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Abstract

Necroptosis is a caspase 8-independent cell death that requires co-activation of receptor-

interacting protein (RIP) 1 and RIP 3 kinases. The necrosome is a complex consisting of RIP1, 

RIP3 and Fas-associated protein with death domain (FADD) leading to activation of the 

pseudokinase mixed lineage kinase like (MLKL) followed by a rapid plasma membrane rupture 

and inflammatory response through the release of damage-associated molecular patterns (DAMPs) 

and cytokines. The necrosome has been shown to be relevant in multiple tumor types, including 

pancreatic adenocarcinoma, melanoma and several hematological malignancies. Preclinical data 

suggest that targeting this complex can have differential impact on tumor progression and that the 

effect of necroptosis on oncogenesis is cell type- and context-dependent. The emerging data 

suggest that targeting the necrosome may lead to immunogenic reprogramming in the tumor 

microenvironment in multiple tumors and that combining therapies targeting the necrosome with 

either conventional chemotherapy or immunotherapy may have beneficial effects. Thus, 

understanding the interplay of necroptotic cell death, transformed cells, and the immune system 

may enable the development of novel therapeutic approaches.

Background

Apoptosis and necrosis are classically understood processes of cell death that, respectively, 

denote either an organized caspase 8-dependent programmed cell death or non-programmed 

haphazard cellular death, the latter of which commonly results from ischemic or traumatic 

injury. Apoptosis produces cellular fragments, denoted apoptotic bodies, which phagocytic 

cells are able to engulf before the contents of the cell spill into the interstitium and activate 

the innate immune system (1). Tumor cells are widely believed to die via caspase 8-
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dependant apoptotic programmed cell death (2). Chemotherapeutic agents are thought to 

further promote apoptosis in tumor cells (3, 4). As such, apoptosis is considered to be an 

essential regulatory mechanism, which delimits the rate of neoplasia and tumor progression. 

Conversely, progressive disruption of the apoptotic pathway via acquired mutations in genes 

such as p53, p16, or c-myc promotes tumor viability and precipitates accelerated 

oncogenesis (5, 6). By contrast, necrosis leads to the release of damage-associated molecular 

patterns (DAMPs) and cytokines and hence sustains inflammation (7). Necroptosis is a more 

recently described caspase 8-independent mode of cell death, which implies organized 

cellular necrosis and requires complex formation of the key signaling molecules receptor-

interacting protein 1 (RIP1) and RIP3 kinases, called necrosome (8) (Figure 1).

Necroptotic pathway

Necroptotic cell death can be initiated by the ligation of death receptors (DRs) in the TNFR 

superfamily, including Fas (CD95), TNF receptor 1 (TNFR1), TNFR2, TNF-related 

apoptosis-inducing ligand receptor (TRAILR) 1 and TRAILR 2 as well as DR6. Members of 

the pathogen recognition receptor (PRR) family including Toll-like receptors (e.g. TLR3, 

TLR4) as well as NOD-like receptors (NLR) and several viral- or bacterial-associated 

pathogen-associated molecular patterns (PAMPs) have also been suggested to induce 

necrosome formation (9–13). Furthermore, a diversity of cellular stress signals can 

precipitate necroptosis, including reactive oxygen species, ischemia–reperfusion injury, anti-

cancer drugs and chemotherapy including DNA-damaging agents, ionizing radiation, 

photodynamic therapy, and metabolic imbalances leading to glutamate or calcium overload 

(14). TNFR1 stimulation induced by cellular stress, damage and infection can either result in 

cell survival, apoptosis or necroptosis. Activation of TNFR1 induces ubiquitylation of RIP1 

and facilitates pro-inflammatory signaling through the formation of the prosurvival complex 

(complex I) containing TNF receptor–associated death domain (TRADD), cellular inhibitor 

of apoptosis 1 (cIAP1), cIAP2, TNF receptor–associated factor 2 (TRAF2), TRAF5 and the 

linear ubiquitin chain assembly complex (LUBAC). This membrane-associated complex 

prevents cell death through activation of nuclear factor κB (NF-kB), mitogen–activated 

protein kinase (MAPK) or c-Jun N-terminal kinase (JNK) leading to inflammation (15). 

Upon deubiquitylation of RIP1 by the enzymes deubiquitinase cylindromatosis (CYLD) or 

A20, RIP1 kinase is recruited to a complex in the cytoplasm that includes Fas-associated 

death domain protein (FADD), caspase 8 and RIP3 (complex IIa/b), which results in 

necroptosis (16). In contrast, activation of Fas, TRAILR1 or TRAIL2 induces the death-

inducing signaling complex (DISC) directly and consecutively leads to apoptotic cell death. 

