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Cadherin-based adherens junctions are conserved structures that mediate epithelial cell–cell
adhesion in invertebrates andvertebrates. Despite their pivotal function in epithelial integrity,
adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture
and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and under-
goes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian
cell culture and genetically tractable model systems such as Drosophila have revealed con-
served, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking.
Here, we discuss our current knowledge about molecules and mechanisms controlling
endocytosis, sorting and recycling of E-cadherin during junctional remodeling.

The ability of epithelial cells to organize into
monolayered sheets is a prerequisite for

multicellularity, thereby providing tissue in-
tegrity, barrier function, and tissue polarity in
metazoan organisms. Adherens junctions (AJs)
are conserved key structures that mediate cell–
cell adhesion in invertebrates and vertebrates. In
many polarized epithelial sheets, AJs form a
continuous adhesive belt at the apical– lateral
interfaces of cell–cell contacts, the zonula ad-
herens. The structural and functional core com-
ponents of epithelial AJs are clusters of dimeric
E-cadherin, a calcium-dependent, homophilic
cell–cell adhesion receptor (Fig. 1). High-reso-
lution microscopy analyses, however, recently
revealed that E-cadherin clusters also accumu-
late throughout the lateral junctions below the
zonula adherens (Wu et al. 2014; Yap et al.
2015).

Classical cadherins such as E-cadherin are
single-pass membrane proteins with character-
istic extracellular cadherin (EC) repeat do-
mains that mediate trans-homophilic interac-
tions between neighboring cells. While the
numbers of ECs vary between different species,
their intracellular domains are highly con-
served from flies to humans and form a com-
plex with catenins that link AJs to the actin
cytoskeleton. The juxtamembrane domain of
the cadherin intracellular tail interacts with
p120 catenin, whereas the carboxy-terminal
part directly binds b-catenin, which, in turn,
binds a-catenin mediating a dynamic linkage
to the actin cytoskeleton (Fig. 1) (Drees et al.
2005; Gates and Peifer 2005; Yamada et al.
2005). This dynamic interaction between AJs
and the actin cytoskeleton is tightly linked to
junctional maintenance, dynamics, and plastic-
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ity in developing and differentiated tissues
(Michael and Yap 2013).

The dual properties of stability and plastic-
ity of AJs were first observed in calcium chela-
tion experiments (Kartenbeck et al. 1982). De-
pletion of extracellular calcium results in a rapid
disruption of cell–cell adhesion in cultured ep-
ithelial monolayers because of the endocytic in-
ternalization of cadherins from AJs (Kartenbeck
et al. 1982, 1991). The significance of cadherin
internalization under physiological conditions
is now well established. Over the last three de-
cades, numerous studies showed that junctional
proteins such as E-cadherin are dynamically
turned over at the cell surface and this is funda-
mental for tissue remodeling during morpho-
genesis and tissue homeostasis (Kowalczyk and
Nanes 2012; Takeichi 2014). Mammalian cell
culture studies combined with in vivo models

like Drosophila have led to the identification of
conserved molecules and the underlying regu-
latory mechanisms driving cadherin trafficking
in a large variety of morphogenetic and devel-
opmental processes. Here, we review our cur-
rent knowledge about the proteins and the
mechanisms controlling endocytosis, sorting
and recycling of E-cadherin.

E-CADHERIN IS CONSTANTLY
INTERNALIZED FROM THE CELL SURFACE

Dynamic changes in cell shape within tissues
require a constant remodeling of cell junctions.
Initial metabolic labeling experiments in cul-
tured Madin–Darby canine kidney (MDCK)
epithelial cells showed a half-life of endogenous
E-cadherin at the cell surface of �5–10 h
(McCrea and Gumbiner 1991; Troxell et al.
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Figure 1. The core E-cadherin/catenin complex at adherens junctions (AJs). The stability and turnover of the
core E-cadherin/catenin complex is regulated by different molecules and posttranslational modifications, for
further details see main text.
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1999). Recent fluorescence recovery after photo-
bleaching (FRAP) and photoconversion exper-
iments in living epithelial layers of the Droso-
phila embryo confirmed a relatively slow
biosynthetic turnover of E-cadherin clusters of
about 1 h in vivo (Cavey et al. 2008). Thus, the
comparatively slow transcriptional regulation of
E-cadherin cannot account for all rapid changes
in cell adhesion strength during fast cellular
movements and tissue remodeling. Instead,
cadherins are constantly removed from the plas-
ma membrane through endocytosis and recy-
cled back by exocytosis. Depending on the cel-
lular context, E-cadherin can be internalized
through different endocytic pathways. Most
studies analyzed clathrin-mediated endocytosis
of E-cadherin (Le et al. 1999; Palacios et al. 2002;
Paterson et al. 2003). However, growth-factor-
induced non-clathrin-mediated pathways of
E-cadherin, including Rac1-dependent macro-
pinocytosis, have been reported (Braga et al.
1997, 1999; Akhtar and Hotchin 2001; Lu
et al. 2003; Bryant et al. 2007).

