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Metabolic diseases and CVDs are caused by the effects 
and interactions of multiple genetic variants and lifestyle/
environmental factors. Obesity, T2D, and coronary artery 
disease (CAD) are currently important causes of morbidity 
and mortality worldwide. Therefore, understanding the 
etiology and pathophysiology of these diseases is of great 
interest.

Genome-wide association studies (GWASs) have sub-
stantially increased our knowledge about the genetic basis 
of metabolic diseases and CVDs. Advances in next-genera-
tion sequencing techniques have made it possible to ac-
cumulate detailed genetic information at the level of the 
exome and genome. By contrast, the development in phe-
notyping has been considerably slower in recent years. 
Deep phenotyping of large randomly selected population-
based studies is crucial for the success of genetic studies. 
Especially before the era of GWASs, population samples 
tended to be too small and poorly phenotyped with re-
spect to clinical traits and laboratory measurements.

The Finnish population is a homogeneous isolate that 
has experienced a bottleneck in the 16th century in the 
settlement of Eastern Finland. A recent study demon-
strated that Finns carry a significant enrichment of low fre-
quency (1–5%) (1) and loss-of-function variants (frequency 
0.5–5%) compared with other European and Asian popu-
lations (2). This offers advantages for studying rare variants 
in complex diseases. Distribution of common alleles in Finns, 
both synonymous and nonsynonymous, is unchanged by 
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the bottleneck and, consequently, genetic association stud-
ies have reported similar associations of common variants 
with clinical and laboratory traits in Finns as in other Euro-
pean populations, as presented in this review. However, a 
strong influence of the bottleneck, particularly the propor-
tional enrichment of rare deleterious variants, is also influ-
enced by the unique history of the Finnish population and 
will not necessarily apply to all populations influenced by a 
bottleneck (2).

There are benefits to carrying out population-based epi-
demiological studies among Finns. The participation rate 
in these studies has been high (60–80%) during recent de-
cades. Additionally, access to electronic nationwide health 
records (hospital discharge, mortality, cancer, and drug 
reimbursement registries) in Finland makes it possible to 
follow-up essentially all participants of any population-
based study with respect to morbidity, mortality, and drug 
treatment of different diseases. Given this ideal setting to 
investigate nongenetic and genetic factors influencing the 
risk of different chronic diseases in Finns, we initiated the 
Metabolic Syndrome in Men (METSIM) study in 2005.

METSIM STUDY

Cross-sectional study
The METSIM study includes 10,197 men, aged from 45 

to 73 years at entry, randomly selected from the population 
register of the Kuopio town, Eastern Finland, and exam-
ined in 2005–2010 (3). The aim of the study is to investi-
gate nongenetic and genetic factors associated with T2D 
and CVD, and with cardiovascular risk factors in both cross-
sectional  and  longitudinal  settings.  The  METSIM  study 
protocol includes, e.g., collection of data on drug treat-
ment, CVD risk factors [smoking, exercise, diet, history  
of chronic diseases (including CAD, stroke, cardiac fail-
ure, medication, history of diabetes or early onset CAD in 
the family)], a questionnaire on the FINDRISC score (4), 
and measurement of height, weight, waist, hip, blood pres-
sure, and fat percentage. Figure 1 presents  the METSIM 

cross-sectional and follow-up study designs, including deep 
phenotyping and extensive DNA- and RNA-based genetic 
studies. Table 1 lists the diseases and traits investigated in 
the METSIM study, including nongenetic markers and ge-
netics of the corresponding diseases/traits.

