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INTRODUCTION

Some time ago the authors had occasion to study the effect of
bacteria on the curing of meat. As a part of the work it was
necessary to determine the number of bacteria present in the
pickle at different stages of the cure. When plates were made
of the pickle in the usual manner, surprisingly low counts were ob-
tained, as compared with the number estimated by direct micro-
scopic observations of wet preparations. While the latter indi-
cated from 500,000 to 1,000,000 organisms per cubic centimeter,
the plate count obtained from the same material was 10,000 or
less. The low values obtained with plating were at first attrib-
uted to an unfavorable medium; consequently a solid medium
was made by adding agar to clarified pickle. The counts obtained
with the use of this medium were approximately the same as
those obtained with use of standard beef extract agar. These
results led us to believe that a considerable portion of the usual
flora of curing pickle could not develop on solid media. Attempts
were then made to determine the number of bacteria present by
means of the direct count. For this purpose a modification of
the Breed and Brew (1925) method was used. This was not
satisfactory because of the high salt content of the pickle. The
salt not only brought about a precipitation of the dye, but also,
in crystallizing, obscured many of the organism. Furthermore,
the salt prevented proper fixation of bacteria on the slide, so that
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attempts to remove the salt by washing resulted in the removal
of most of the bacteria. Because of the great variety of organisms
present, many of which were actively motile, and because of the
presence of debris, methods making use of a counting chamber
could not be used.
These difficulties forced us to consider the dilution method as

a means of evaluating the bacterial population.
We were at once confronted with the following problems: (1)

calculation of the number of bacteria present from the number of
tubes showing growth in the various dilutions, (2) evaluation of
the accuracy of the data thus obtained, and (3), determination
of the variation in accuracy with the number of tubes used in each
dilution. A careful review of the literature was made in an at.
tempt to find answers to the questions involved. We found that
many investigators had advanced equations that would enable
us to calculate the most probable number of organisms from the
number of tubes that showed growth, and some had published
tables to aid in the calculation. We were, however, unable to
find any satisfactory solution of the problem of variation in ac-
curacy with the number of tubes used in each dilution, or, what
would have been more desirable, a method for the determination
of the number of tubes that must be used to get a specified ac-
curacy. We therefore deemed it necessary to reconsider the
entire problem. This is the first of a series of articles dealing with
the various problems involved in the dilution method of deter-
mining a bacterial population.

HISTORY

The use of dilution methods in bacteriology dates back to the
early days of the science. About 1875 Pasteur obtained pure
cultures of bacteria by diluting the original inoculum during
several successive transfers to a suitable culture medium. Later
Miquel, Brefeld, and Lister (Kolle, Kraus and Uhlenhuth (1930))
obtained pure cultures by inoculating small amounts of diluted
bacterial suspension into a series of tubes of medium.
For many years bacteriologists have been using dilution meth-

ods to give some idea of the number of orgaTisms in the material
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examined. This method consists in diluting the material to be
examined, usually in powers of 10, and inoculating equal volumes
of the diluted material into liquid media. If growth occurs from
the inoculation of 1 cc. of a 1:100 dilution and not from a 1:1000
dilution, the number of organisms present in the original material
is said to be between 100 and 1000 per cubic centimeter. On the
basis of chance, however, it might be possible to have only 50
organisms per cubic centimeter, or more than 1000 per cubic
centimeter in the original material and still get growth from the
1:100 dilution and not above that in a single test. A presumptive
coli test, utilizing varying amounts of inoculum, has been used in
a similar way in the bacteriological analysis of water to give an
approximate idea of the quality of the water.

