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Abstract 

Predicting negative outcomes, such as readmission or death, and detecting high-risk patients are important yet 
challenging problems in medical informatics. Various models have been proposed to detect high-risk patients; 
however, the state of the art relies on patient information collected before or at the time of discharge to predict 
future outcomes. In this paper, we investigate the effect of including data generated post discharge to predict 
negative outcomes. Specifically, we focus on two types of patients admitted to the Vanderbilt University Medical 
Center between 2010-2013: i) those with an acute event - 704 hip fractures and ii) those with chronic problems – 
5250 congestive heart failure (CHF) patients. We show that the post-discharge model improved the AUC of the 
LACE index, a standard readmission scoring function, by 20 - 30%. Moreover, the new model resulted in higher 
AUCs by 15 - 27% for hip fracture and 10 - 12% for CHF compared to standard models. 

Introduction 

Predicting events associated with negative outcomes, such as readmission or death, post discharge is challenging. 
Traditionally, negative outcome prediction systems are executed at the time of discharge to identify high-risk 
patients1. However, such systems are limited in their applicability because patient status often changes after their 
discharge and risk prediction models are not amended to incorporate such information. This lack of knowledge can 
result in risk assessment errors and potential readmission penalties, under Meaningful Use regulation, calculated via 
a payment adjustment factor2. 

Care providers, as well as the administrators of healthcare organizations, are keen on determining which patients 
might experience complications that lead to readmission or death, so that they may allocate additional resources to 
the patients and intervene before a negative outcome transpires3. Unfortunately, resources are limited and decision 
makers within health organizations (e.g. physicans and care coordinators) specify a subset high-risk patients who 
can receive special attention while other high-risk patinets do not have access to such resources4,5. Accurately 
identfying, as well as prioritizing, which patients should be assigned assistance is an important informatics problem. 

To investigate the effect of post discharge data in predicting negative outcomes, we focus on several core questions.  
First, what post-discharge information is available for prediciton?  Second, how can a post-discharge model be 
formulated? And, finally, how do different time periods of post-discharge information impact such predictions? In 
doing so, we examine which post-discharge features are the most important drivers of negative outcome predictions.  

We evaluated standard and post-discharge prediction models using three years of data from Vanderbilt University 
Medical Center’s (VUMC’s) electronic medical record (EMR) system for two phenotypes : 1) an acute condition in 
the form of a hip fracture and 2) and a chronic progressive disorder in the form of congestive heart failure (CHF). 
The results demonstrate that: 

• Running the prediction at successive post-discharge days, and including post-dischrage clinical information in 
the prediction model, outperforms state-of-the-art “at discharge” models, such as LACE 6, 7; 

• The importance of post-discharge clinical features grows as the prediction horizon for negative events is pushed 
further into the future; and 

• Higher utilitization of clinical resources (e.g. appointments and medications) are correlated with a negative 
outcome. 

Background 

The number of proposed risk prediction models has increased dramatically over the last decade. Kansagara and 
colleagues performed a comprehensive systemic review to evalute the performance of risk prediction models and 
their suitability for clinical use 1. To evaluate the performance of the risk model, studies usually compare their 
models to an established model such as LACE. This is a readmission index that provides a risk score to predict the 
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readmission or death, specifically for CHF patients, using length of stay (L), the acuity of admission (A), 
comorbidity score (C), and the number of the emergency department visits (E)6, 7. 

Several studies have shown that post-discharge data can assist in the prediction of negative events in special 
circumstances. For instance, certain studies focused on surgical quality assessment at the point of discharge 
observed that over a quarter of the complications are diagnosed post-discharge8-10.  In another study, it was found 
that post-discharge data could improve the prediction of the presence, as well as the severity, of spasticity in upper 
limbs in the year following a stroke11.  

While post-discharge data has rarely been used in readmission prediction, Hersh and colleagues performed a 
systemic review about the post-discharge environment and its relation to readmission after heart failure12. They 
reviewed 26 studies published between 1985 and 2011 to evaluate the importance of integrating post-discharge 
environment in the heart failure readmission model. In the review, only 7 studies included post-discharge data and 
focused mainly on whether the patient had a primary care provider. They concluded that the socio-economics of the 
post-discharge enviroment is a key indicator that affects readmission probability. Another factor that has been found 
to correlate with readmisson is follow-up after discharge. Specifically, patients with a larger number of early follow-
ups tend to have a lower likelihood of unplanned readmission, especially for patients with a greater collection of 
comorbidities13-16.   