Laboratory studies include the following measurements 
obtained after a minimum of 10 h fasting: lipids, lipopro-
teins, apolipoproteins, adiponectin, bilirubin, alanine ami-
notransferase (ALT), bile acids, high sensitivity C-reactive 
protein, interleukin 1 receptor antagonist (IL-1RA), inter-
leukin 1, HbA1c, mass spectrometry metabolomics (Me-
tabolon,  Durham,  NC),  and  proton  NMR  measurements 
(lipids and lipoproteins, amino acids, fatty acids of differ-
ent lengths, and other low molecular weight metabolites). 
Additionally, an oral glucose tolerance test (OGTT) is per-
formed to evaluate glucose tolerance (samples for glucose, 
insulin, proinsulin, and free fatty acids measured at 0, 30, 
and 120 minutes) (5). We also obtained subcutaneous adi-
pose  tissue  samples  from  1,410  participants.  We  assessed 
insulin sensitivity and insulin secretion using markers that 
we validated in a separate sample of 287 nondiabetic Finn-
ish individuals from the region of Kuopio. We validated 
our insulin secretion markers against measures from the 
intravenous glucose tolerance test, and insulin sensitivity 
markers against the gold standard method to evaluate insu-
lin sensitivity, the euglycemic-hyperinsulinemic clamp (6).

Follow-up study
The protocol of 5 year follow-up study is identical to that 

of the cross-sectional study. To date, we have reexamined 
6,496 participants (participation rate 64%) and identified 
693 new cases of T2D (a total of 2,106 incident and preva-
lent cases). The follow-up study will be finished in 2017. 
Diagnoses of myocardial infarction, stroke, and peripheral 
vascular disease (amputations) are verified from medical 
records against internationally accepted criteria for these 
diseases (7, 8). We also collect data from medical records 
on coronary angiograms, balloon angioplasty, by-pass cor-
onary artery surgery, heart failure, and diabetic micro-
vascular (retinopathy, nephropathy) and macrovascular 
complications. Participants signed a consent that allows us 

Fig. 1. Description of the cross-sectional and longi-
tudinal  METSIM  study.  The  cross-sectional  study  in-
cluded 10,197 Finnish men, aged from 45 to 73 years. 
Phenotyping included several laboratory measure-
ments in fasting, an OGTT, and proton NMR measure-
ments  from  all  participants.  DNA-based  genotyping 
includes OmniExpress for common and exome chip 
for low-frequency and rare variants, exome and ge-
nome  sequencing,  DNA  methylation  analysis  in  adi-
pose tissue, and gut microbiome sequencing. Adipose 
tissue  biopsies  have  been  taken  from  1,410  partici-
pants,  RNA  sequencing  performed  for  795  partici-
pants  and  RNA  expression  determined  for  770 
participants. The protocol of the follow-up study is 
identical to the cross-sectional study, and so far 6,496 
individuals have participated in the follow-up. Addi-
tionally, all participants have registry follow-up allow-
ing information on morbidity, mortality, and drug 
treatment to be obtained.
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to use several Finnish registries: hospital discharge registry 
(includes all diagnoses of hospital admission), drug reim-
bursement and prescription registry (includes informa-
tion on drug therapy for major chronic diseases, including 
diabetes, CAD, hypercholesterolemia, etc.), cancer regis-
try, and mortality registry. Therefore, the coverage of the 
follow-up data of the participants is nearly 100% with re-
spect to diagnoses of different diseases.

Genotyping, mRNA expression, and RNA sequencing
OmniExpress  (Illumina)  genotyping,  exome  chip  (Illu-

mina) genotyping genotyping, and exome sequencing have 
been performed for essentially all METSIM participants (9), 
and >2,000 METSIM participants have been whole-genome 
sequenced. Subcutaneous adipose tissue mRNA expression 
(Affymetrix) and RNA sequencing have been performed for 
770 and 795 METSIM participants, respectively (10).

Ethics approval
The Ethics Committee of the University of Eastern Fin-

land and Kuopio University Hospital approved  the MET-
SIM  study,  and  this  study  was  conducted  in  accordance 
with the Declaration of Helsinki. All study participants gave 
written informed consent.