This was essentially the basis of the method introduced by
Phelps (1908) to estimate the B. coli content of water from pre-
sumptive test data. In his method it is assumed that the re-
ciprocal of the highest dilution which shows growth represents
the most probable number of organisms present. His method
was adopted by a Committee on Standard Methods of Water
Analysis of the American Public Health Association (1920). In
case "skips" occurred, that is, a positive presumptive test from a
dilution higher than one which was negative, the result taken
was the reciprocal of the dilution next higher than the smallest
one giving a positive test.
A more accurate method of interpreting dilution data has been

supplied by McCrady (1915). In developing his equations he
begins with the proposition that there is only one organism for
each 100 cc. in the sample. He stated that this one organism
must obviously be contained in one of the 1 cc. volumes and that
the probability of not getting the organism when a single cubic
centimeter is removed from the 100 cc. volume is 0.99. The
following quotation from his article (p. 185) shows how he has
developed his equation.
Now suppose 2 B. coli are in the sample. The probability of each

organism's not being contained in the 1 cc. withdrawn for the fermenta-
tion test has been shown to be (0.99). Then, by the principle just il-
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lustrated, the probability of neither organism's appearing in this 1 cc.
is equal to the product of the separate probabilities, or (0.99) (0.99) =
0.9801. And if a great number of such samples were examined, about
98.01 -per cent of the results would be "0/1 in 1 cc."

In general if V represents the number of volumes in the sample, and
x the number of B. coli in the sample, and one volume is withdrawn, the
probability that this volume will contain no B. coli is given by

[V - x

Thus when 1 cc. of the sample is withdrawn for the test, V becomes

100 and the formula becomes [ W].hen a 10 cc. quantity is with-

drawn, V becomes 10 (there are ten 10 cc. volumes in the sample), and
the formula becomes 0.9x.

With this reasoning as a foundation for his later work, McCrady
developed the equations from which it is possible to calculate the
most probable number of organisms per cubic centimeter from
data obtained by inoculating a series of tubes with the same
dilution or from several series of tubes inoculated with several
different dilutions. For the special case where a series of tubes
are inoculated with 10 cc., a second with 1 cc., and a third with
0.1 cc., the following formula is given:

(p + q) (log 0.9) + (r + 8) (log 0.99) + (t + u) (log 0.999) p (log 0.9) r(log 0.99) t(log 0.999)IT-0.UX 1-0.99X l-0.9998

In this equation, p, r, and t represent the number of tubes
showing growth in the different series and q, s, and u represent
the number of tubes showing no growth in the corresponding
series of dilutions. To simplify the use of the method, McCrady
(1918) has solved the equation for all possible combinations for
several special cases, including those when 5 and 10 tubes are
used in each dilution. These solutions have been put into tables
so that the method may be used without tedious calculation.
While McCrady's tables and equations may be regarded as

solving the problem of calculating, from dilution data, the most
probable number of bacteria present, they do not offer a solution
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to the more general problem of variation in accuracy with the
number of tubes used. In attempting to solve this problem with
McCrady's equations, we find that the mathematics become very
cumbersome. McCrady's equations are each limited to a special
case, so that to solve them one must resort to rather tedious cal-
culation. A more general solution whereby all cases could be
evaluated from a single equation and a single table is very desir-
able. We have accordingly approached the problem from a
different angle and have worked out tables somewhat analogous
to those of McCrady.
On the basis of minor assumptions, Wolman and Weaver (1917)

have simplified McCrady's formula. Their equations are con-
venient for the calculation of the most probable number of bac-
teria, but they do not enable one to evaluate the accuracy of the
data.

Various methods of interpreting dilution data have been con-
sidered in a series of articles by Wells (1918; 1919; 1921), and in
an article by Wells and Wells (1922). Their treatment does not
lead to results that can be used in the general solution of the
problem.
The methods advocated by Wells have been objected to by

several investigators. Notable among these is Cairns (1918).
More general considerations of the dilution method have been

contributed by Stein (1922), Greenwood and Yule (1917), Fisher
(1925), and Reed (1925). All of these men have shown that the
number of tubes showing no growth when inoculated with a
fixed quantity of a single dilution is equal to e-a, where x repre-
sents the number of organisms per cubic centimeter in that dilu-
tion, and a represents the volume of the dilution used for the
inoculation.