Methods 

In this section, we describe the risk prediction models. First, we describe methods to construct features using data 
from different post-discharge time windows. Second, we use these features to predict negative events occurring up 
to a prediction window. 

Prediction Model Composition  

We represent longitudinal EMR data with an MNxT matrix, where T is the length of time for extracted EMR data and 
N is the number of patients in the cohort. Each row in the matrix represents one patient vector denoted by t. For each 
patient p, we divide the longitudinal medical record vector t into three temporal bins: before admission, during 
admission, and after discharge. For each model, we define an observation window (OW) that specifies the time 
from which to extract features. Using combination of features, we predict whether the patients would have a 
negative outcome within a prediction window (PW), where the window starts at the discharge day and ends at the 
prediction point (PP).  

For the purposes of this investigation, we represent outcomes as a dichotomous variable. A patient has a negative 
outcome if he/she experiences a negative event (-1) in the prediction window and has a non-negative outcome (+1) 
otherwise. Figure 1 visualizes model settings in which both patients experience negative outcomes, but only the 
patient in Figure 1b has a negative outcome in the prediction window.  

 

 

 

 

 

 

Figure 1: Prediction models based on temporal features (a) before and (b) after a negative outcome.	

We construct the following prediction models by varying the combination of observation windows and features:  

Model 1: LACE: Starting with the most common method in the literature, we build a prediction model using 
LACE, where E was restricted to the number of the emergency department visits in the past 6 months. LACE 
assigns points to each variable based on its value, and calculates probabilities by using regression models7. Patients 
with a score greater than 10 are considered to be high risk. We retrieved the features utilized by LACE from the 
EMR and calculated the risk score, which was fed as a feature into the prediction model. We consider LACE as the 
baseline for performance comparison. 

a:	Prediction	model	–	prediction	point	before	negative	outcome	

b:	Prediction	model	–	prediction	point	after	negative	outcome	
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Model 2: Before-Admission Model (BAM): To learn whether prior health status can be applied to forecast the 
future health status of patients, we use only data from before the admission to predict the outcome. Each patient’s 
entry is assigned to a pre-admission feature vector denoted by b. The BAM matrix is visualized in Figure 2a. 

Model 3: During-Admission Model (DAM): We investigated whether the data collected about investigated 
phenotype is sufficient to predict the outcome. The observation window begins at admission and ends at discharge 
and is visualized in Figure 2b. 

Model 4: At-Discharge Model (ADM): This model incorporates data from before and during admission to predict 
the outcome, and is visualized in Figure 2c. 

Model 5: Before, During admission, and After discharge Model (BDAM): The last model incorporates post-
discharge data to predict the patient's outcome, which is visualized in Figure 2d. There are several key parameters to 
this model: 1) the time window post-discharge to include data, which we refer to as a checkpoint, 2) the length of the 
prediction window, and 3) ensuring that data prior to negative events does not introduce biased knowledge about an 
upcoming negative event. Regarding point (3), we remove data from days immediately before the end of the 
window, which we refer to as the gap. Thus, the model can be specified with a checkpoint C, gap G, a prediction 
point PP and prediction window PW. 

 
 

 
 

 
 

 
 

Overview of Features 

For the patient records in this study, we extracted the demographics (age, gender) and data ranging from one year 
before to one year after the first documented incidence of the phenotype under investigation (i.e., hip fracture and 
CHF).  For each patient, we extracted the number of resources that were allocated for treatment, including: 1) 
medications, 2) laboratory tests, 3) appointments, 4) previous admissions, 5) the average of previous length of stays 
(LOS), 6) days since the last admission, and 7) the count of the International Classification of Diseases, Ninth 
Revision (ICD-9)17 in each of the 20 chapters. Table 1 summarizes the features and the temporal period to which 
they correspond (e.g., before admission, during admission, or after discharge). In addition, we extracted the number 
of documents, grouped by their type, that were created and stored in the EMR during hospitalization.  

