other methods may assist in 
automating and optimizing feature selection (we hand-selected drugs and labs that are consistently taken across large 
patient cohorts at our center). Model selection criteria are also important for formally evaluating Granger causality 
between correlated variables, and we hope to have a method that rigorously evaluates causality. 

We seek a reliable high-throughput method that produces meaningful and interpretable results that will allow us to 
uncover new associations—we can only build the methodology for detecting known associations de novo, but it is 
hard to know if such a methods will be as good at detecting previously hidden associations. Moreover, given that 
drug coefficients are lagged by sequence, it is difficult to map results back to actual clock-time. In principle, each 
lag τ is associated with a distribution of time lengths across all patients, and the summary statistics for those 
distributions may provide sufficient insight into the unique time-scale of each temporal process we detect. 

Linear and non-linear distributed lag models have been used widely to study the temporal relationships between 
environmental factors and rates of health-related incidents, like suicide, mortality, and infectious disease [26,26–29], 
but their adoption in work with EHR data has been less common. These methods offer the advantage of explicit 
handling of confounding variables by including their autoregressive terms in the regression. More complex 
approaches also exist for removing confounders in distributed lag models, and Bahadori and Liu have proposed a 
methodology for applying Granger causality to medical data that is designed to learn the effects of unobserved 
confounders [30]. Ghassemi et al. used multi-task Gaussian process models for multivariate time series modeling of 
data collected in intensive care units (ICU) [31], and Joshi and Szolovits have applied novel unsupervised data 
mining techniques to characterize severity of patient physiology in ICUs [32]. Other noteworthy approaches for 
temporal pattern discovery have been applied to EHR data [5–7,33]. Jung and Shah evaluated the effect of non-
stationarity in EHR data on different machine learning models, and found suboptimal performance of complex 
methods that ignore non-stationarity [34]. In addition, Lasko et al. have demonstrated machine learning methods 
that evaluate sampling rates and biases in laboratory measurements [35] and model temporal effects for both 
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continuous and categorical variables from the EHR [3,36]. While machine learning and pattern recognition methods 
can uncover complex relationships in high dimensional data, the lagged linear regression methods we use are 
advantageous due to their simplicity of implementation and interpretability. 

This study was limited to EHR data from one medical center, and was limited to eight hypotheses based on review 
of clinical literature. However, there does not exist a ground truth for these hypotheses. Similarly, the twelve drug-
lab pairs that were not found to be significantly linked in clinical literature cannot be verified and were thus 
exploratory, rather than formal negative controls. 

Conclusion 

By comparing univariate and multivariate lagged regression models, we established methods for timeline 
construction that yielded consistent results across model implementations. We found that drug effects were best 
characterized, as compared to clinical literature, by multivariate lagged models that incorporate drug orders, 
laboratory measurements, and inpatient admission events for 20 example drug and lab pairs. These results suggest 
that simple autoregressive models of commonly available EHR data can be used to detect real physiologic drug 
effects in the presence of confounding health-care processes, and a more thorough study with a larger feature set is 
warranted. 

Table 1. Model performance* 

  

Variables in model lab,drug,context lab,drug lab,drug lab,drug lab,drug drug drug 
Extra variable in TS inpatient inpatient none none none none none 

Differences diffs diffs diffs no diffs diffs diffs no diffs 
Normalized norm norm norm norm no norm norm norm 
Model type Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Univariate 

Drug Lab Expected Citation 
amphotericinB Hemoglobin     0+, 21- 0+,21- 0+,16- 1+, 3- 0+,14- 0+,4- 0+, 30- 
amphotericinB Total CK     0+, 5- 0+,5- 0+,8- 1+, 2- 0+,0- 0+,6- 0+, 30- 
amphotericinB creatinine pos [37]  22+, 0- 22+,0- 21+,0- 1+, 0- 0+,0- 19+,0- 26+, 0- 
amphotericinB potassium neg [38]  0+, 22- 0+,22- 0+,22- 1+, 0- 0+,20- 0+,10- 0+, 30- 
ibuprofen Hemoglobin neg [23]  28+, 0- 28+,0- 27+,0- 5+, 0- 0+,0- 13+,0- 30+, 0- 
ibuprofen Total CK     0+, 8- 0+,8- 0+,1- 0+, 2- 0+,0- 0+,0- 0+, 4- 
ibuprofen creatinine pos [39,40] 26+, 0- 26+,0- 30+,0- 2+, 0- 9+,0- 18+,0- 0+, 5- 

ibuprofen potassium 
 Possible 

pos [39,40]  23+, 0- 24+,0- 23+,0- 7+, 0- 23+,0- 8+,0- 30+, 0- 
simvastatin Hemoglobin    [41] 1+, 0- 0+,2- 0+,0- 0+, 3- 0+,1- 0+,22- 5+, 0- 
simvastatin Total CK pos  [42] 5+, 0- 8+,0- 8+,0- 2+, 1- 9+,0- 7+,0- 12+, 0- 
simvastatin creatinine     0+, 0- 0+,4- 0+,6- 0+, 0- 2+,0- 0+,7- 0+, 10- 
simvastatin potassium     0+, 0- 0+,7- 0+,11- 1+, 0- 0+,0- 0+,8- 18+, 0- 
spironolactone Hemoglobin     28+, 0- 27+,0- 28+,0- 2+, 2- 28+,0- 21+,0- 0+, 5- 
spironolactone Total CK     0+, 0- 0+,0- 0+,2- 0+, 1- 0+,0- 0+,0- 5+, 0- 
spironolactone creatinine pos [43]  23+, 0- 23+,0- 25+,0- 7+, 0- 2+,1- 27+,0- 21+, 1- 
spironolactone potassium pos  [44] 28+, 0- 28+,0- 29+,0- 8+, 1- 27+,0- 27+,0- 30+, 0- 
warfarin Hemoglobin neg [23]  30+, 0- 30+,0- 30+,0- 10+, 3- 30+,0- 29+,0- 30+, 0- 
warfarin Total CK     0+, 4- 0+,5- 0+,16- 0+, 1- 0+,0- 1+,0- 1+, 14- 
warfarin creatinine     28+, 0- 27+,0- 29+,0- 7+, 1- 25+,1- 28+,0- 0+, 18- 
warfarin potassium     30+, 0- 30+,0- 30+,0- 8+, 2- 28+,0- 18+,0- 30+, 0- 

*Pairs show the number of statistically significant positive and negative lags (e.g., “2+,1-” implies two positive lags 
and one negative lag). Green implies predominantly positive association, red implies predominantly negative, and 
grey implies minimal (less than 3) or mixed. 
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