Stein not only made use of this exponential relationship to
interpret dilution data, but he attempted to simplify its appli-
cation by graphical means. He also showed by graphical means
how the accuracy of the method varied with the number of tubes
used. These considerations were, however, limited to a few
special cases.
Greenwood and Yule considered not only the special case of a
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single dilution inoculated into a series of tubes but also the
general case of several dilutions inoculated into a series of tubes.
Although they give the equation from which the most probable
number of organisms can be calculated from experimental data
involving several dilutions and several tubes in each, they have
made no attempt to simplify the solution of this general case.
Since the general equation is rather involved, it is necessary to
simplify the solution by means of tables in order to make it appli-
cable for practical use. Greenwood and Yule show how the ac-
curacy of dilution data can be evaluated. Here again, simplifi-
cation is needed for general application.

Their equation for the general case is as follows:

(ain+,+am2......a6em,-eaz a+m2 -az anmn - anx(allass*@ -- an^)= e aa2 + 1-e aa _,-ae~

In this equation x is the most probable number of bacteria per
cubic centimeter that will give ni negative and ml positive results
when N1 tubes are inoculated with a, cc. each, and will give n2
negative and m2 positive results when N2 tubes are inoculated
with a2 cc. each, etc.

Reed's contribution is very helpful in the special cases where
one tube in each of several dilutions or where several tubes of
the same dilution are used, but his solution is not extended to the
more general problem of several tubes in each of several dliutions.
The dilution method has been used by Cunningham (1915),

by Cutler (1919a), and by Cutler, Crump, and Sandon (1922)
to evaluate the number of protozoa in soil. In the first two of
these publications the dilution data were interpreted by the
method of Phelps (1908), while Cutler, Crump, and Sandon used a
table calculated by Fisher (1925). This table by Fisher is useful
only for a very special case, so that it is not of any material value
in general application. Fisher's table appears to be calculated
from the exponential function e-X.
A theoretical consideration of the dilution method has also

been contributed by Clark (1927), who applied the method to
determine the numbers of bacteriophage in a suspension.

After a careful review of the literature on the subject we still
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feel it is necessary to reconsider the entire problem. General as
well as special equations should be developed that are based on
the reasoning used by Stein (1922), Greenwood and Yule
(1917), Fisher (1925), and Reed (1925). These equations should
be solved for all the special cases that are in common use, and the
solutions should be arranged in tabular form, as McCrady did
for his equations. Furthermore, tables should be made available
which will aid in the solution of any special case not in common
use.
A more detailed consideration of the accuracy of the method

is needed. The calculation of the accuracy should be simplified
so that anyone using the dilution method will be able to deter-
mine, to a reasonable degree, the limits of accuracy of his data.
This must be made simple enough so that it can be applied gen-
erally.
The mathematics involved in the dilution method should also

be applied to other problems in bacteriology, such as the deter-
mination of the percentage of insects that may be infected with
certain viruses, or the interpretation of data obtained when a
series of animals are injected with a single dilution or several
dilutions of a given pathogenic bacterium or virus. It is also
desirable to investigate the effect produced on dilution data if
we accept the theory that single cells cannot develop.
A consideration of these and other probability problems will

be published in a series of articles on the subject. It has been
deemed necessary to verify by experimental data some of the
mathematical considerations, and data thus obtained will also
be presented in this series.

This first paper is confined to the development of equations
to be used for the evaluation of bacterial populations by the
dilution method. Tables are included which aid in the solution
of these equations, as well as special solutions which simplify
their general application.

THEORY

In order to determine the number of bacteria in a sample of
liquid material by the dilution method it is necessary to dilute
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the material to such an extent that when a sample is removed,
bacteria may or may not be present. The problem at hand, then,
is to determine the probability of getting bacteria in a certain
sample. This probability will depend upon the number of or-
ganisms present.
A number of earlier investigators have shown how this probabil-

ity is related to the number of organisms present. It is believed
desirable, however, to develop these relationships from funda-
mental reasoning so that it will be possible for those not familiar
with Poisson's Series to understand the derivation of the equations
without having to make a special study of the mathematics on
which the Poisson's Series is based. An understanding of the
derivation of the equations is necessary for their proper appli-
cation.
There are several ways in which the bacterial population can