Table 2 lists the extracted lab tests, their normal ranges, and the diagnostic purpose of the test. We retrieved the 
average values of the most common lab tests that were ordered for 80% of the patients during admission and after 
discharge, including carbon dioxide levels (CO2), creatinine, glucose, hematocrit or packed cell volume (PCV), 
partial thromboplastin time (PTT), potassium (K), sodium (Na). These lab tests are ordered by clinicians to evaluate 
heart and kidney functionality, electrolyte balances, and blood clotting timing. 

a:	Before	Admission	Model	(BAM)	

b:	During	Admission	Model	(DAM)	

c:	At	Discharge	Model	(ADM)	

d:	Before,	During	and	After	admission	Model	(BDAM)	
Figure	2:	Prediction	models	based	on	varying	temporal	features. 
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Table 1: Summary of the features included in the models with the observation window taken from. The 
symbols *, +, and - represents extracted from before, during and after bins respectively. 
Feature Type Feature Values Feature Bin 
Demographics Age and gender.    

Laboratory tests 
Number of laboratory tests. * + – 
Average values of: glucose, creatinine, partial thromboplastin time (PTT), hematocrit or packed cell 
volume (PCV), Carbon Dioxide levels (CO2), potassium (K), and sodium (Na).  + – 

Medication Number of medications prescribed for the patient.  * + – 

ICD 
The count of ICD9 in each of 20 chapters. * + – 
ICD deviation post-fracture (the ratio of ICD chapters number in an appointment after discharge to the 
average number of ICD chapters before hip fracture incidence). 

  – 

Routine care The average of Braden score, the number of ECG tests, the number of times a patient received 
respiratory care. 

 +  

     

Admission 
Length of Stay (LOS).  +  
Last day of previous admission. *   
Average LOS *   

Appointment The number of appointments.    – 
Documents and 
communication 

The number of communication message   – 
The number of documents initiated for per document type.  +  

Post-discharge time Number of days since discharge.   – 
Number of days until prediction point   – 

 
Table 2: Common lab tests, their normal values, and the diagnostic purpose.	

Lab Test Name Normal values Purpose Abnormal values reasons 
Creatinine Male: 1.3 mg/dL Female: 1.1 

mg/dL 
Test kidneys 
functionality 

Higher than normal level is an indicator of kidney 
malfunction such as kidney failure, blocked urinary 
tract, and kidney damage. 

Partial thromboplastin 
time (PTT) 

25-35 seconds Measuring the time 
that the blood takes 
to clot 

Abnormal or long PTT time indicate bleeding disorder 
or disorder in clotting process 

Hematocrit or packed 
cell volume (PCV) 

Male: 55% 
Female: 42% 

Measuring the 
percentage of Red 
Blood Cells (RBC) 
in blood  

Low PCV: indicator of anemia, over-hydration, and 
destruction of RBC 
High PCV indicator of dehydration, congenital heart 
disease, or abnormal increase in RBC 

Carbon Dioxide levels 
(CO2) 

23 to 29 mEq/L Detecting the body’s 
electrolytes 
imbalance 

Low levels: indicator of acidosis, Kidney disease 
High level: indicator of breathing disorders, 
hyperaldosteronism 

Potassium (K) 3.7 to 5.2 mEq/L Assessing the kidney 
and heart functions. 

Low levels: Chronic diarrhea, renal artery stenosis, 
diuretics 
High levels: blood transfusion, Kidney failure, acidosis 

Sodium (Na) 135 -145 mEq/L Measuring balance 
between sodium and 
water in consumed 
foods and drinks 

Hyponatremia (Na < 135 mEq/L): kidney disease, 
heart failure, or ketones in blood from starvation 
Hypernatremia (Na > 145 mEq/L): dehydration, severe 
vomiting, or diarrhea 

 
Negative Outcome Prediction Over Time 

To study the performance of the models over time (specifically the post-discharge data), we predicted the outcome 
for different prediction points and prediction windows ranging from seven days to one year. 

Model Implementation 

In this section, we describe the data extraction and provided high-level overview of the prediction algorithms. 

Data extraction 

We extracted patients who were diagnosed with a hip fracture or CHF, using the 820.* and 428.* range of ICD9 
codes, respectively. We excluded patients who had no encounters before admission and after discharge to triage 
patients who visited the medical center for only that admission. We also excluded repeated admissions for these 
phenotypes with the aim to only analyze the first admission. 

