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Abstract

NaGdF4:12%Er
3+@NaGdF4:x%Er

3+ (x = 0, 6, 8, 10, and 12) active-core/active-shell nanoparticles (NPs) were peculiarly
synthesized via a delayed nucleation pathway with procedures. The phase, shape, and size of the resulting core–shell
NPs are confirmed by transmission electron microscopy and X-ray diffraction. Coated with a NaGdF4:10%Er

3+ active
shell around the NaGdF4:12%Er

3+ core NPs, a maximum luminescent enhancement of about 336 times higher than the
NaGdF4:12%Er

3+ core-only NPs was observed under the 1540 nm excitation. The intensity ratio of green to red was
adjusted through the construction of the core–shell structure and the change of Er3+ concentration in the shell. By
analyzing the lifetimes of emission bands and exploring the energy transition mechanism, the giant luminescence
enhancement is mainly attributed to the significant increase in the near-infrared absorption at 1540 nm and efficient
energy migration from the shell to core.
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Background
Upconversion (UC) refers to nonlinear optical processes
characterized by the successive absorption of two or
more pump photons via intermediate long-lived energy
states, followed by the emission of the output radiation
at a shorter wavelength than the pump one [1]. With the
rapid development of nanotechnology, a large amount of
high-quality lanthanide-doped upconversion nanoparti-
cles (UCNPs) were synthesized and have been applied in
various fields, such as solar cells [2, 3], bioimaging [4, 5],
photo-catalysis [6], three-dimensional displays [7], and
flash memories [8]. Especially for crystalline silicon solar
cells, the adoption of UCNPs was proved to greatly im-
prove the utilization of the solar energy. Nevertheless,
the part (which wavelength is longer than 1100 nm) of
solar energy will be lost for that the Si semiconductor

cannot absorb the energy below its band gap (1.12 eV).
And the propositon of UCNPs under the excitation of
1540 nm is an excellent way to reduce these sub band
gap transmission losses. Thus, it becomes an important
topic to utilize this part of solar energy more efficiently.
Moreover, the major challenge for UCNPs is still how

to gain stronger upconversion luminescence with more
optimized structures and synthesis methods. To over-
come this challenge, many efforts were made, including
changing the composition, tuning the morphology and
size, and surface modification [9–17]. Among these
methods, constructing core/shell architecture is thought
to be the commonest but one of the most effective
routes to improve the efficiency of UCNPs. By growing a
shell around the luminescent core with similar lattice
parameters, the lanthanide ions in the core were mostly
protected from non-radiative decay caused by the sur-
face defects. Besides, it is not until recent years that an
active core/active shell structure is developed [9, 18–28].
Compared with traditional core/shell structure with an
inert shell, an active shell not only protects the core
from surface defects but also transfers absorbed near
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infrared (NIR) light from the pump source to the core NPs.
In other words, the active shell acts as a sensitizer for the
Ln3+-doped active core to increase the intensity of UC.
Commonly, an emissive UCNP consists of an inert

host matrix and active Ln3+ ions as luminescent centers
[29]. As an ideal activator, the ion tends to possess the
ability of extracting energy from nearby excited sensi-
tizers to promote further transitions to higher energy
levels. Besides, to confine the process of non-radiative
relaxations, the activator is likely to have energy levels
separated to each other properly. According to the con-
siderations above, Er3+, Tm3+, and Ho3+ are thought to
be desired candidates. Moreover, Er3+ turns out to be
the most effective one during the UC process, owing to
its similar energy gaps. But, if simply increasing the con-
centration of Er3+ in the NPs, the luminescence shows a
nonlinear relationship with the concentration of Er3+

and sometimes the luminescence intensity even decrease
with the augment of Er3+, due to the influence of energy
migration and concentration-quenching effects at higher
concentrations.
Except successful construction of the active-core/active-

shell structure, a strategy to improve the intensity of
upconversion luminescence by only Er3+ ion-doped
NaGdF4 was developed in this work. Compared to the
inert shell, the UC luminescence was largely enhanced by
adopting the method of the active shell and optimizing
the Er3+ concentration. The luminescence properties of
novel NaGdF4:12%Er

3+@NaGdF4: 10%Er
3+ active-core/ac-

tive-shell NPs (Er3+ doping in mol% relative to Gd) were
also discussed in detail under the 1540-nm excitation.