LOCAL REMOVAL OF E-CADHERIN FROM
THE PLASMA MEMBRANE BY CLATHRIN-
MEDIATED ENDOCYTOSIS

Unlike macropinocytosis, clathrin-mediated
endocytosis allows a spatially controlled inter-
nalization. Since clathrin does not bind directly
to cargo receptors, selection of cargo relies on
adaptor proteins that recognize internalization
motifs within the cytoplasmic region of trans-
membrane receptors (Kelly and Owen 2011). E-
cadherin associates with several endocytic
adaptors including AP-2, Dab-2, and Numb
(Ling et al. 2007; Miyashita and Ozawa 2007b;
Yang et al. 2007; Sato et al. 2011). A central
adaptor in clathrin-mediated endocytosis is
AP-2, which forms a tetrameric complex that
directly binds clathrin and recruits several clas-
ses of receptors bearing an acidic dileucine in-
ternalization signal in their cytoplasmic tail
(Fig. 2) (Traub 2003, 2009; Kelly and Owen
2011). Vertebrate E-cadherin contains an AP-2
binding motif and mutations in this dileucine
motif affect the localization of E-cadherin by
preventing its clathrin-mediated endocytosis

(Miranda et al. 2001; Miyashita and Ozawa
2007a,b).

The budding of clathrin-coated vesicles re-
quires the core endocytic machinery including
the GTPases Dynamin and Rab5. Reduction of
these core components results in an increase of
E-cadherin at the plasma membrane. Dynamin
is a large, multidomain GTPase that assembles
into helical structures along invaginating mem-
branes and drives the scission of endocytic ves-
icles through a cycle of oligomerization and
GTP hydrolysis (Fig. 2) (Schmid and Frolov
2011; Kirchhausen et al. 2014). Dynamin-medi-
ated endocytosis is required for E-cadherin re-
distribution at mature AJs of MDCK and MCF7
cells, but also plays an important role in AJ turn-
over during Drosophila epithelial morphogene-
sis (Classen et al. 2005; Georgiou et al. 2008;
Leibfried et al. 2008; de Beco et al. 2009; Levayer
et al. 2011). A key observation of the Drosophila
in vivo studies is that E-cadherin endocytosis is
locally enhanced along the planar axis or along
the apico-basal axis of epithelial cells and that
this local E-cadherin turnover has an instructive
role in tissue morphogenesis. For example, po-
larized endocytosis of E-cadherin is crucial for
cell intercalations in the elongating Drosophila
embryo whereby epithelial cells change neigh-
bors through the shrinkage of planar polarized
junctions along the dorsoventral axis. Blocking
of clathrin-mediated endocytosis causes the loss
of E-cadherin planar polarization and a block of
cell intercalations (Levayer et al. 2011). Similar
observations were made in Drosophila pupal ep-
ithelia (Classen et al. 2005; Georgiou et al. 2008;
Leibfried et al. 2008; de Beco et al. 2009). Wing
epithelial cells become hexagonally packed
through the shrinkage of individual AJ by po-
larized E-cadherin turnover (Classen et al. 2005;
Warrington et al. 2013). Consistently, loss of
E-cadherin or dynamin function disrupts the
planar polarized organization of the wing
epithelium (Classen et al. 2005; Fricke et al.
2009). Polarized endocytosis is also necessary
for local E-cadherin removal during embryonic
wound repair (Hunter et al. 2015). Blocking of
endocytosis on wounding disrupts not only AJ
remodeling but also prevents the assembly of
contractile actomyosin cables at the wound
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Figure 2. The Cdc42-Par6-aPKC polarity complex promotes E-cadherin endocytosis by recruiting the Cip4-
WASP-Arp2/3 actin machinery. (A) E-cadherin is actively internalized by clathrin-mediated endocytosis. Ver-
tebrate E-cadherin contains an AP-2 binding motif. Once E-cadherin is selected and bound by AP-2 or other
cargo-adapter proteins (e.g., Numb, see main text), the clathrin coat is assembled. Cdc42–Par6–aPKC recruits
Cip4 to the site of E-cadherin endocytosis. F-BAR proteins such as Cip4 are thought to facilitate the scission by
recruiting Dynamin to the neck of a nascent vesicle. This recruitment requires the SH3 domain that binds to
Proline-rich motifs of Dynamin but also the Arp2/3 activator Wiskott–Aldrich syndrome protein (WASP). (B)
WASP-Arp2/3-mediated actin polymerization has a supportive function in vesicle budding and promotes actin-
comet-tail-based movement of newly formed clathrin-coated vesicles. The GTPase Rho seems to suppress
cadherin endocytosis by antagonizing Cdc42–Par6–aPKC functions (Warner and Longmore 2009).
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margin that dramatically slows down wound
closure (Hunter et al. 2015). Thus, E-cadherin
endocytosis appears to be a necessary step for
the cytoskeletal rearrangements driving wound
repair. An important requirement in coupling
endocytosis-driven junctional remodeling and
actomyosin contractility has also been observed
in Drosophila dorsal closure and in zebrafish
epiboly cell movements (Mateus et al. 2011;
Song et al. 2013).