Input matrix: We construct the BAM, DAM, ADM, and BDAM input matrices. For the BDAM matrix, different 
checkpoint days can influence the prediction’s performance. To remedy this issue, we uniformly sampled 
checkpoints at random between the discharge and prediction points and averaged the results. This random day 
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sampling approach provides a viable option for evaluating the model even though the model changes as different 
amounts of post-discharge data are included.  

Changing the prediction window length: To understand the change in risk and the effects of the phenotype over 
time, we varied the prediction window length from 7 to 365 days. 

Model implementation: We used a random forest classifier from Scikit-learn18 and conducted a 5-fold cross-
validation. For random forest parameters, we used 500 trees with 15 maximum depth and 15 as the minimum split.  

To construct the BDAM matrix, we enforced a gap of 5 days for all prediction points except seven days, for which 
we used a gap of three because it yields four days from which to sample compared to sampling from two days. The 
values in the post-discharge data depend on the checkpoint location. As shown in Figure 3, different checkpoint 
locations lead to different BDAM entries for the same dataset (Figures 3a and 3b exhibit the vectors constructed 
with different checkpoints). To minimize the effect of randomness, we built 100 matrices at each prediction point, 
randomly sampled checkpoints for each matrix and averaged the area under the receiver operator characteristic 
curves (AUCs). 

 
 

	
 

Figure 3: Building BDAM vector using two checkpoints (a) an example of a randomly sampled checkpoint 
and (b) an alternative sampled checkpoint	

Important features and their relationship to outcomes 

To characterize the importance of the features in the post-discharge model, we extracted the features that, on 
average, have the highest importance across all folds. We analyzed the importance of the features that comprise 
around 50% of the total feature importance. Additionally, we analyzed the non-linearity of features with partial 
dependence plots. The partial dependence shows the dependence of prediction approximation on a subset of the 
input variables.  It finds the marginal average of the prediction to identify the effect of chosen subsets of features on 
the prediction probability after accounting for the rest of the input features. For a given predictor, the y values in the 
partial plot show the average of prediction probability across all trees in the forest.  

Results 

We begin by summarizing the patient populations and their negative outcome rates. Then, we present the 
performance of the models, with LACE as the baseline. Finally, we report on the importance of the features 
incorporated in the model and the outcome.   

Patient Population 

This study was based on patients who were admitted to VUMC between 2010 and 2013. We included patients aged 
65 years and older and were diagnosed with either a hip fracture or CHF. We excluded patients who did not have an 
admission on the onset date of the phenotype. This selection criteria yielded 704 hip fracture patients and 5250 CHF 
patients. 

Around 25%, and 21% of hip fracture and CHF patients, respectively, had a negative outcome within 90 days after 
discharge. As shown in Figure 4, the one-year survival rates exhibited a similar trend. For patients who exhibited a 
negative outcome within the first 7 days, more than half were admitted to the emergency department or died within 
the first three days after discharge. 

a:	An	example	of	a	random	checkpoint	

b:	An	alternative	random	checkpoint		
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Before Discharge Model Results 

Figure 5 reports on the AUC for predicting the 
negative outcome within one year using LACE, 
before admission, during admission, and at 
discharge) models for hip fracture and CHF 
patients. The x-axis shows the prediction points 
at which the model was run, while the y-axis 
corresponds to the average AUC.  

Across all prediction points, LACE exhibited the 
lowest AUC values for both cohorts. The before 
model has similar AUC values as LACE for hip 
fracture patients, while it has higher AUC than 
LACE when applied on the CHF cohort. 
However, the during and at discharge both 
outperform the LACE and before models. The 
during model exhibits almost the same AUC as 
the at-discharge model when predicting the 
outcome for the CHF patients. By contrast, at 
discharge model has a higher AUC than the 
during model for the hip fracture patients. 

In both cohorts, the before model had the lowest AUC within the first 20 days. After 20 days, the AUC values 
increased slightly. The during and at-discharge models exhibited the same trend in performance over time. In CHF, 
the during model and at-discharge models had the highest AUC during the first two weeks of prediction. Afterwards, 
the AUC values decline slightly and smoothly until they reach their lowest point at the one-year prediction. By 
contrast, the AUC values of the during model and at-discharge were the lowest within the first two weeks for the hip 
fracture patients and increased slightly until they reached their highest AUC values at the one-year prediction. 