Methods
Materials
The starting materials were sodium trifluoroacetate
(CF3COONa; reagent grade, 99%), trifluoroacetic acid
(CF3COOH; reagent grade, 99%), gallium oxide (Gd2O3,
99.99%), and europium oxide (Er2O3, 99.99%). Cyclohexane
(analytical grade, 99.5%), oleic acid (OA; analytical grade),
oleylamine (OM; 80–90%), and absolute ethanol were used.
Deionized water was used throughout. All chemical mate-
rials were used as received without further purification.

Preparation of NaGdF4:12%Er3+ NPs
At the beginning, rare earth (RE) trifluoroacetate
(RE(CF3COO)3; RE = Gd, Er) precursor was prepared as
follows: rare earth oxides were dissolved in trifluoroace-
tic acid (CF3COOH) with certain amount of deionized
water until the solution was transparent. The solution was
then filtered, followed by drying at 140 °C for dozens of
hours. The synthesis basically followed the routes previ-
ously reported in literature [30]. A mixture of a designated
molar ratio of CF3COONa (1 mmol), Gd(CF3COO)3
(0.88 mmol), and Er(CF3COO)3 (0.12 mmol) powder were

introduced to a three-necked flask (100 ml) containing
8 ml of OM and 16 ml of OA at room temperature. After
vigorous stirring for about 15 min, the mixture was then
heated to 120 °C under the protection of nitrogen or argon
atmosphere and maintained at this temperature for another
30 min under magnetic stirring to remove the oxygen and
residual water. At this end, the mixture was totally clear
forming a slight yellow color. The mixture was then heated
slowly to 275 °C in the presence of argon atmosphere and
maintained at the temperature for 30 min. After then, the
solution was cooled down naturally to room temperature.
Finally, NPs were then precipitated using excess ethanol
and collected via centrifugation at 7000 rpm for 5 min.
After washed with ethanol for several times, the as-
prepared nanocrystals were dried in air at 70 °C overnight.

Preparation of NaGdF4:12%Er3+@ NaGdF4: x%Er3+ NPs
To prepare the NaGdF4:12%Er

3+@NaGdF4:x%Er
3+ core/

shell UCNPs (x = 0, 6, 8, 10, and 12), core NPs of NaGdF4
doped with 12% Er3+ ion concentration were firstly pre-
pared following the procedure as described above. The
procedure for the growth of shell on core is similar to the
case of core except that 0.5-mmol core NPs re-dispersed
in 4 ml cyclohexane were added simultaneously with rare
earth trifluoroacetates to the mixture of OA and OM solu-
tion and the heating temperature was enhanced to 300 °C.

Characterization
Structures of the samples were investigated by X-ray dif-
fraction (XRD) using X’TRA (Switzerland ARL) equip-
ment provided with a Cu tube with Ka radiation at
1.54056 Å. The size and shape of the samples were ob-
served by a JEM-2100 transmission electron microscope
(JEOL Ltd., Tokyo, Japan). Luminescence spectra were ob-
tained by the Acton SpectraPro Sp-2300 spectrophotom-
eter with a photomultiplier tube equipped with 1540 nm
as the excitation source. The fluorescence decay curves in
visible region were recorded on a FLSP920 fluorescence
spectrophotometer and using a Shimadzu R9287 photo-
multiplier (200–900 nm) as the detectors. All measure-
ments were performed at room temperature.