p120 CATENIN, AN INHIBITOR
OF VERTEBRATE E-CADHERIN
ENDOCYTOSIS

Interestingly, the acidic dileucine motif in the
juxtamembrane domain of vertebrate E-cad-
herin overlaps with the binding site for p120
catenin, a well-known inhibitor of cadherin en-
docytosis (Davis et al. 2003). In the absence of
p120 catenin, cadherins are rapidly internalized
and degraded in the lysosome (Miyashita and
Ozawa 2007b; Xiao et al. 2007). Recent data
strongly suggests that p120 catenin binding
masks the endocytic signal and may thereby
compete for AP-2 binding to cadherins in
mammals (Nanes et al. 2012; Perez-Moreno
and Fuchs 2012). Supporting this notion, the
binding affinities of p120 catenin and AP-2 for
the acidic dileucine motif are similar (Fig. 1)
(Nanes et al. 2012). However, a physiological
role of AP-2 function in the initiation of cla-
thrin-mediated endocytosis of E-cadherin has
so far only been shown in Drosophila germ-
band extension, a major morphogenetic move-
ment during fly gastrulation (Levayer et al.
2011). Remarkably, Drosophila E-cadherin lacks
the endocytic motif and p120 catenin function
is not required for internalization of E-cadherin
for degradation (Myster et al. 2003; Bulgakova
and Brown 2016). Different from mice, worms
and flies lacking p120 catenin are viable and
fertile and display no striking defects in the
structure or function of adherens junctions
(Myster et al. 2003; Pettitt et al. 2003; Davis
and Reynolds 2006; Perez-Moreno et al. 2006).
However, loss of Drosophila p120 catenin func-
tion strongly enhances phenotypic traits in E-
cadherin and b-catenin mutants, suggesting an

important supportive role of p120 catenin in
junctional cell adhesion (Myster et al. 2003).
Surprisingly, Bulgakova and Brown (2016) re-
cently found that Drosophila p120 catenin rath-
er promotes clathrin-mediated endocytosis of
E-cadherin and propose that the inhibitory
function of p120 catenin has been newly ac-
quired in vertebrates during evolution. Thus,
the key role of p120 catenin as a master regulator
of cadherin stability may represent a vertebrate-
specific adaptation in response to an increased
complexity in tissue morphogenesis and archi-
tecture during evolution (Carnahan et al. 2010).
It also implies the existence of additional an-
cient key principles in regulating the stability
of AJs present in invertebrate and vertebrates.

POSTTRANSLATIONAL MODIFICATIONS
REGULATING E-CADHERIN TURNOVER

Phosphorylation might represent such an an-
cient regulatory mechanism controlling cad-
herin internalization. Early cell culture studies
have already revealed that cell–cell junctions
are prominent targets of tyrosine phosphoryla-
tion (Maher et al. 1985). Stimulation of epithe-
lial cultures by growth factors (e.g., epithelial
growth factor [EGF] or human growth factor
[HGF]) promotes tyrosine phosphorylation of
several junctional proteins followed by a rapid
internalization of junctional complexes. Within
the past decades, numerous studies in cultured
cells have unraveled a series of tyrosine, but also
serine phosphorylation events and identified
diverse kinases and phosphatases acting on E-
cadherin/catenin complex integrity (reviewed
in Daniel and Reynolds 1997; Roura et al.
1999; Lilien and Balsamo 2005; Bertocchi et
al. 2012; Coopman and Djiane 2016). The pic-
ture emerging from these studies of how AJ
functions and phosphorylation interplay is still
very incomplete, especially because many of
these phosphorylation events strongly depend
on the cell type and the stimulus such as growth
factor treatment (reviewed in Bertocchi et al.
2012; Coopman and Djiane 2016).

Members of the Src protein family have
emerged as critical cytoplasmic tyrosine kinases
that affect E-cadherin dynamics and E-cad-
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herin/catenin complex integrity in vertebrates
and invertebrates. The activation of Src kinases
and subsequent phosphorylation of AJ compo-
nents in cultured epithelial cells generally results
in a disruption of cell–cell adhesions and
increased invasiveness (Behrens et al. 1993;
Boyer et al. 1997; Calautti et al. 1998; Owens
et al. 2000). However, depending on the signal
strength, Src can also act positively on E-cad-
herin-mediated cell adhesion (McLachlan et al.
2007). On Src activation E-cadherin is phos-
phorylated at two specific tyrosine residues in
the juxtamembrane domain, thereby creating a
binding surface for the c-Cbl-like ubiquitin li-
gase Hakai (Fig. 1) (Fujita et al. 2002). Since the
binding sites for Hakai and p120 catenin are
closely apposed, it has been suggested that
p120 catenin binding might also compete with
Src or Hakai and hence might inhibit ubiquiti-
nation and degradation. Consistently, ubiquiti-
nation of the juxtamembrane domain prevents
p120 catenin binding to E-cadherin and results
in proteasomal degradation of E-cadherin
(Hartsock and Nelson 2012). However, tyrosine
phosphorylation-defective mutants of E-cad-
herin can still be internalized and Hakai-medi-
ated ubiquitination might rather serve as a
sorting signal for its trafficking to lysosomes
(Palacios et al. 2005). Thus, ubiquitination
does not seem to directly regulate the internal-
ization of E-cadherin. Hakai is highly conserved
in metazoans, and flies lacking Hakai function
also show severe defects in epithelial integrity, as
well as defects in cell specification and cell mi-
gration (Kaido et al. 2009). A functional inter-
action between Hakai and Src kinases has never
been observed in Drosophila. Src42A, one of the
two Src kinases in Drosophila, forms a ternary
complex with E-cadherin and b-catenin (Ar-
madillo [Takahashi et al. 2005]). Src42A activa-
tion has a dual effect on E-cadherin-based AJs.
On the one hand Src42A increases E-cadherin
turnover by phosphorylation of b-catenin and
thereby, destabilizing AJ complex integrity dur-
ing tracheal epithelial morphogenesis in Droso-
phila (Shindo et al. 2008). On the other hand it
also results in a transcriptional activation of E-
cadherin by released b-catenin that acts as a
well-known transactivator of the Tcf/Lef family