The precise mechanisms determining the decision whether a cell will die by apoptosis or 

necroptosis a poorly understood. Caspase 8 is a crucial factor for preventing necroptosis and 

induces the apoptotic pathway by controlling the RIP1-RIP3 cleavage. RIP3 contains an N 

terminal kinase domain and a C terminal homotypic interaction domain (RHIM), which 

allows complex formation with RIP1 and is required for induction of necroptosis (17). The 

catalytical activity of caspase 8 requires high levels of FADD-like interleukin (IL)-1β-

converting enzyme (FLICE)-inhibitory protein (FLIPL) (18). However, when caspase 8 

activity is reduced or absent, the cellular response switches from apoptosis to necroptosis 

through the accumulation and RHIM-dependent phosphorylation of RIP3 (19). Further, the 

pseudokinase mixed lineage kinase like (MLKL) has been identified as a critical substrate of 
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RIP3 during the induction of necroptosis. The phosphorylation of RIP3 results in the 

recruitment and phosphorylation of MLKL, which mediates the sodium influx through Ca2+ 

and Na+ ion channels. The increased osmotic pressure of necroptotically dying cells is 

leading to a rapid plasma membrane rupture and promotes inflammation by the release of 

substantial amounts of DAMPs, interleukin-1β (IL-1β) and other cytokines (20). 

Furthermore, the mitochondrial phosphatase phosphoglycerate mutase family member 5 

(PGAM5), a regulator of dynamic-related protein-1 (DRP1), has been identified as another, 

but dispensable downstream substrate of necroptosis (21).

Clinical-Translational Advances

Recent studies have shown that necroptosis plays an important role in several inflammatory 

diseases, including acute pancreatitis, inflammatory bowel disease (IBD), inflammatory skin 

diseases, and liver injury (22–25). The significance of the necroptotic pathway in cancer 

biology has been investigated in preclinical studies of several hematological malignancies 

and solid tumors. Depending on the cancer cell-type and the tumor microenvironment 

(TME) necroptosis has differential impact on tumor progression. In several subtypes of acute 

myeloid leukemia (AML) the expression of RIP3 and MLKL is reduced in patients. A 

preclinical study showed that RIP3 inhibits malignant myeloproliferation in AML by 

promoting cell death of transformed progenitor cells and that the release of IL-1β by dying 

cells and subsequent the activation of the inflammasome promotes differentiation of 

leukemia-initiating cells (26). Further, in chronic lymphocytic leukemia (CLL) RIP3 was 

markedly downregulated through a transcription repressor of CYLD, called lymphoid 

enhancer-binding factor 1 (LEF1) (27). Knockdown of LEF1 sensitized CLL cells to TNFα-

induced necroptosis. In T cell lymphomas, deletion or perturbation of RIP3 signaling 

promoted cellular growth and disease progression, a consequence of cells failing to undergo 

necroptosis (28). Moreover, in non-Hodgkin lymphoma, single nucleotide polymorphisms 

(SNPs) in the RIP3 gene were identified in a cohort of 458 patients and correlated with 

increased risk of lymphomagenesis, suggesting that genetic variations in the RIP3 gene may 

contribute to the etiology of this cancer (29). Based on these studies, triggering necroptosis 

seems to be effective in tumor cells in hematopoietic malignancies. In human and murine 

pancreatic adenocarcinoma (PDA) RIP1 and RIP3 were widely expressed (30). The 

necrosome complex formation was inducible by environmental stimuli or by 

chemotherapeutics. Blockade of the necrosome in PDA in a cell autonomous manner 

accelerated cellular proliferation and the acquisition of oncogenic changes in transformed 

pancreatic ductal epithelial cells. However, the in vivo effects were diametrically reversed 

with RIP3 deletion or RIP1 blockade resulting in marked tumor protection. The dichotomy 

between the in vivo and in vitro results suggests that the micro-environmental milieu 

resulting from RIP1/RIP3 signaling is likely responsible for its pro-tumorigenic effects. 

These results contrast with the aforementioned studies implicate defective RIP3-mediated 

necroptosis in both AML and CLL as well as in T cell lymphoma progression. Further, RIP3 

inhibited hepatocarcinogenesis by limiting hepatocyte proliferation and mutagenesis (31). 

While these data ostensibly conflict with the in vivo results in PDA, unlike other extra-

pancreatic malignancies, whose respective courses are dominated primarily by tumor cell 

biology, in PDA tumor progression is equally driven by inflammation within the TME (32). 
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In humans, chronic pancreatitis is the most prevalent risk factor for the development of PDA 

and tumorigenesis is invariably accompanied by peri-pancreatic inflammatory changes (33, 

34). Similarly, in Kras-driven murine models of PDA, ablation of the inflammatory 

mechanism abrogated oncogenic progression suggesting that inflammation not only 

accompanies oncogenesis but also is necessary for malignant degeneration (32). A recent 

study showed that human and murine melanoma cells induce necroptosis of endothelial 

cells, which promoted tumor cell extravasation and metastasis via amyloid precursor protein 

(APP) and its receptor DR6. Targeting DR6-mediated necroptosis inhibited tumor cell-

induced necroptosis and the development of metastasis in melanoma (35). Additionally, 

RIP1 expression in melanoma was reported to promote tumor cell proliferation via NF-κB 

dependent pathways (36). In the context of PDA, RIP3 deletion led to immunogenic 

reprogramming of innate and adaptive inflammatory entities as evidenced by an increase in 

tumor infiltrating CD8+ T cells and Th1-polarized CD4+ T cells as well as a reduction in 

myeloid derived suppressor cells (MDSCs) and tumor associated macrophages (TAMs) 