Results and Discussion
Figure 1 shows the transmission electron microscopy (TEM)
images and the size distribution of the NaGdF4:12%Er

3+ core
NPs, NaGdF4:12%Er

3+@NaGdF4 active-core/ inert-shell
NPs, and NaGdF4:12%Er

3+@NaGdF4:10%Er
3+ active-core/

active-shell NPs, respectively. Obviously, all the as-
prepared NPs are uniform in size and morphology. The
NaGdF4:12%Er

3+ core-only NPs consist of monodisperse
NPs with an average diameter of ~12.5 nm. After coated
with a shell, the diameter of the NPs tends to increase to
about 175 nm (Fig. 1b, c). As disclosed by high-resolution
TEM (HRTEM) images (inset in Fig. 1), all as-prepared
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NPs show their highly crystalline nature with the clear
crystal fringes. XRD patterns (Fig. 2a) confirm that as-
obtained NaGdF4:12%Er

3+ core NPs possess cubic phase
structures, in well agreement with the α-NaGdF4 (JCPDS
card no. 27−0697) structure. Coating with a shell,
the NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell
NPs and the NaGdF4:12%Er

3+@NaGdF4:10%Er
3+ active-

core/active-shell NPs show hexagonal phase, and the
identified diffraction peaks are also in well agreement
with the XRD pattern of β-NaGdF4 (JCPDS card no.
27−0699). No obvious peak from other phases or im-
purities is observed [31].
Figure 3a shows the upconversion emission spectra of

the core-only, active-core/ inert-shell, and active-core/

active-shell NPs under the excitation at 1540 nm. All lu-
minescence spectra exhibit the red, green, and NIR emis-
sion bands of Er3+, originating mainly from the following
four transitions: 2H11/2→

4I15/2 (528 nm), 4S3/2→
4I15/2

(540 nm), 4F9/2→
4I15/2 (660 nm), and 4I9/2→

4I15/2
(810 nm). Compared with the NaGdF4:12%Er

3+ core-only
NPs and the NaGdF4:12%Er

3+@NaGdF4 active-core
/inert-shell NPs, great enhancement of upconversion lu-
minescence was obviously observed from the NaGd-
F4:12%Er

3+@NaGdF4:10%Er
3+ NPs. As seen in Fig. 3b, the

sample of NaGdF4:12%Er
3+@NaGdF4:10%Er

3+ NPs shows
the strongest luminescence with shorter concentration
step. Specifically, Fig. 4 presents the enhancement factors
(which expresses the enhanced times) of all emission

a b c

d e f

Fig. 1 a–c TEM micrographic images and d–f size distribution of the NaGdF4:12%Er
3+ core NPs, NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell
NPs and NaGdF4:12%Er

3+@NaGdF4:10%Er
3+ active-core/active-shell NPs, respectively

Fig. 2 XRD patterns of the a NaGdF4:12%Er
3+ core nanoparticles, b NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell nanoparticles and NaGd-
F4:12%Er

3+@NaGdF4:10%Er
3+ active-core/active-shell nanoparticles (C@x% for short). The bottom bars represent the standard α-NaGdF4 (JCPDS 27–

0697) and β − NaGdF4 crystal data (JCPDS 27–0699), respectively.
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intensities of the NaGdF4:12%Er
3+ core-only NPs, NaGd-

F4:12%Er
3+@NaGdF4 active-core/ inert-shell NPs, and

NaGdF4:12%Er
3+@NaGdF4:x%Er

3+(x = 6, 8, 10, and 12)
active-core/active-shell NPs. Compared with the NaGd-
F4:12%Er

3+ core-only NPs, the enhancement factor of the
NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell NPs is
about 30 times larger. While when it comes to the NaGd-
F4:12%Er