of transcription factors (Shindo et al. 2008;
Langton et al. 2009). Recent FRAP experiments
of green fluorescent protein (GFP)-marked E-
cadherin at Drosophila AJs further revealed that
Src42A promotes the recycling of E-cadherin
and is required for polarized cell-shape changes
during epithelial tube elongation (Forster and
Luschnig 2012). Thus, Src-mediated tyrosine
phosphorylation has an important conserved
role in E-cadherin turnover. However, the
functional consequences and the underlying
regulatory mechanism of tyrosine phosphory-
lation seem to differ remarkably between differ-
ent cell types and species.

The posttranslational addition of a small
ubiquitin-related modifier (SUMO) protein to
E-cadherin seems to be essential for E-cadherin
recruitment to AJs and for the maintenance
of its interaction with the actin cytoskeleton
in Caenorhabditis elegans (Fig. 1) (Tsur et al.
2015). SUMO modification is a reversible pro-
cess analogous to ubiquitylation: Sumoylation
is mediated by the concerted actions of E1, E2,
and E3 enzymes, whereas desumoylation is pro-
moted by SUMO specific proteases (Flotho and
Melchior 2013). A key finding is that sumoyla-
tion on a conserved lysine residue of the E-cad-
herin cytoplasmic tail reduces its interaction
with b-catenin (Tsur et al. 2015). Both the loss
and overexpression of SUMO proteases resulted
in similar defects in AJ assembly, suggesting that
balanced sumoylation-desumoylation events
are important to sustain AJ plasticity. Sumoyla-
tion is essential for most organisms and mam-
mals express three SUMO precursor proteins,
whereas C. elegans, Drosophila, and yeast only
express a single SUMO protein (Flotho and
Melchior 2013). Thus, it will be important to
determine whether transient sumoylation acts
as a conserved molecular switch of AJ dynamics
in other species.

LOCAL E-CADHERIN ENDOCYTOSIS
DEPENDS ON THE Cdc42-Par6-aPKC
POLARITY COMPLEX

The spatially controlled endocytosis of E-cad-
herin depends on evolutionarily conserved
polarity proteins including the PDZ domain
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protein Par6, the atypical protein kinase C
(aPKC) and the Rho-GTPase Cdc42, which is
also a well-known regulator of the actin cyto-
skeleton. Par6 and aPKC form, together with
the scaffold protein Par3 (Bazooka), the Par
complex, a universal module defining apico-
basal cell polarity in metazoans (Tepass 2012).
Cells of the pupal thorax epithelium of Droso-
phila lacking either the Par6-aPKC or Cdc42
function show a defective internalization of E-
cadherin characterized by malformed endocytic
membrane tubules, reminiscent of vesicle scis-
sion defects in dynamin (shibire) mutant cells
(Georgiou et al. 2008; Leibfried et al. 2008). The
Par complex seems to act as an effector of Cdc42
in controlling endocytosis of E-cadherin, be-
cause constitutively active aPKC can partially
suppress the AJ disruption of cdc42 loss-of-
function (Fig. 2). An important requirement
of Cdc42 and the Par6-aPKC module in the
endocytic turnover of E-cadherin has also been
found in mammalian cell culture and in C.
elegans (Balklava et al. 2007). Recent studies in
mammals as well as in flies further suggest that
other polarity proteins, including Lethal giant
larvae (LgL), Scribble (Scrib), and Crumbs, may
also play an important role in the maintenance
of AJs (Goldstein and Macara 2007; Nance and
Zallen 2011). However, these effects could also
be indirect because these proteins are also cru-
cial for the maintenance of apico-basal polarity
and therefore tissue integrity (Tepass and Knust
1990, 1993).