(Figure 2). Furthermore, TAMs exhibited a shift toward an M1-like immunogenic 

phenotype. Cellular depletion experiments suggested that whereas inhibitory macrophages 

promote tumorigenesis, they lose their immune-suppressive effects in the context of RIP3 

deletion leading to the generation of immunogenic T cells, which have powerful anti-tumor 

properties (30). Necroptosis has been linked to immune suppression and tumorigenesis in 

PDA via expression of CXCL1, a potent chemoattractant for myeloid cells that was highly 

expressed in a RIP1 and RIP3 dependent manner. CXCL1 has a complex role in extra-

pancreatic malignancies. In breast cancer, metastatic cells over-expressing CXCL1 exhibited 

chemo-resistance via a paracrine loop by attracting Gr1+CD11b+ myeloid cells, which 

enhance cancer survival by secretion of S100A8/9 (37). Further, in ovarian cancer CXCL1 

was found to induce epithelial cell proliferation by transactivation of EGFR (38). Similarly, 

in melanoma CXCL1 has a role in the genesis of primary melanocytic lesions when coupled 

with the loss of INK-4a/ARF (39). Further, CXCL1-related cytokines recruited immune-

suppressive MDSC to the pre-metastatic niche in the liver of colorectal carcinoma bearing 

hosts (40). Chemotherapies upregulated the expression of CXCL1, whereas blocking 

CXCL1 in mice diminished MDSC infiltration and tumor progression. These data provide a 

rationale for targeting CXCL1 in combination with cytotoxic therapy. A recent study 

demonstrated an increased recruitment of T cells to the TME after blocking the CXCL1 

receptor CXCR2, which is expressed on neutrophils and MDSC and whose expression 

correlates with poor prognosis in PDA (41). Further, blocking CXCR2 sensitized the tumor 

cells to gemcitabine and anti-programmed cell death protein 1 (anti-PD-1) (41). Thus, 

insights into immunological mechanisms can lead to the development of combinatorial 

therapeutic approaches that are effective against advanced cancers. Necroptosis is also 

accompanied by the release of SAP-130, a nuclear protein, that was recently identified as an 

endogenous ligand recognized by Mincle, a C-type lectin receptor necessary for immunity to 

mycobacterial pathogens, following necrotic cell death (42). However, Mincle is upregulated 

in tumor-infiltrating myeloid cells and promotes sterile inflammation by ligating SAP-130. 

Furthermore, Mincle ligation accelerates oncogenesis and is associated with myeloid cell 

mediated adaptive immune suppression by increased MDSC and M2-like macrophage 

infiltration, which vetoes T cell expansion and immunogenicity (30). Both SAP130 levels 

and Mincle signaling are reduced upon necrosome deletion or blockade. More broadly, the 
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modifiable pro-tumorigenic role for Mincle activation may have implications for novel 

therapeutics in malignancies in which necroptosis and inflammation modulate 

tumorigenesis. It is important to realize that whereas Mincle ligation is a novel avenue, 

which is sufficient to modulate pancreatic oncogenesis, it is likely not the only pro-

inflammatory pathway induced by necroptotic cell death. Notably, HMGB1 is elevated in 

multiple tumor types and ligation of its cognate receptor TLR4 or TLR9 are potently pro-

tumorigenic (43–45). Hence, it is conceivable, if not likely, that RIP1/RIP3-mediated cell 

death results in the release of an array of DAMPs, which influence tumorigenesis by a 

multitude of mechanisms, which relate to activation of innate inflammatory signaling.

Future Perspectives

The advent of clinical grade therapeutics targeting components of the necrosome may herald 

an exciting new era in cancer therapy. Further, there is ample rationale for potential 

synergistic efficacy of targeting the necrosome in combination with available check-point-

directed immunotherapy. Ligation of T cell checkpoint receptors, including cytotoxic T-

lymphocyte-associated antigen 4 (CTLA-4) and PD-1 are known to dampen the activation of 

T cells and deliver inhibitory signals to the T cells (46–49). Monoclonal antibodies directed 

at T cell checkpoint receptors have shown significant antitumor effects in several solid 

tumors particularly melanoma, bladder, kidney and lung cancer (50–53). However, 

application of T cell checkpoint blockade in many other cancers, including PDA, has had 

minimal impact in early clinical studies (54, 55). The poor efficacy of checkpoint-based 

immunotherapeutics as single agents likely relates to the scarcity and poor activation of T 

cells at baseline in the TME. Thus, expansion and activation of T cells via blockade of 

necroptosis is an exciting potential avenue to increase T cell activity and enable efficacy of 

immunotherapeutics.
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Figure 1. 
The necrototic pathway
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Figure 2. 
The necrosome may herald an exciting new era in cancer therapy. There is ample rationale 

for potential synergistic efficacy of targeting the necrosome in combination with available 

check-point-directed immunotherapy
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