3+ @NaGdF4:10%Er
3+ active-core/active-shell NPs,

a largest enhancement factor up to approximately 336
is observed. Comparing the as-obtained NPs with
same size, the upconversion luminescence tends to
decrease firstly and then gets the largest enhancement
at 10 mol% to ~336 times, so the energy transfer re-
action plays the main role in the huge enhancement
of luminescence other than the effect of size [23].
Apparently, the NPs with an active shell realize much

more effective upconversion luminescence than that
with an inert shell.
As is known, the emission intensity of NPs will be en-

hanced by coating an inert shell over them, due to the
confine of surface passivation [32]. The inert shell protects
the ions in the core from non-radiative decay originate
from surface defects. Therefore, the NaGdF4:12%Er

3+ NPs
capped with NaGdF4 gain an enhancement factor about
30. However, the luminescence of the NPs tends to de-
crease first when doped the Er3+ ions with 6 mol%. As re-
ported before, the decrease is mainly caused by the less
efficiency of sensitizers in shell than that in the core [25].
The luminescence of NPs reaches the highest value when
the concentration value in the shell is 10 mol%. Higher
doped Er3+ concentration strengthened the function of
the active shell, leading to more efficient energy migration
from the shell to the core. When the concentration of the
shell comes to 10 mol%, the interaction of the Er3+ ions in
the core and the shell may reach the peak as observed,
bringing the largest enhancement of luminescence to 336
times. Other values of doping concentration are not bene-
ficial for the higher emission intensity enhancement, sug-
gesting that the higher or lower doping concentration may
lead to the cross relaxations (CR) or the reduction of the
luminescent activators [27, 32].
The effect of the shell structure on the intensity ratio of

the green to red emission (IG/IR) is studied in Fig. 5a. With
an inert shell, the value of IG/IR decreases to ~1.09. The
reduction of non-radiative decay (caused by suppression
of surface quenching) perhaps increased the probability of
the CR process of Er3+ ions, resulting in the enhanced
population on 4F9/2 level [33]. It is apparent that the IG/IR
ratio is tuned by constructing the core–shell structure and
changing the Er3+concentration in the shell. Essentially,
the green and red emissions are mainly originated from
the transitions of 2H11/2,

4S3/2→
4I15/2, and

4F9/2→
4I15/2

a b

Fig. 3 Upconversion emission spectra of a NaGdF4:12%Er
3+ core NPs, NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell NPs, and NaGdF4:12%Er
3+

@NaGdF4:10%Er
3+ active-core/active-shell NPs. b The NaGdF4:12%Er

3+@NaGdF4:x%Er
3+ (x= 9, 9.5, 10, 10.5, and 11) active-core/active-shell NPs under

1540-nm excitation

Fig. 4 Enhancement factors of total emission intensities of
NaGdF4:12%Er

3+ core NPs, NaGdF4:12%Er
3+@NaGdF4 active-core/

inert-shell NPs, and the NaGdF4:12%Er
3+@NaGdF4:x%Er

3+(x = 6, 8, 10,
and 12) active-core/active-shell NPs under 1540-nm excitation
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[34, 35]. Tuning the concentration of Er3+ in the shell dir-
ectly changes the distance between the neighboring emit-
ters, causing the cross relaxation to different extent [34].
And the emitter-doping concentration has been also veri-
fied to have a great influence in the ratio of green to red
[36]. Consequently, it is easy to deduce that the as-
observed changes of the green to red ratio of as-prepared
NPs may mainly result from co-effect of concentration
quenching and CR. And from the Fig. 5b, the bandwidth
values of 540 and 660 nm about the NaGdF4:12%Er

3+ core
NPs, NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell
NPs, and NaGdF4:12%Er

3+ @NaGdF4: x%Er
3+(x = 6, 8, 10

and 12) active-core/active-shell NPs are presented. Coated
with an inert or active shell, the bandwidth values with the
full width at half maximum (FWHM) are all adjusted to
lower values. The luminescent properties were well im-
proved by tuning the FWHM values with core–shell
structure.
Combined Fig. 3 with Fig. 5, one phenomenon can be

found that the luminescence properties of as-obtained
NPs exhibit an inhomogeneous increase mostly depend-
ing on the doping concentrations of Er3+ in the NaGd-
F4:Er