How is the Cdc42-Par6-aPKC polarity com-
plex linked to the endocytic machinery promot-
ing E-cadherin internalization? Cdc42 is also a
well-known activator of the Wiskott-Aldrich
syndrome protein family (WASP), which, in
turn, promotes actin nucleation through the
Arp2/3 complex, a major actin nucleator in
eukaryotic cells (Fig. 2) (Symons et al. 1996;
Rohatgi et al. 2000; Pollard and Beltzner
2002). Cdc42 directly binds WASP and relieves
an autoinhibitory contact between the GTPase-
binding domain and the carboxy-terminal
Arp2/3-activating VCA module (Kim et al.
2000). On activation of WASP by Cdc42
branched actin filaments are formed at the rim
of endocytic pits that are thought to facilitate

the invagination and scission of the underlying
membrane (Fig. 2) (Merrifield and Kaksonen
2014; Kaksonen et al. 2006). WASP-Cdc42-in-
duced actin polymerization at endocytic sites
further depends on the membrane-curvature
promoted by F-BAR proteins such as Cip4
(Cdc42-interacting protein 4) (Ho et al. 2004;
Tsujita et al. 2006; Takano et al. 2008). The F-
BAR domain dimer of Cip4 forms a crescent-
shaped surface that binds and deforms the
membrane, whereas the carboxy-terminal Src
homology 3 (SH3) domain binds Dynamin
and WASP (Fig. 2) (Heath and Insall 2008; As-
penstrom 2009; Chen et al. 2013). Thus, F-BAR
proteins such as Cip4 are prime candidates to
couple WASP-Cdc42-mediated actin polymeri-
zation to Dynamin-mediated vesicle scission in
endocytosis and vesicle movement (Fig. 2)
(Fricke et al. 2010). In Drosophila, thorax epi-
thelia lacking either WASP or Cip4 function
display AJ breaks and the formation of long
tubular endocytic structures that are very rem-
iniscent of dynamin mutant cells in which ves-
icle scission is blocked (Georgiou et al. 2008;
Leibfried et al. 2008). A dynamin-related phe-
notype has been observed on overexpression in
the fly wing epithelium of a dominant-negative
Cip4 protein lacking the Dynamin-interacting
SH3 domain (Fricke et al. 2009). Here, Dyna-
min function is required for junctional remod-
eling during epithelial repacking (Classen et al.
2005). Thus, a model has been proposed in
which activated Cdc42 acts through the Par
complex and recruits Cip4-WASP to promote
both Dynamin-mediated vesicle scission and
branched actin nucleation at endocytic vesicles
(Leibfried et al. 2008; Fricke et al. 2009). Despite
the conserved function of Cip4 in regulating
early steps in E-cadherin endocytosis, flies,
worms, and mice lacking Cip4 function are vi-
able and develop largely normally, suggesting
additional compensatory or redundant func-
tions that are likely fulfilled by other members
of the F-BAR protein family (Fricke et al. 2009;
Giuliani et al. 2009; Feng et al. 2010; Rolland
et al. 2014). Supporting this notion, double mu-
tants lacking Cip4 and the Cip4-like protein
Nostrin show reduced viability and fertility
(Zobel et al. 2015). Double mutant flies show
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defects in wing polarization defects and egg
chamber encapsulation caused by an impaired
turnover of E-cadherin (Zobel et al. 2015).

ENDOSOMAL SORTING OF E-CADHERIN

Once internalized by clathrin-dependent or -in-
dependent endocytosis, E-cadherin enters a
Rab5 positive compartment, which is central
for sorting of most cell surface transmembrane
proteins (Fig. 3) (Pfeffer 2013; Wandinger-Ness

and Zerial 2014). Within this early-endosomal
(EE) compartment E-cadherin is either sorted
back to the plasma membrane through recy-
cling endosomes (RE) or it is sequestered into
intraluminal vesicles of multivesicular endo-
somes (MVE) that finally fuse with lysosomes
for degradation. How cadherins are selected
from sorting endosomes for trafficking to recy-
cling endosomes is not yet understood. Endo-
somal sorting of E-cadherin may involve the
segregation of tubular endosomal subdomains
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Figure 3. Trafficking pathways of E-cadherin. E-cadherin can undergo either clathrin-dependent or independent
endocytosis. Internalized E-cadherin traffic through different endosomal compartments. Numerous molecules
and endocytic machineries determine the fate of E-cadherin either to endosomal recycling back to the plasma
membrane or to lysosomal degradation. Polarized sorting in both the biosynthetic pathway from the trans-Golgi
network and recycling endosomes requires vesicle carriers such as AP-1 as discussed in the main text.
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that recruit diverse microtubule motors driving
endosomal membrane scission and trafficking
(Hunt et al. 2013; van Weering and Cullen
2014). This function has been proposed for
Nostrin (Zobel et al. 2015). Nostrin localizes
at distinct subdomains of Rab5/Rab11 endoso-
mal intermediates. A cooperative recruitment
model has been proposed, in which Cip4 first
promotes membrane invagination and early ac-
tin-based endosomal motility, whereas Nostrin
is linked to microtubules through the minus
end-directed kinesin motor Khc-73 for traffick-
ing of recycling endosomes (Zobel et al. 2015).
An important role of the mammalian orthologs
Kif13A and KifC3 either in the formation of
recycling endosomal tubules along microtu-
bules or in the microtubule-dependent trans-
port to AJs has recently been identified (Meng
et al. 2008; Delevoye et al. 2014).

