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Of the many cellular and molecular hallmarks that are broadly associated

with physiological decline during aging (L�opez-Ot�ın et al., 2013), loss of

muscular strength in vertebrates is particularly problematic because in

humans it is a better predictor of morbidity and mortality than loss of

muscle mass (Newman et al., 2006). Human cohort studies indicate that

with both aging and disease, muscular strength is lost more rapidly than

muscle mass (Goodpaster et al., 2006). The mechanistic changes that

underlie age-related loss of muscular strength, however, have been

more elusive to identify than the mechanisms of age-related sarcopenia.

Age-induced loss of muscular strength has been a topic of sustained

debate. Despite a number of plausible hypotheses and clever experi-

mental designs, these earlier studies were unable to dissect the primary

mechanism(s) responsible for the reduction in specific force (when the

force is normalized to the cross-sectional area) with aging (Phillips et al.,

1993; Brooks & Faulkner, 1994; Faulkner et al., 2007). More recently,

the Delbono group demonstrated that decreased expression of the

voltage sensor Ca2+ channel a1 subunit (Cav1.1)—also known as the

dihydropyridine receptor (DHPR) in the skeletal muscle excitation–

contraction coupling literature—is associated with the loss of skeletal

muscle strength with aging (Delbono et al., 2007; Taylor et al., 2009).

They also showed that Cav1.1 expression levels can be regulated by

different mechanisms, which are not related to gene transcription or

mRNA expression (Delbono et al., 2007; Taylor et al., 2009).

In the paper ‘Calpain inhibition rescues troponin T3 fragmentation,

increases Cav1.1, and enhances skeletal muscle force in aging sedentary

mice’, Zhang et al. report a novel finding that TnT3 regulates Cav1.1

expression in skeletal muscle fibers and that calpain-mediated fragmen-

tation of TnT3 is associated with Cav1.1 downregulation in old mice

(Zhang et al., 2016). Delbono and colleagues have described how the

age-induced decrease in Cav1.1 levels leads to uncoupling of the type 1

ryanodine receptor (RyR1), which potentially decreases the amount of

activating Ca2+ released by the sarcoplasmic reticulum during contrac-

tion (Fig. 1) (Delbono, 2011; Hernandez-Ochoa et al., 2015; Lee et al.,

2015). The coupling between Cav1.1 in the sarcolemma and RyR1 in the

sarcoplasmic reticulum membrane has also been recently shown to be

modulated by protein Stac3, a novel mechanism for the modulation of

excitation–contraction that does not involve changes in the cellular level

of Cav1.1 (Polster et al., 2016). Importantly, Zhang et al. also report that

calpain-mediated TnT3 fragmentation and related downregulation of

Cav1.1 expression can be prevented by administration of a calpain

inhibitor, BDA-410, to old mice. These results suggest that calpain

activity and reduction in TnT3 fragmentation are potential therapeutic

targets for prevention and/or amelioration of age-related loss of

muscular strength.

TnT3 is one of the three polypeptides that comprise the troponin

complex in skeletal muscle. The function of the sarcomeric troponin

complex in the context of striated muscle regulation has been extensively

studied (Farah & Reinach, 1995; Gordon et al., 2000; Vinogradova et al.,

2005). In addition to cytoplasmic localization in thin filaments of the

sarcomere, TnT and troponin I (TnI)—along with troponin C (TnC),

tropomyosin, and actin—are present in the nuclei of striated muscle cells

(Asumda & Chase, 2012; Chase et al., 2013; Zhang et al., 2013a,b).

However, the role of troponin subunits in the striated muscle nucleus is

still under investigation and little is known. A mutant human cardiac TnT

(cTnT-R173W) associated with dilated cardiomyopathy (DCM) accumu-

lates in the nuclei of iPSC-derived cardiomyocytes and upregulates

phosphodiesterase (PDE) 2A and 3A activities via modulation of

epigenetic factors (Wu et al., 2015). Increased PDE activity is correlated

with increased cAMP levels and impaired b-adrenergic signaling, which

are hallmarks of the disease in patients with DCM and which compound

the detrimental effects of the TnT mutation on sarcomere contractility. In

the paper by Zhang et al. (2016), TnT3—the TnT isoform found in fast-

twitch skeletal muscle fibers—is reported to bind to the promoter region

of the Cacna1s (gene encoding Cav1.1) and regulate its transcription

levels in skeletal muscle fibers.

In Zhang et al., the authors demonstrated that the expression of

Cav1.1 is coupled to the expression of TnT3 and that TnT3—but not TnI,

TnC, or tropomyosin—binds specifically to the promoter region of

Cacna1s. Then they used SDS-PAGE to separate nuclear protein extracts

obtained from old mice (23–25 months) and identified a fragment of

TnT3. Mass spectrometry analysis indicated that cleavage sites of the

TnT3 fragments corresponded to sequences targeted by calpain.

Subsequently, the authors elegantly showed that old mice treated with

BDA-410 (a synthetic Leu–Leu peptidomimetic that inhibits cysteine

proteases) daily for 21 days displayed increased absolute and specific

forces at all frequencies of stimulation tested in intact soleus muscle

preparations, without changes in CSA. The endurance capacity tested

in vivo and ex vivo was not improved by the BDA-410 treatment.

Furthermore, they showed that BDA-410 does not affect the compo-

sition of soleus and EDL muscles; for example, the levels of titin and

myosin heavy chain (MHC) were not altered as well as MHC isoform

distribution in these two muscles. Interestingly, BDA-410 treatment

stabilized the nuclear full-length TnT3 and decreased the levels of

fragmented TnT3, which consequently increased the amount of Cav1.1

in skeletal muscle cells (Fig. 1) (Zhang et al., 2016).

Current therapeutic approaches that are being tested to improve

skeletal muscle function in the context of aging and disease include

myostatin inhibition, hormone therapy, and troponin activation,

among others (Jasuja & Lebrasseur, 2014). Calpain activity has been

linked to several disease conditions in striated muscle (Jia et al., 2001;
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Witt et al., 2004; Zhang et al., 2006; Patterson et al., 2011), and

inhibition of its activity has been suggested as a therapeutic strategy

(Carragher, 2006), leading to the identification of BDA-410—the

calpain inhibitor used by Zhang et al.—and the search for other small

molecule inhibitors (Xu et al., 2013). The report by Zhang et al.

demonstrates a role for nuclear TnT3 regulating Cacna1s transcription

and Cav1.1 expression, and it also indicates that inhibition of skeletal

muscle calpain activity may be an effective new therapeutic strategy

to diminish the deleterious effects of aging on muscle function.

Another potential topic of investigation is whether resistance training,

which is known to effectively increase strength through mechanisms

other than hypertrophy in aged muscle (Frontera et al., 1988), exerts

its beneficial effect on muscle performance by decreasing nuclear

fragmented TnT3. This study by Zhang et al. provides both important

mechanistic data for understanding the regulation of Cav1.1 in aged

skeletal muscle and direction for future interventional studies in the

aging population.
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