3+ active shell. The phenomenon is also found in

NaYF4:Nd
3+/Yb3+/Ho3+@NaYF4:Nd

3+/Yb3+ core/shell NPs
under 808-nm excitation [27] and NaYF4:Er

3+@NaYF4:Yb
3+

active-core/active-shell NPs under 1540-nm excitation
[28], probably owing to the combined interaction of
energy transfer benefit, concentration quenching, and
surface quenching effect of core–shell structures as
estimation. When the concentration of Er3+ in the ac-
tive shell comes to 10 mol%, the peak value can be
observed through the luminescence spectra, largely
due to the effect of successive ion layer absorption
reaction.
As can be seen in Fig. 6, decay profiles of the NaGd-

F4:12%Er
3+ core NPs, the NaGdF4:12%Er

3+@NaGdF4
active-core/inert-shell NPs, and the NaGdF4:12%Er

3+@
NaGdF4: x%Er

3+ (x = 6, 8, 10, and 12) active-core/active-
shell NPs under 1540-nm excitation are proposed. The
corresponding decay lifetimes can be calculated by the
second order exponential curve fitting:

I ¼ A1 exp −t=τ1ð Þ þ A2 exp −t=τ2ð Þ ð1Þ
where I is the luminescence intensity, A1 and A2 are con-
stants, t is the time, and τ1 and τ2 are the short and long
lifetimes for exponential components, respectively. The
average decay lifetime τ is determined by the formula:

τ ¼ A1τ
2
1 þ A2τ

2
2

� �
= A1τ1 þ A2τ2ð Þ ð2Þ

The results of the calculation are all shown in Fig. 7.
As can be seen, the obvious prolonged life can be experi-
mentally observed by coating with a shell, indicating that
the excited states of 2H11/2 (528 nm), 4S3/2 (540 nm),
4F9/2 (660 nm), and 4I9/2 (810 nm) are populated again
through the energy transfer process between Er3+ ions.
Comparing the values of the decay lifetime about the as-
obtained NPs, one can find that while continuing to in-
crease the Er3+ concentration higher than 6 mol%, the
lifetime begin to decrease. The phenomenon can be ex-
plained by the fact that the probability of CR process is
largely related to the ions concentration [37]. The profiles
of excited state 2H11/2,

4S3/2, and
4I9/2 appear no obvious

signal rising edge, indicating that they are populated by
non-radiative relaxation [38]. Contrary to other decay
curves in Fig. 6, the profile of NaGdF4:12%Er

3+@NaGd-
F4:10%Er

3+ NPs at 660 nm presents a typical slow rising
edge. This phenomenon is a direct evidence of an energy
transfer upconversion process of state 4F9/2 [39]. As
depicted in Fig. 7, the obvious prolonged lifetimes are
experimentally observed at different degree, demon-
strating that surface-quenching effects in both type of
core/shell structure have been largely weaken. Com-
parably, the decay lifetimes of the NaGdF4:12%Er

3+

@NaGdF4 active-core/inert-shell NPs and the NaGd-
F4:12%Er

3+@NaGdF4:10%Er
3+ active-core/active-shell NPs

under the 810 nm emission are smoother than other

Fig. 5 The effect of core–shell composition on a the intensity ratio
between the green and the red emissions and b bandwidth values
with the full width at half maximum of 540 and 660 nm
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profiles, indicating that the population ions on the 4I9/2
state have less difference between different core–shell
compositions.
As analyzed above, the energy transfer mechanism be-