Limitations of the METSIM study
The METSIM cohort includes only Finnish men. There-

fore, the results reported in the METSIM participants need 
to be replicated in women and in other ethnic groups. The 
rationale to include only men was that in the age group 
from 45 to 73 years, the prevalence and incidence of T2D 
and CAD are higher in Finnish men than in Finnish women.

NON-GENETIC BIOMARKERS

T2D and hyperglycemia
A major interest in our studies based on the METSIM co-

hort has been to investigate the predictors for the develop-
ment of hyperglycemia and the conversion to T2D. T2D is 

often preceded by a long period of prediabetes, character-
ized by insulin resistance and elevation of fasting (impaired 
fasting glucose) or 2 h glucose (impaired glucose tolerance) 
in an OGTT (11). Conversion to diabetes happens when the 
pancreas is no longer able to increase insulin secretion in a 
manner sufficient to compensate for insulin resistance in pe-
ripheral insulin-sensitive tissues. Characteristic findings of 
individuals with prediabetes and T2D are impaired insulin 
secretion and insulin resistance. Insulin resistance also plays 
a major role in the development of CVD (11).

We have identified several biomarkers as predictors for 
T2D and hyperglycemia (Table 2). We demonstrated that 
branch-chain amino acids (leucine, isoleucine) and aromatic 
amino acids (phenylalanine, tyrosine) were associated with 
increased risk of T2D and hyperglycemia, whereas glutamine 
was associated with decreased risk of T2D and hyperglycemia 
(12), confirming previous findings (13). Adjustment for in-
sulin sensitivity abolished the significance of these associa-
tions, demonstrating for the first time in a longitudinal 
setting that insulin resistance is a major mechanism by which 
amino acids increase the risk of T2D (12). We also demon-
strated for the first time that ketone bodies predict the 
conversion to T2D by impairing insulin secretion (14). Non-
cholesterol sterols (desmosterol, avenasterol) (15), glycerol, 
free fatty acids, and monounsaturated and saturated fatty ac-
ids predicted incident T2D (16). Palmitoleic acid increased 
and linoleic acid measured from plasma (17) or erythrocyte 
membranes (18) decreased the risk of T2D. High proinsulin 
level  (19)  and  apolipoprotein/lipoprotein  ratios  (20)  also 
predicted the conversion to T2D.

Summary point.  Identification of biomarkers predicting 
the conversion to T2D is of great importance, especially for 
the prevention of diabetes. We, and others, have identified 
several nongenetic biomarkers (amino acids, ketone bod-
ies, noncholesterol sterols, fatty acids) associated with the 
risk of T2D that improve the prediction for the conversion 
to diabetes beyond and above the classical risk factors for 
this disease (obesity, age, family history of diabetes, etc.). 
These findings need to be replicated in other ethnic groups 
and in women.

Nonalcoholic steatohepatitis
Non-alcoholic fatty liver disease is rapidly becoming the 

most common cause of liver disease, characterized by he-
patic lipid accumulation contributing to insulin resistance, 
T2D, and hyperlipidemia. It can lead to nonalcoholic ste-
atohepatitis (NASH) and liver cirrhosis, and ultimately to 
liver failure (21). Pathophysiological mechanisms leading 
to NASH have remained unclear, and noninvasive diagno-
sis of NASH is challenging. Therefore, finding simple labo-
ratory  markers  for  NASH  is  important.  We  hypothesized 
that increased IL-1RA serum levels in subjects with a high 
ALT level reflect increased inflammation in the liver.  
Indeed, we found that IL-1RA levels were associated with 
liver inflammation and ALT, independent of obesity, alco-
hol  consumption,  and  insulin  resistance  in  the  METSIM  
study. Moreover, we found that liver expression of IL1RN, 
a gene encoding IL1-RA, correlated with liver steatosis and 