Known integral components of the tubule-
based endosomal sorting mechanism are sort-
ing nexins (Snx). Previous work has shown that
the two Snx-Bar proteins Snx4 and Snx1 are
involved in E-cadherin sorting in epithelial
cell culture (Bryant et al. 2007; Solis et al.
2013). Depletion of Snx1 resulted in increased
intracellular accumulation and turnover of E-
cadherin internalized from the cell surface of
MCF-7 cells (Bryant et al. 2007). Snx1 is a con-
served component of the retromer complex, an
endosomal protein sorting machinery regulat-
ing the recycling of endocytosed proteins from
endosomes to the trans-Golgi network (TGN)
or to the plasma membrane (Fig. 3) (Cullen
2008; Wang and Bellen 2015). Whether endocy-
tosed E-cadherin can be recycled back to the
TGN via the retromer is not known. Interesting-
ly, Drosophila Vps35 (CG5625), which is part of
the cargo-selective trimer of the retromer, was
recently found in a genome-wide RNAi screen
for genes required for E-cadherin-dependent
cell–cell adhesion (Toret et al. 2014).

E-CADHERIN IS MAINLY RECYCLED
THROUGH Rab11-POSITIVE
ENDOSOMES

Recycling of internalized membrane receptors
can either be facilitated by a rapid Rab4-medi-

ated route or transit through a slow Rab11-pos-
itive recycling pathway back to the plasma
membrane (Fig. 3) (Stenmark 2009; Scott
et al. 2014). Several studies in epithelial cell cul-
ture and in diverse Drosophila epithelial tissues
showed that E-cadherin is principally trans-
ported to a Rab11-positive recycling endosomal
compartment (Fig. 3) (Classen et al. 2005; Lock
and Stow 2005; Bogard et al. 2007; Desclozeaux
et al. 2008; Roeth et al. 2009; Pirraglia et al.
2010; Hunter et al. 2015; Le Droguen et al.
2015; Loyer et al. 2015), whereas there is only
little evidence showing that E-cadherin can also
pass a Rab4-dependent rapid recycling route as
recently found during Drosophila leg develop-
ment (de Madrid et al. 2015). Consistently,
disruption of Rab11-mediated recycling results
in an abnormal intracellular accumulation of
E-cadherin and junctional integrity is severely
impaired.

POLARIZED EXOCYTOSIS OF
E-CADHERIN BY A Rab11-EXOCYST
COMPARTMENT

A striking intracellular accumulation of E-cad-
herin in enlarged Rab11-positive vesicles was
also observed in mutant cells lacking single
components of the exocyst complex such as
Sec5, Sec6, and Sec15, indicating a defect in
the targeted delivery of E-cadherin from the
basolateral domain to the apicobasal AJs (Lan-
gevin et al. 2005). Further evidence suggest that
the exocyst can regulate E-cadherin recycling by
acting as a direct molecular link between the
Rab11-recycling endosomes and the E-cad-
herin/catenin complex in tissue remodeling
and collective cell migration (Fig. 3) (Classen
et al. 2005; Langevin et al. 2005; Blankenship
et al. 2007; Wan et al. 2013).

The exocyst is an evolutionarily conserved
multi-subunit protein complex that is crucial to
tether secretory vesicles derived from the trans-
Golgi network (TGN) or from recycling endo-
somes to the plasma membrane for exocytosis
(Wu and Guo 2015). In yeast, the exocyst is
localized to defined regions of the plasma mem-
brane where it mediates the polarized delivery of
proteins and lipids required for polarized mem-
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brane growth. This model has been adapted to
epithelial cells, where targeted recycling of in-
ternalized junctional proteins to the apical
membrane provides a mechanism controlling
AJ remodeling during cell polarization (Grind-
staff et al. 1998; Mostov et al. 2003). Consistent-
ly, Rab11 and b-catenin interact with the exo-
cyst components Sec15, Sec5, and Sec10,
respectively, and disruption of these interac-
tions results in an intracellular accumulation
of E-cadherin in recycling endosomes (Fig. 3)
(Beronja et al. 2005; Langevin et al. 2005). Re-
cycling endosomes can also function as an in-
termediate compartment for newly synthesized
E-cadherin that is not directly transported from
the TGN to the plasma membrane by the exo-
cyst in cultured epithelial cells (Yeaman et al.
2004; Lock and Stow 2005). Remarkably, in po-
larized MDCK cells newly synthesized E-cad-
herin is transported as a complex with b-cate-
nin and the formation of the E-cadherin/b-
catenin complex is already important for effi-
cient exit from the endoplasmic reticulum
(Chen et al. 1999) Uncoupling the binding of
b-catenin from E-cadherin by introducing cor-
responding mutations in the E-cadherin cyto-
plasmic tail results in an accumulation of the
proteins in intracellular compartments and
subsequent degradation in lysosomes (Miya-
shita and Ozawa 2007a). A recent in vivo study
in the Drosophila follicular epithelium further
supports a model in which the Rab11-exocyst
interaction regulates targeting of vesicles with
endocytosed as well as newly synthesized E-cad-
herin (Woichansky et al. 2016). The investiga-
tors further propose the existence of two exocy-
tosis pathways for de novo synthesized E-
cadherin, first a Rab11-independent pathway
for exocytosis to the basal-lateral region, and
second a Rab11-dependent pathway that targets
exocytosis to apico-lateral AJs (Woichansky
et al. 2016). In the same study a so far unchar-
acterized GTPase, RabX1, has been identified as
a new critical component regulating E-cadherin
recycling. In rabX1 mutant epithelia endocy-
tosed E-cadherin is not properly recycled, but
rather accumulates together with Rab5 and
Rab11 in a large compartment (Woichansky
et al. 2016).