be determined by the dilution method. One may determine the
number present by inoculating a large number of tubes of media
with an equal volume of the sample to be tested, and determine
the number present by the percentage of tubes that show growth.
Or one may inoculate a series of tubes of media with a given
volume, another set with a smaller volume, and a third set with
a still smaller volume, and then determine the number of organ-
isms present by the number of tubes showing growth in the dif-
ferent series.
We are interested, therefore, in several cases: (1) the probabil-

ity of getting growth in a single tube, when it is inoculated with
a definite volume of the sample; (2) the probability of getting a
certain number showing growth out of a series of tubes, all of
which are inoculated with the same volume of a given sample;
(3) the probability of getting a certain combination of tubes
showing growth out of several series of tubes when the tubes in
each series are inoculated with different sized samples.

Case I we can designate as a single tube of a single dilution;
case II, as several tubes of a single dilution; and case III, as
several tubes of each of several dilutions.
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CASE I

To calculate the probability that an organism will or will not
be contained in a certain sample, let us assume that a large vol-
ume (N cc.) of the material to be sampled be at hand, and that in
this material there are x organisms per cubic centimeter. Let us
assume further, that the volume of an organism is v cc. (unit vol-
ume), that all organisms have the same volume, and that the
water present be divided up into particles of the same unit volume
as a bacterium. If we imagine now that we remove one of these
particles, and let P equal the probability that our selection will
not be an organism, then

N
_ N$

p V

N
v

This will be true because N represents the total number of
particles in a volume N. Nx is the number which are bacteria,
and N - Nx, the number which are water. The probability Q

Nx
that the selection will be an organism is N. These expressions

v

can be simplified to P = 1 - vx; Q = vx.
Let us assume that enough of these small particles are removed

so that the aggregate is 1 cc. The total probability will be ex-

pressed by the binomial [(1-vx) + vx]i. The first term of the
1

binomial will be (1 - vx)', which represents the probability that
no organisms will be contained in a 1 cc. sample.

P - (1 - vX).

This can be simplified as follows:

In P-- 2 I- 2,4'2 3 4 .
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Since v is very small, the second and following terms will be
very smnall in comparison with the first term as long as relatively
small values of x are considered.

Therefore
In P- -z

or

P e~ $ (1)

If instead of taking out 1 cc., we remove a cc., then
a

P - (1 - vx)'

lnP=a[-xvz' v2xIn P - a-x 2 ..'

- ax

or

P e- 2s (2)

and
Q e1-ea2 (3)

CASE II

If several tubes are to be inoculated with the same dilution the
number of tubes which show growth will depend upon the number
of organisms present and upon the element of chance.

If n tubes are inoculated, the total probability will be expressed
by the binomial [e-a + (1 - eax)] n. By expanding this binomial,
the following series is obtained:

(e a)n + n(e)-a (1- e-) + - 1) (e a)n(- - ax

2 I

The first term of this series gives an expression for the probability
that none of the tubes will show growth, the second term for the
probability that only one of the tubes will show growth, etc.

110



APPLICATION OF STATISTICS IN BACTERIOLOGY

If we let p equal the number of tubes that show growth and q
the number that show no growth, in which case p + q = n, the
series becomes:

(e az)Q + n(e- as)f (1-e ax)p + n(n -

1) (eG az)Q" a(1 - . ..

If we let P be the probability, then the following equation will
hold for any combination of p and q:

- (p + q) a(e)q ( az)P (4)
p I q I

If p, q, and a are kept constant in this equation, P will vary only
with x. From the equation and the nature of the problem, it is
evident that there must be a maximum value of P corresponding
to some particular value of x. This optimum value of x can be
found by differentiating equation (4), which gives the following:

- ax
dP 1 pae
dx P --ax

By putting the derivative equal to 0, it is possible to find the
value of x that corresponds to the maximum value of P. If we
let x be the optimum or most probable value of x, its value may be
found by substituting x for x in the above equation, when the
derivative is placed equal to 0. The resulting equation simplifies
to

f Iln
n (5)

a q

In the case of several tubes in a single dilution, the most prob-
able number of organisms per cubic centimeter is given by the
natural logarithm of the ratio of the total number of tubes to those
that show no growth. Changing from base e to base 10, the
expression becomes