 

  
Days Days 

(a) Hip Fracture (b) Congestive Heart Failure 
Figure 5: AUC values for BAM, DAM, and ADM models for outcome prediction within one year.	

 
Post-Discharge Model Results 

Next, we analyzed the post-discharge model in two ways: (i) using a single feature representing the days since 
discharge (post-discharge time), and (ii) all post-discharge data including days since discharge. We analyzed the 

 
Figure 4: Survival rate for patients within one year from 
the diagnosis. 
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results in these two phases given the importance of time in the post-discharge model (i.e., the longer you are out of 
the hospital, the less likely you are to return).  

Figure 6 depicts the AUC values for specific checkpoints for the 7, 14, 22, and 30 days prediction points. The x-axis 
corresponds to the selected checkpoint. The red dashed-line represents the average AUC for post-discharge model at 
a given checkpoint, while the diamond and triangles correspond to the AUC of at-discharge model and the 
traditional LACE model, respectively. The blue solid line represents the AUC for the post-discharge time only 
model. It can be seen that the BDAM model outperformed all models. Moreover, the AUC values increased as 
additional post-discharge data are included. 

 
Figure 6: AUC values for BDAM model applied at different successive checkpoints for hip fracture patients 

at 7, 14, 22 and 30 days negative outcome. 	

Figure 7 depicts the performance of the LACE, ADM (at discharge) and BDAM (post-discharge) models for 
different prediction points (where the post-discharge data are averaged across the checkpoints). The upper grey line, 
lower grey line, and solid black line represent the minimum, maximum, and average AUC, respectively. Both the 
BDAM and the ADM models performed better than the LACE model by 20 - 30% AUC. In this setting, BDAM had 
a higher AUC than ADM at all prediction points by 15.8 - 26.5% for hip fracture and 9.7 - 12.1% for CHF patients. 
Using BDAM, predicting the negative outcome within 7 days had a higher AUC compared to predictions within 30 
days. 

BDAM results trended differently for the two phenotypes. For hip fracture, the AUC decreased until it reached the 
lowest values at 21 days, then increased between 21 and 60 days, staying relatively constant afterwards. For CHF, 
the AUC decreased until 21 days. 

Feature Importance 

For each prediction point, we retreived the features that, on average, exhibited the highest importance. At all 
prediction points in both cohorts, days from discharge and days until prediction point displayed the highest 
importance. The number of appointments after discharge was the third most important predictor for a negative event 
within 30 days while clinical communication was the forth or fifth important feature within the same time range.  

In hip fracture patients, age is one of the top 10 predictors of a negative outcome within 30 days. Diagnosing hip 
fracture patients with infectious, blood stream, genitouribnary, or circulatory diseases during admission were among 
the top predictors for readmission within 30 days.  In CHF patients, the average number of labs during admission 
(e.g., creatinine, K, Na, and CO2) were strong predictors for negative events within 60 days.  

Figure 8 depicts the partial dependency plots for the most important features for 7, 21, 30, and 60 days for hip 
fracture patients. In the partial dependence plot, the x-axis shows the values of the variable. For a given x value, the	

(a) 7 days (b) 14 days 

(c) 22 days (d) 30 days 
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Figure 7: Outcome predicting within one year for a) hip fracture and b) CHF. 	

y value indicates the probability of the negative outcome after accounting for the values of the other input variables. 
A small y value indicates a low probability of positive outcome, while a large y indicates a high probability of a 
positive outcome.  

For example, patients who scheduled a small number of appointments after discharge had a higher probability of 
experiencing a negative outcome. A low and high number appointments scheduled before discharge were associated 
with a high probability of negative outcome. In addition, a low and high quantity of post-discharge communications 
had a high probability of a negative outcome. During admission, patients who were prescribed a larger number of 
medications and lab tests, in comparison to other patients in the cohort, had a higher probability of having a negative 
outcome. The partial dependency plots of lab values such as K, PVC, and creatinine depict that abnormal values 
were associated with a high probability of a negative outcome.  

Discussion 

Predicting negative outcomes and detecting high-risk patients are challenging problems. Our findings demonstrate 
that including more information about a patient’s post-discharge status may increase the performance of such 
predictions. This finding is further supported by the observation that the LACE model, while simple to implement, is 
likely to neglect many key features that can enhance predictions.  