SORTING OF NEWLY SYNTHESIZED
E-CADHERIN FROM THE TRANS-GOLGI
NETWORK AND Rab11 RECYCLING
ENDOSOMES

In a number of ways sorting at the TGN resem-
bles the initial steps in endocytosis. Post-Golgi
vesicles are coated by clathrin and polarized
sorting requires clathrin adaptors of the family
of heterotetrameric AP complexes such as AP-1
(Fig. 3) (Bonifacino 2014). Different from en-
docytic AP-2, AP-1 complexes localize at the
TGN and REs and control either the biosyn-
thetic sorting at the TGN (AP-1A) or the RE
sorting (AP-1B) to the basolateral surface
(Folsch et al. 2003; Gravotta et al. 2012; Folsch
2015). In MDCK cells, double knockdown of
AP-1A and AP-1B results in missorting of
many basolateral proteins including E-cad-
herin, and causes a dramatic loss of cell polarity
(Gravotta et al. 2012). Interestingly, similar to
AP-2, AP-1 complexes recognize as a basolateral
sorting signal the same dileucine-based motif in
the cytoplasmic tail of E-cadherin (Lock and
Stow 2005; Ling et al. 2007; Mattera et al.
2011). Thus, AP-1 and AP-2 recognize almost
identical sets of dileucine motif-containing
membrane cargo proteins, but function at dif-
ferent intracellular sites (Fig. 3). Knockout
studies in mammals, zebrafish, Drosophila,
and C. elegans further confirmed an important
conserved role of AP-1 in E-cadherin trafficking
and loss of AP-1 function results in strong re-
duction of E-cadherin-mediated cell adhesion
and epithelial disorganization (Shim et al. 2000;
Zizioli et al. 2010; Burgess et al. 2011; Takahashi
et al. 2011; Shafaq-Zadah et al. 2012; Zhang
et al. 2012; Hase et al. 2013; Gariano et al.
2014; Gillard et al. 2015; Loyer et al. 2015).

Unlike vertebrates, invertebrates only con-
tain a single AP-1 complex and Drosophila and
C. elegans E-cadherin lack the dileucine-based
AP-1-sorting signal in their cytoplasmic tails
(Boehm and Bonifacino 2001). Thus, in inver-
tebrates, interactions between E-cadherin and
AP-1 complexes might not be direct, but may
instead be mediated by adaptors such as phos-
phatidylinositol phosphate 4 kinases (PI4K)
(Ling et al. 2007). Mammalian PIPKIg directly
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binds both E-cadherin and them subunit of AP-
1, thus it might act as a signaling scaffold that
links AP-1 complexes to E-cadherin. Depletion
of PIPKIg or disruption of PIPKIg binding to
either E-cadherin or AP complexes results in
defective E-cadherin transport and blocks AJ
assembly (Ling et al. 2007). Phosphatidylinosi-
tol-4-phosphate (PI4P) is a critical lipid in-
volved in the progressive assembly of AP-1-spe-
cific clathrin coats at the TGN (Wang et al. 2003;
Santiago-Tirado and Bretscher 2011).

In the Drosophila germline, loss of AP-1,
Rab11, PI4KIIa, or of exocyst components dis-
rupts nurse cell plasma membrane integrity and
causes a striking multinucleation phenotype
(Fig. 4) (Murthy and Schwarz 2004; Murthy
et al. 2005; Bogard et al. 2007; Tan et al. 2014;
Loyer et al. 2015). It has been suggested that this
common phenotype is caused by a defective
intracellular trafficking of membrane compo-
nents, but the exact underlying cellular defect
is not known thus far. A detailed phenotypic
analysis of AP-1 mutant germline, however, re-
cently revealed that AP-1 regulates the traffick-
ing of E-cadherin to the ring canals (Fig. 4).
These stable intercellular bridges between nurse
cells and the oocyte are composed of noncon-
tractile actin bundles, which are anchored to the
plasma membrane by adhesive E-cadherin clus-
ters or semicircular adherens junctions (Fig. 4)
(Loyer et al. 2015). Thus, the loss of nurse cell
membranes in all these mutants is likely caused
by the detachment of the plasma membrane
from ring canals followed by fragmentation of
the membrane (Fig. 4) (Loyer et al. 2015).

Ring canals are also formed at E-cadherin-
positive boundaries in mammalian germ cell
cysts, but their functions are not well under-
stood (Pepling et al. 1999; Mork et al. 2012).
Unlike in flies, where these intercellular bridges
allow the transport of nutrients to the oocyte, in
mammals the ring canals are thought to play a
role in the synchronization of mitotic divisions
and the entry into meiosis (Haglund et al.
2011).