tween the states of Er3+ ions is exhibited in Fig. 8. Four

primary processes can be mainly used to explain these
behaviors. The ground state absorption (GSA) of the
1540-nm pump wavelength directly populates the upper
level 4I13/2. With the excitation of 4I13/2 state, the excited
state absorption (ESA) process arises immediately,
resulting in more high-lying levels to be excited. After
coating with an inert shell, the surface quenching is
largely confined and the depletion of low-lying levels is
reduced to enhance the population of high-lying ones,
bringing intensive luminescence (as seen in Fig. 3). At
the same time, the low-lying levels are proved to be
more susceptible to surface quenching than the higher
ones [32]. Thus, the emission of red luminescence has a
more obviously enhancement than the green upon the
surface passivation effect take place due to the coating
of inert shell [40]. The ratio of green to red changes
from 1.44 to 1.09 after coating with an inert shell. With
the epitaxial growth of an active shell, the ratio of green
to red changes by adjusting Er3+ concentration among
the shell. The ratio shows an inverse association with
the enhancement luminescence of active-core/active-
shell NPs (Fig. 4). The phenomenon indicates that the CR
process of 4F3/2 +

4I15/2→
4F9/2 +

4I13/2 is strengthened with
the enhancement luminescence faster than the

a b

c d

Fig. 6 Decay profiles of a 528, b 540, c 660, and d 810 nm of the NaGdF4:12%Er
3+ core NPs, the NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell
NPs, and the NaGdF4:12%Er

3+@NaGdF4:x%Er
3+(x = 6, 8, 10, and 12) active-core/active-shell NPs under 1540-nm excitation

Fig. 7 The calculation results of lifetimes of NaGdF4:12%Er
3+ core

NPs, NaGdF4:12%Er
3+@NaGdF4 active-core/inert-shell NPs, and the

NaGdF4:12%Er
3+@NaGdF4:x%Er

3+(x = 6, 8, 10, and 12) active-core/
active-shell NPs under 1540-nm excitation
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process of energy transfer upconversion (ETU). From
the decay profile of 810 nm, the lifetime of the as-
obtained NPs decreases firstly while doping the Er3+

ions into the shell, which is another direct evidence
of the ETU process, populating the 4S3/2 and 2H11/2

state from the 4I9/2 state.
By further studying the temporal behavior of the red

emission, one can find that the decay curves of 660 nm
of the NaGdF4:12%Er

3+@NaGdF4 active-core/inert-shell
NPs and the NaGdF4:12%Er

3+@NaGdF4:10%Er
3+ active-

core/active-shell NPs exhibit a typical slow rising edge.
As other work reported before, the rising edge is proved
to be another evidence of CR as theoretical transients
[39, 41]. Combined with the luminescence spectra, CR
process of 4F3/2 +

4I15/2→
4F9/2 +

4I13/2 makes large con-
tribution to the population of the 4F9/2 state due to the
higher and higher concentration of Er3+ in the shell,
which also can be obtained from the calculated results
of the lifetimes (Fig. 7). Besides, none emission of any
state around 4F3/2 is found, proving the existence of CR.
Consequently, under the co-effect of core/shell structure
and optimized Er3+ concentration in shell, the energy trans-
fer reaction is extremely improved, leading to the great
luminescent enhancement of active-core/active-shell NPs.

Conclusions
In conclusion, a strategy was put forward to enhance
the upconversion luminescence by forming active-
core/active-shell structure with Er3+ ions single-doped
NaGdF4 without any other lanthanide-doped ions.

Hexagonal NaGdF4:12%Er
3+@NaGdF4:10%Er

3+ active-
core/active-shell NPs have been synthesized and present a
significant intensive emission of the upconversion lumi-
nescence compared to NaGdF4:12%Er

3+@NaGdF4 active-
core/inert-shell and NaGdF4:12%Er

3+ core-only NPs. Act-
ing both as the emitter and the sensitizer, the lumines-
cence of single Er3+-doped NaGdF4 UCNPs can be greatly
enhanced by forming the structure of an active shell over
the core. By the optimization of the concentration of Er3+

ions in the shell, the upconversion luminescent properties
are greatly promoted and the enhancement of UC lumi-
nescence intensity is up to ~336 times greater than the
NaGdF4:12%Er

3+ core-only NPs, which is much larger
than simply increasing the Er3+ concentration in NPs.
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