TABLE  1.  Diseases and traits investigated in the METSIM study

Disease or Traita
Non-genetic 

Measurements
Genetic Association 

Studies

T2D (3) Yes Yes
Fasting or 2 h glucose Yes Yes
Glycated hemoglobin A1c Yes Yes
Insulin processing or insulin  

secretion
Yes Yes

Insulin resistance Yes Yes
NASH Yes No
Height Yes Yes
BMI Yes Yes
Adiposity and fat distribution Yes Yes
Fat mass Yes Yes
Metabolic syndrome Yes Yes
Adiponectin Yes Yes
Dyslipidemia Yes Yes
Blood pressure Yes Yes
CAD (7, 8) Yes Yes
CVD (7, 8) Yes Yes

a A number in parentheses describes the reference where the 
criteria for different disease endpoints has been defined.
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inflammation. Thus, increased IL1-RA levels in individuals 
with NASH could be directly  linked  to  liver disease. Our 
findings  suggest  that  IL-1RA  is  an  important noninvasive 
inflammatory marker for NASH (22).

Dysregulation of the cholesterol synthesis pathway and 
accumulation of cholesterol in the liver play an important 
role  in  the  pathogenesis  of  NASH.  We  measured  serum 
and liver levels of three cholesterol precursor sterols 
(cholestenol, desmosterol, lathosterol) as serum surrogate 
markers of cholesterol synthesis in 110 obese individuals 
with detailed liver histology. We found that desmosterol in 
serum and liver associated with NASH. These results sug-
gest that serum desmosterol is a marker of disturbed cho-
lesterol metabolism in the liver and a potential biomarker 
for NASH (23).

Summary point.  NASH can be diagnosed accurately only 
by liver biopsy. Therefore, several laboratory measure-
ments have been proposed as surrogate biomarkers, but no 
consensus  about  the best biomarker  for NASH has been 
reached. IL-1RA and desmosterol as potential biomarkers 
for NASH need further validation studies.

GENETICS OF T2D, HYPERGLYCEMIA, INSULIN 
SECRETION, AND INSULIN RESISTANCE

T2D
GWASs. The first replicated gene variant associated 

with T2D was the Pro12Ala amino acid substitution in the 
PPARG gene (24, 25). Interestingly, we demonstrated, using 
a Pro12Ala knock-in model, that, on chow diet, the Ala12Ala 
mice were leaner, had increased insulin sensitivity, and lon-
ger  lifespans.  High-fat  feeding  eliminated  the  beneficial 
effects of the Pro12Ala variant on adiposity and insulin sen-
sitivity, demonstrating strong gene-environment interac-
tions for this variant (26). Since 2007, GWASs and sequenc-
ing studies have provided new insights into the genetic basis 
of T2D, and currently about 90 loci for T2D and over 80 loci 

for glycemic traits have been published (27). The METSIM 
study has been an important European cohort in the iden-
tification and replication of several loci for T2D and for 
studies aiming to define causal mechanisms at the T2D sus-
ceptibility loci (28–34). However, these studies in aggregate 
explain only about 10–15% of the heritability of T2D.

Protective gene variants.  The METSIM study has been a 
part of three studies reporting protective gene variants for 
T2D. A study that combined sequence and genotype data 
on 150,000 individuals across five ancestry groups showed 
that two protein-truncating variants of SLC30A8 (p.Arg138* 
and  p.Lys34Serfs*50)  encoding  zinc  ZnT8  transport  pro-
teins are associated with T2D protection, suggesting that 
ZnT8 inhibition could be a therapeutic strategy in T2D pre-
vention (35). Similarly, by whole-genome sequencing of 
2,630 Icelanders, a low-frequency (1.5%) variant in intron 1 
of CCND2 was found that reduced the risk of T2D by half 
(36). This finding was replicated in 29,956 individuals, in-
cluding the participants of the METSIM cohort (37). A re-
cent exome sequencing study reported that a low-frequency 
missense variant in the gene encoding glucagon-like pep-
tide-1 receptor (GLP1R), the target of GLP1R agonists, was 
associated with decreased fasting glucose levels and the risk 
of T2D, consistent with GLP1R agonist therapies (38).