A number of additional players have also
been identified that control E-cadherin traffick-
ing and cell adhesion, such as Scribble (Scrib), a
conserved polarity protein and tumor suppres-

sor that defines the basolateral domain in epi-
thelial cells (Navarro et al. 2005; Qin et al. 2005;
Dow et al. 2007). A more recent study suggests
that Scrib may stabilize E-cadherin/p120 cate-
nin binding and blocks retrieval of E-cadherin
to the Golgi (Lohia et al. 2012). An additional
function of Scrib in blocking retromer-mediat-
ed diversion of E-cadherin to the Golgi has been
discussed (Lohia et al. 2012). A substantial body
of evidence also indicates an important regula-
tory role of glycosyltransferases involved in the
remodeling of N-glycans on E-cadherin, a pro-
cess that dramatically affects E-cadherin stabil-
ity and localization (Liwosz et al. 2006; Zhao
et al. 2008; Zhou et al. 2008; Pinho et al.
2011). N-glycosylation of E-cadherin has also
been shown to be an essential posttranslational
modification in the lateral epidermis during
Drosophila germband extension (Zhang et al.
2014). Mutations in the xiantuan gene (xit) en-
coding a conserved ER glycosyl-transferase af-
fect glycosylation and the intracellular distribu-
tion of E-cadherin, but not the total amount of
E-cadherin protein. The phenotypic analysis of
xit mutants further suggests that N-glycosyla-
tion is important for the distribution and clus-
tering of E-cadherin within the plasma mem-
brane. A similar role for O-mannosylation in
E-cadherin distribution was recently described
in mouse embryos (Lommel et al. 2013; Vester-
Christensen et al. 2013).

CONCLUSIONS AND PERSPECTIVES

Cell biological approaches in cultured epithelial
cells together with in vivo studies in genetically
tractable model organisms such as Drosophila
and C. elegans have greatly advanced our under-
standing of the molecular regulation of AJ dy-
namics and homeostasis. Here, we highlighted
conserved players and mechanisms that regulate
E-cadherin endocytosis, sorting, exocytosis,
and recycling. Recent quantitative proteomic
approaches using the proximity biotinylation
technique further suggest a remarkable molec-
ular complexity and identified additional con-
served regulatory hubs controlling E-cadherin-
mediated cell adhesion (Guo et al. 2014; Van
Itallie et al. 2014a,b). These approaches expand
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the inventory of the E-cadherin interaction net-
work of hundreds of uncharacterized proteins at
the AJs. Numerous cytoskeletal proteins were
found, in addition to many trafficking, signal-
ing proteins, metabolic enzymes, and transcrip-
tion factors. The candidates identified are un-
likely to be unique to AJs and future studies
need to address their functional and physiolog-
ical relevance in E-cadherin-mediated cell ad-
hesion. Subcellular localization data might be
the first step to exclude potential false-positives
of these initial screens. However, many of the
most abundant candidates in the E-cadherin
interactome, such as Filamin-A, Scrib, Discs
large (Dlg), and Annexins, are multifunctional
and/or are active in multiple subcellular com-
partments. A recent genome-wide RNAi screen
for genes required for calcium- and cadherin-
dependent cell–cell adhesion is a new step for-
ward to identify conserved protein hubs that
functionally complement the proximity bioti-
nylation approaches mentioned above (Toret
et al. 2014). In this study, the Vale and Nelson
groups identified about 400 proteins that regu-
late the core E-cadherin/catenin adhesion com-
plex using nonmotile and non-extracelluar ma-
trix (ECM)-adherent Drosophila S2 cells in
which all components required for integrin de-
pendent-cell adhesion, cell spreading, and cell
migration were eliminated. Selected candidates
were further validated for defects in cell–cell
adhesion in mammalian MDCK epithelial cells
and in Drosophila for defects in E-cadherin-de-
pendent oocyte positioning on germline-target-
ed RNAi. As might be expected, the largest
group of proteins found in the E-cadherin in-
teractome as well as in the RNAi screen are actin
regulators including subunits of the WAVE reg-
ulatory complex (WRC), a major activator of
the Arp2/3 complex that drives cell movements
in most eukaryotes (Pollitt and Insall 2009). AJs
are known to be tightly coupled to the actin
cytoskeleton and this functional interplay is
crucial for the junctional integrity, but also pro-
vides the mechanical forces coordinating indi-
vidual cell-shape changes during tissue rear-
rangements in morphogenesis. However, the
exact function of the Arp2/3 complex that is
recruited to E-cadherin junctional complexes

(Kovacs et al. 2002), in controlling E-cadherin
dynamics in morphogenetic movements and
epithelial remodeling, is still not well under-
stood. Addressing how actin polymerization ex-
actly acts on AJ integrity, internalization or in-
tracellular trafficking of E-cadherin will be
important for understanding tissue morpho-
genesis. Combining cell culture approaches
with in vivo animal models has been applied
very successfully. Advances in high-resolution
light microscopy and in three-dimensional
(3D) electron tomography will help us to better
analyze the functional consequences of E-cad-
herin trafficking within a cell and within an an-
imal. This will be not only important for a better
understanding of E-cadherin biology, but also
tissue remodeling in development and disease.
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