One of the critical discoveries made in this study is that the post-discharge time is a strong predictor on its own for a 
negative outcome. This result affirms the observation that the longer a patient remains out of the hospital, the less 
likely they will be readmitted at a future point in time. However, time from discharge in isolation lacks important 
clinical information, which if included, can further improve prediction quality. Moreover, time until prediction 
quantifies the amount of information collected post-discharge that is not included in time from discharge. 

One of the challenges in building and developing the post-discharge model is determining the time period during 
which post-discharge data should be collected and used for prediction.  In this work, we used a random day model. 
In practice, a post-discharge model can be executed daily to identify high-risk patients, no matter when they were 
discharged. 

Our analysis demonstrates that risk changes over time, especially during the first three months post discharge. In 
particular, the first 7 to 10 days are the times when frail patients are at high risk of encountering a negative outcome. 
A decline of the prediction performance over time suggests a variation in recovery stages for healthy patients and a 
difference in the risk factors for patients who died or were readmitted within the same time frame.  For example, the 
prediction of hip fracture outcome had the lowest performance between 14 and 21 days. Several factors could cause 
this such as various pre-existing medical problems, the degree of activity, and the ability to attend follow-ups. 
Further analysis could be done to identify the change in risk factors (e.g. post-discharge complications), and locate 
the period of time when those factors are correlated with readmission. 

(a) Hip fracture  (b) Congestive Heart Failure  
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Although accurate prediction is crucial, healthcare providers need to identify the values of features that are 
associated with a higher probability of negative outcome. Locating such values may assist clinicians in 
understanding the reasons behind a negative outcome, as well as identify early signs of complications. Direct 
intervention could be applied to lessen risks through outpatient appointments or home visits. In our risk model, the 
features can be categorized into clinical factors and clinical resources. Both types of features influence predictions at 
different levels. Specifically, the amount of clinical resources allocated to treat patients before admission and after 
discharge could identify the patients who have a high probability of encountering a negative outcome. Similarly, the 
patients who utilized more treatment resources exhibit a higher probability of experiencing a negative outcome 
except for post-discharge follow-up utilization. A very low utilization value implies the existence of barriers 
preventing the patient from going to see their healthcare provider. Even low utilization values for some features, 
such as the number of labs ordered during admission, are associated with negative outcome occurrence. Measuring 
the unexpected utilization could be leveraged as an indirect method to identify patients who are at high risk. 

Conclusions 

This study shows that the inclusion of data in EMRs collected post-discharge can improve the performance of 
negative outcomes predictions, such as readmission or death.  This is notable because it shows that traditional 
readmission prediction models, such as LACE, which focus on information available only at the point of discharge, 
would benefit with updates over time (provided the information is available).  We illustrated that this finding holds 
true for both acute (i.e., hip fracture) and chronic (i.e., congestive heart failure) patient populations.  It is notable that 
the primary driving factors of our discovery include: 1) time out of the hospital after discharge and 2) information 
about the quantity of resources allocated for patient that are both physical (e.g. medication, labs, appointments) and 
electronic (communication, documents).  

Figure 8: Partial dependency plots for outcome predictions for hip fracture patients. 
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While our findings are notable, there are several limitations that we wish to acknowledge, which can serve as 
guidelines for further investigation. First, this study focused on sampling only one day for post-discharge 
information. A notable extension is evaluating risk scores on multiple consecutive days to identify changes in risk 
score and identify patients at-risk to apply early intervention. Second, our models neglected the semantics about 
clinical status that might be documented in communications between patients and their healthcare providers. For 
instance, patients who communicate they are in severe pain or experiencing complications from opioid medications 
may miss their follow-ups. Thus, information intimated to care providers may indicate signs of an impending 
negative outcome.  As such, a notable extension to our approach would be to apply natural language processing to 
detect and characterize such semantics for enhanced modeling. Third, our model represented various features from 
disparate EHR resources. However, we did not use all patient data such as vital signs (e.g., heart rate or blood 
pressure), medication doses, changes in laboratory test values, etc. A future direction is to include additional 
relevant features while accounting for the ratio between sample size and the number of features.  
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