2.3026 n
f = 23026log- (6)

a q

In deriving this equation, it has been assumed that in bacterial
suspensions, all values of x are equally likely to occur between
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O and a number determined by the maximum bacterial popula-
tion that can occur in a sample. By means of this formula it is
easy to calculate the most probable number of organi present
in a sample from the number of tubes that show no growth. This
can also be obtained by means of equation (5) and table 1 (ap-
pendix). From equation (5), we have

q -az- e
n

The function e-ax then gives the fraction of tubes which show no
growth. By means of a table showing values of e-1 for different
values of x, it is possible to determine the most probable number

of organisms present corresponding to any value of q. Such
n

tables have been calculated by other investigators (L. von Bort-
kewitsch (1898) and H. E. Soper (1915)). The table of Bort-
kewitsch is carried out to only four places and that of Soper to
six places. Whereas these tables may be adequate for the cal-
culation of the most probable number from dilution data, we
found that they did not suffice for the calculation of the fre-
quency distribution of experimental values that might be ob-
tained on a single suspension. Such calculations are essential
in order to show a convenient relationship between the accuracy
of the data and the number of tubes used in each dilution. For
this reason we found it necessary to calculate these tables to nine
decimal places. They are included in the appendix. Values of
the logarithm of (1 - e-z) are included in this table to simplify the
solution of other problems which will be discussed later.
Examples: Suppose that in an experiment 0.100 of the tubes

inoculated with a cc. each showed no growth, then from the table
we find that the value of x corresponding to e-x = 0.100 is 2.30.
This number is therefore the most probable number of organisms
present in the size sample used for the inoculation.
By means of this table it is also possible to determine the

percentage of tubes showing growth which are inoculated with
different sized samples. Let us assume that a liquid contained
0.650 organism per cubic centimeter, or 65 organisms in a 100 cc.
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sample. In this case there will be 0.0065 organism in 0.01 cc.,
0.065 organism in 0.1 cc., and 0.65 organism in 1 cc. Referring
to the table, we see that for

x - 0.0065 e- = 0.9935
x = 0.065 e = 0.9371
x- 0.650 e = 0.5222
x = 6.500 e-z = 0.0015

This means that for every 10,000 tubes inoculated with each of
these dilutions, on the average, 15 of those inoculated with 10
cc., 5222 of those inoculated with 1.0 cc., 9371 of those inoculated
with 0.1 cc., and 9935 of those inoculated with 0.01 cc. would show
no growth; or if 100 tubes were inoculated with each dilution,
one would expect that all the tubes receiving 10 cc., 48 receiving
1 cc., 6 receivng 0.1 cc., and 1 receiving 0.01 cc. would show
growth. If a person wished to determine the most probable num-
ber of organisms by the result of inoculating a series of tubes with
a single dilution, the best size of inoculum to use would in that
case be 1 cc.
When a person inoculates a series of tubes with a single dilution

and finds the percentage which show growth, he will also be able,
by means of this table, to determine what size inoculum would
have produced growth in 50 per cent of the tubes.

CASE III

In this case several dilutions are used, and several tubes are
inoculated with each dilution.
For this development the following terms will be used:

wI, (1 - wi) - the probability of a success and failure respectively, in a
sample of size al,

Wo2, (1 - W2))- the probability of a success and failure respectively, in a
sample of size a2,

tWI, (1 -ws) = the probability of a success and failure respectively, in a
sample of size a,,

n= the number of samples of size a, that are taken,
n2 the number of samples of size a, that are taken,
n, = the number of samples of size a, that are taken,

pi, q, - the number of failures and successes obtained out of ni trials.
P2, q,2 the number of failures and successes obtained out of n12 trials,
ps, q, = the number of failures and successes obtained out of n, trials.
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The total probability will therefore be the product of several
binomials, and by expanding each of them and multiplying the
expanded forms together, the different terms in the product will
be the probability of getting any set of combinations of failures
and successes, as

plql; p2q2; psqs;.