Low frequency variants. The most recent study evaluated 
how much low-frequency variants (0.005 < minor allele fre-
quency < 0.05) explain of the heritability of T2D. This 
study included whole-genome sequencing data from 2,657 
European individuals with and without diabetes, and 
exome sequencing data from 12,940 individuals from five 
ancestry groups, including the METSIM cohort. This study 
did not support the notion that low-frequency variants ex-
plain a substantial portion of T2D heritability (39).

Hyperglycemia.  Several  studies,  including  the  METSIM 
cohort,  have  shown  that  common  (40–43)  and  low-fre-
quency/rare variants assayed by the exome array (44, 45) 
are associated with fasting or 2 h glucose concentrations 

TABLE 2. Association of different metabolites and laboratory measurements with T2D and hyperglycemia in the 
prospective METSIM study

Marker T2D Hyperglycemia

Amino acids (11) Alanine↑, leucine↑, isoleucine↑,  
tyrosine↑, phenylalanine↑,  
glutamine↓

NA

Ketone bodies (13) Acetoacetate↑, -hydoxybutyrate↑ Acetoacetate↑
Non-cholesterol sterols (14) Desmosterol↑, campesterol↓, 

avenasterol↑
Desmosterol↑, campesterol↓, 

avenasterol↑
Glycerol, FAs (proton NMR) (15) Glycerol↑, free FAs↑, n-3 FAs↓,  

n-6 FAs↓, monounsaturated FAs↑,  
saturated n-7 and n-9 FAs↑

Glycerol↑, free FFAs↑, n-6 FAs↓, 
monounsaturated FAs↑, saturated 
n-7 and n-9 FAs↑

Plasma FAs in phospholipids,  
cholesteryl esters, and triglyceride  
fractions (16)

Dihomo--linoleic acid↑ Saturated FAs↑, palmitoleic acid↑, 
dihomo--linolenic acid↑, 
linoleic acid↓

Erythrocyte membrane FAs (17) Palmitoleic acid↑, linoleic acid↓ Palmitoleic acid↑, linoleic acid↓
Proinsulin (18) Fasting and glucose-stimulated 

proinsulin↑
Fasting and glucose-stimulated 

proinsulin↑
Lipoproteins and  

apolipoproteins (19)
ApoB/LDL cholesterol ratio↑,  

ApoA1/HDL cholesterol ratio↑
ApoB/LDL cholesterol ratio↑, 

ApoA1/HDL cholesterol ratio↑

References are in parentheses. NA, not available.
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(46, 47). Moreover, not all of 80 loci identified for hyper-
glycemia are risk loci for the conversion to T2D. The MET-
SIM cohort has also been a part of  the  studies  reporting 
common variants for glycated hemoglobin levels (48).

Summary point. GWASs and exome and genome sequenc-
ing have identified close to 200 gene variants associated with 
T2D and hyperglycemia. Larger sample sizes of population 
studies will increase the number of gene variants even fur-
ther, but genetic variants do not explain the epidemic of T2D 
observed today worldwide. Environmental and lifestyle fac-
tors and their interaction with genetic variants are the key to 
understanding the etiology and pathophysiology of T2D. 
Lifestyle factors also modify gene expression and methylation 
of DNA, which are likely to play an important role in the risk 
of T2D and other chronic diseases.

Insulin secretion and insulin resistance
Common variants. Most of the common variants known 

to be associated with the risk of T2D affect insulin process-
ing and insulin secretion and only a few affect insulin sen-
sitivity (49–51). The METSIM cohort was important for this 
collaborative work given the large size of our cohort, as well 
as validated markers for insulin secretion and insulin sensi-
tivity (52). Three studies,  including  the METSIM cohort, 
have searched for variants regulating insulin resistance 
(53–55).  A  common  variant,  rs11603334,  was  associated 
with T2D and proinsulin levels in the METSIM study. The 
T2D-risk allele increased transcriptional activity and was as-
sociated with increased ARAP1 expression in a small sam-
ple of human pancreatic islets, suggesting that increased 
ARAP1 expression may contribute to T2D susceptibility 
(56), although the T2D-risk allele at this locus is also associ-
ated with decreased STARD10 expression in larger studies 
of human pancreatic islets (57).