The general formula for the probability of any one of these terms
will then be:

(piq+ql) I(1, Po,)Wl (P2 +q2) I! (1 - P) (P, +qs) I (2w),W( )A. (7)
p l ql I p, !q, I ps Iqs I

This equation is obtained by multiplying together several equa-
tions, as (4), each being derived from a different binomial.
Now if the probabilities wl, w2, W8, etc., are functions of x, it

is posible to find the most probable values of x by differentiating
the above equation with respect to x- and putting the derivative
equal to zero. This equation can be differentiated most readily
by taking the logarithms of both sides, thus:

InP l (pi+ql) (+n (p2 + q2) + In (ps +q+)+qllnwi+
pil q ! P q2 p!q!

q2ln ws + q3lnws ..... + pil n(l-wl) + p2ln(1-W2) + P31n(1-W).....

Differentiating and substituting n - pi for q1, etc., we get
dPi ln _i Pi 1 lnW2 _ 2 1 d [n" ns 1_
dx P dx l1 +dzWILd 1-J+--dx 1- WJ .....

Now if x represents the percentage of a certain kind that are
present in a unit, and a,, a2, a3, etc., represent the number of these
units that are selected, then

toi = (1 - )1 0W2 = (1 - x)a2; t (1 x)G; etc.

and

d In w, -a d In W2 -a2 dlnw, -a,cs
dx 1-x' dx 1-x' dx 1-2'
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Substituting these values in the above differential equation,
putting it equal to zero, and factoring out all common multipliers,
we get:

a, n1 - + Ch71-2D2+ as ns- )
1

+WI,- -

_a + p2s+ P3 3 ., ain, + a2n + asn3 . . . . .
(8)

1WI 1-W2 I - 1

This is the same type of equation as that developed by Green-
wood and Yule (1917), but is a little more general. With this
formula a1, a2, a3, etc., ni, n2, n8, etc., are constants for any given
experiment. Pl, P2, ps, etc., can be determined by experimental
data. Since w1, w2, w3, etc., are functions of x, it is then possible
to solve for x the most probable value of that variable. The solu-
tion of the equation can be simplified if tables are worked out that
give the relationship between x and w1, w2, W3, etc.
To apply this to the problem of determining the most probable

number of bacteria per cubic centimeter, let us assume that a
set of tubes are inoculated with various amounts of the sample,
one set inoculated with 10 cc. each, another set with 1 cc. each,
and a third set with 0.1 cc. in each tube. In this case,

WI =e- lW2 - e Ws = e71

a= 10 a2 = 1 a4 = 0.1

Let us assume that ten tubes are used in each set, Then
n-= n2=-n = 10

The general formula then becomes
10 pi P2 P3

1Oz+ + =111
1-e 1-e~~l ( -e-1

in which pi = the number of tubes receiving 10 cc. that show
growth,

P2 = the number of tubes receiving 1 cc. that show
growth,

p3 = the number of tubes receiving 0.1 cc. that show
growth.

In the appendix, table 2, will be found values of l for
1 - c1
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the different values of x. With the aid of these tables it is an
easy matter to solve the equation by trial and error by selecting
the value of 1 1 1

1 - e13' 1 e-r-' 1 -e-' X that will make the
left hand side of the equation equal to 111. The values of x

corresponding to these values of 1 , etc., will be the most
1 - e x

probable number of organisms per cubic centimeter.
To demonstrate the method of calculation, a specific example

is included.
Suppose in an actual experiment 160 tubes were inoculated

with each of a series of dilutions. Suppose that the following
results were obtained:

DILIJTION NUMBER SBROING GROWTH NUMBEX SHOWING NO GROwT

1' 160 0
106 160 0
106 158 2
107 61 99
108 8 152
199 0 160

The critical dilutions are therefore 106, 107, 108. The most prob-
able number of organisms present in the 107 dilution can be
obtained from the general equation:

ap + 2p + a-ps ain
l-e 1-e 1-em

In this experiment, a, is 10, a2 is 1, and as is 0.1; n1 = 2=
n = 160; p1 = 158, p2 = 61, ps = 8. Substituting these values
in the above we get

10-158 1*61 8
-1Oz+ + -160 (10+1 + 0.1)1-e 1-e 10(1-eii°)

1580 61 8
l-ox1- + -1776.01-e 1~~~-x 10(1 z°

An approximate idea of the value of x can be obtained by con-
sidering the middle dilution in which the proportion of tubes
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showing no growth is - = 0.6188. From table 1 (appendix)
160

the value of e-x = 0.6188 is found to correspond to a value of x
= 0.4800. By obtaining the reciprocals of 1 - e-10X, 1 - e-x,
and 1 - e- from table 2 (appendix) and substituting in the above
equation, we can obtain a more accurate value of x. Substituting
the proper reciprocals in the left hand side of the equation and
solving, we get

1776.898 for x - 0.4650
1774.598 for x - 0.4700
1770.194 for x - 0.4800

By interpolation, we find that the function becomes
1776.00 for x -0.4669

In the case of the ten tubes inoculated with each of the dilu-
tions this equation has been solved for all the combinations that
are likely to occur. Table 3 (appendix) shows the most probable
number of organisms which correspond to each of the combina-
tions.
When 10 tubes are used in each of these dilutions, and when

a1 = 10 cc., a2 = 1 cc., and as = 0.1 cc., the general equation (7)
becomes

10! 10 10 (e los)x (e-)? (es1)q (l-ez io)P(1se0z)p (1 - e s

pi qIg P2 I q2 IAp I q,!

Taking the log to the base 10 of both sides of the equation, we
get

log P= log 10l + log! I + log l-!-z10Oq+ q2+-I loge+p1!ql p!q2! p,!q,! 10,

lOpi log (1- e- lo" + P2 109 (1-e6-) + pS 109 (1-e- 10)
By means of this equation it is possible to solve for the value

of P for any given value of x and pi, p2, and p3. This has been
done for all the combinations where P has a value greater than
0.01 per cent. These values show how often a certain combination
can be expected if the number of organisms in the solution are as
indicated by the most probable values of x. These frequencies
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are helpful in interpreting data. If certain combinations are
found to occur more often than indicated by these values of P,
one may become suspicious that something is wrong either with
the technic or with the medium.
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This table indicates the number of bacteria per cubic centimeter based on the numberof tubes showinggrowth which have been inoculated with dilutions as outlined. Ten tubes are to be inoculated with 10 cc.each, ten tubes with I cc. each, and ten tubes with 0.1 cc. each. The oode number is made up of thenumber of tubes showing growth in each case, the first number of the code representing the number oftubes showing growth that are inoculated with 10 cc. each, the second those inoculated with 1cc. each,and the last those inoculated with 0.1 cc. each. The column labeled X then gives the most probablenumber of bacteria per cubic centimeter in the material used for inoculation. The column labeled Pgives the percentage of times that the code would be obtained if an infinite number of determinationswere made of a solution containing the number of organisms indicated by X.Example: Suppe that a culture is inoculated into broth in a series of 10 dilutions in steps of 10.Assume that 9 of the tubes inoculated with 10-7 cc., that 3 of the tubes inoculated with 10-6 cc. and thatnoneof the tubesinoculatedwith 10-' cc. show growth. The codewill then be9 30. Referring tothe table,X is found to be 0.255. This means that the most probable number of bacteria in the 10-8 cc. dilutionwas 0.255 bacteria per cubic oentimeter, orthat the most probable numberin the original solution was 0.255times 108 or 25,500,000. If this experiment were repeated an infinite number of times on a solutioncontaining this number, this result would be obtained 6.23 per cent of the time.If 5 tubes are used in each dilution instead of 10, then multiply the oode obtained by two, and referto the table, as above. In this case, however, the column labeledP does not apply.
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