Low frequency and rare variants. We were the first to re-
port exome array results for insulin processing and secre-
tion  (9).  We  identified  low-frequency  coding  variants 
associated with fasting proinsulin concentrations at the 
SGSM2 and MADD GWAS loci, and three new genes with 
low-frequency variants associated with fasting proinsulin or 
insulinogenic index (TBC1D30, KANK1, PAM) in 8,229 
nondiabetic  participants  of  the  METSIM  study.  Of  these 
genes, SGSM2, MADD, TBC1D30, and KANK1 regulate or 
function in G-protein signaling (Fig. 2). Our study demon-
strated that, by exome array, it is possible to identify low-
frequency variants that contribute to complex traits.

Summary point. Genetic studies have given important 
information about the etiology and pathophysiology of 
T2D. It is now clear that the most important pathophysio-
logical mechanism leading to T2D is impaired insulin 
secretion, largely attributable to multiple gene variants 
regulating insulin secretion. By contrast, only a few gene 
variants regulating insulin sensitivity have been found, sug-
gesting that insulin resistance is more likely to be an ac-
quired trait (obesity, lack of exercise, unhealthy diet) than 
an inherited trait.

FINDING NEW FUNCTIONS FOR COMMON 
GENE VARIANTS ASSOCIATED WITH DIFFERENT 
CLINICAL AND LABORATORY MEASUREMENTS

In  recent  years,  genetic  studies  have  become  much 
larger and technologies developed to identify low fre-
quency and rare gene variants across the whole exome and 
genome have made it possible to identify causal variants for 
different diseases and traits. Understanding the biology be-
hind genetic association is, however, the key for the under-
standing of the pathophysiology of different diseases. T2D 
is a good example of the problem of imprecise phenotypes 
because the pathophysiology of this disease involves several 
tissues, including pancreas, liver, skeletal muscle, fat, and 
brain. Phenotyping that goes beyond what is typically re-
corded in medical records or routine laboratory measure-
ment is needed to dissect out mechanisms behind diseases 
of interest (58). Such “deep phenotyping” is possible in 
small clinical and family studies. The authors of a recent 
study performed detailed physiological (euglycemic clamp, 
insulin secretion) and in vitro characterization (insulin sig-
naling in adipose tissue and skeletal muscle) in a limited 
number of carriers of the PTEN mutation (59). They were 
able to show that mutation carriers had decreased risk of 
T2D owing to enhanced insulin sensitivity (59).

Deep phenotyping is more challenging in large popula-
tion-based studies for several reasons. First, deep pheno-
typing is expensive and time consuming. Second, large 

Fig. 2. Roles of described genes in G protein signaling [small G pro-
tein signaling modulator 2 (SGSM2), MAP kinase activating death do-
main (MADD), TBC1 domain family member 30 (TBC1D30), and KN 
motif and ankyrin repeat domains 1 (KANK1)] have been shown to 
regulate or function in G protein signaling. GTP-binding proteins 
(G proteins) are characterized by their ability to bind and hydrolyze 
GTP and include members of Rab, Rac, Rho, Rap, and other families. 
G proteins are active when bound to GTP, but inactive when bound to 
GDP. Guanine nucleotide exchange factors (GEFs) catalyze the disso-
ciation of GDP and the binding of GTP, thus promoting to active 
G protein state. When bound to GTP, G proteins remain active briefly 
and can activate G proteins by promoting GTP hydrolysis and a return 
to the inactive state. Adapted from (9).
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population-based cohorts have been collected several years 
ago when the significance of deep phenotyping in studies 
aiming to identify genes for complex diseases was not 
deemed practical. Third, deep phenotyping is successful 
only if study participants are willing to undertake time-con-
suming protocols (e.g., biopsies from tissues of interest, 
metabolic studies lasting for hours).

Deep phenotyping offers many advantages for genetic 
studies, and it could improve, for example, the classification 
of a disease of interest into the subtypes. In the majority of 
cases, T2D occurs especially in obese individuals who are typi-
cally insulin resistant, but this disease can also occur in nor-
mal weight individuals whose primary defect in glucose 
metabolism is impaired insulin secretion. Large sample sizes 
are needed to obtain statistically significant association of 
gene variants with T2D, a heterogenous disease defined by 
fasting and 2 h glucose concentrations. Deep phenotyping at 
the tissue, metabolite, and pathway levels related to the 
pathophysiology of T2D is likely to improve the understand-
ing of the function of gene variants associated with T2D, and 
has the potential to reduce, to some extent, the sample sizes 
required to detect association. In the METSIM study, we have 
applied deep phenotyping, including proton NMR spectros-
copy, to measure several metabolites for association studies 
with T2D risk gene variants. We found that the glucose-in-
creasing alleles of rs780094 in glucokinase regulatory protein 
gene (GCKR) and rs174550 in fatty acid desaturase 1 (FADS1) 
were significantly associated with lipoprotein particles (5). 
The glucose-increasing allele of rs780094 of GCKR was addi-
tionally associated with decreased levels of the amino acids, 
alanine and isoleucine, and elevated levels of glutamine (12) 
and -hydroxybutyrate (14). Thus, GCKR regulates not only 
glucose metabolism, but also lipoprotein and ketone body 
metabolism, and demonstrates that deep phenotyping offers 
a tool to identify new functions for the genes of interest.

Summary point
Phenotyping has been underdeveloped compared with 

genotyping in genetic studies. Recent studies applying pro-
ton NMR and mass spectrometry-based metabolomics, in-
cluding  the  METSIM  study,  have  shown  the  potential  of 
deep phenotyping to identify new functions and pathways 
for the gene variants of interest. By contrast, proteomics, 
another essential tool for the understanding of the func-
tions of cellular systems in human diseases, has not yet 
been widely applied because of many methodological chal-
lenges.  New  technological  developments  are  urgently 
needed to advance the proteomics approach so that it may 
also be applied in genetic studies.

GENETICS OF ANTHROPOMETRIC TRAITS

Obesity and height
Obesity is heritable (60) and an important risk factor for 

T2D and CVD. The METSIM study has been a replication 
cohort for several GWASs aiming to identify common vari-
ants for height (61, 62) and BMI (63–66). The most recent 

meta-analysis  included 339,224  individuals and  identified 
97 BMI-associated loci accounting for 2.7% of BMI varia-
tion. Genome-wide estimates suggested that common vari-
ants account for >20% of BMI variation (66).

Adiposity
The METSIM study has participated as a replication co-

hort for meta-analyses for adiposity and fat distribution 
(67–71). Interestingly, we found that the body-fat-decreas-
ing allele near IRS1 was paradoxically associated with in-
sulin resistance, dyslipidemia, and decreased adiponectin 
levels. We demonstrated, using the data from the METSIM 
study, that the variant near IRS1 is likely to have its primary 
effect on body fat percentage and that the association with 
decreased insulin sensitivity is partly mediated by changes 
in body fat percentage (69).

Summary point
Obesity and, especially, central obesity are important 

risk factors for T2D, CAD, hypertension, and certain can-
cers. Recent studies, including observations from the MET-
SIM cohort, have shown that the gene variants associated 
with  BMI  are  primarily  expressed  in  the  central  nervous 
system, whereas gene variants associated with adiposity are 
primarily expressed in fat tissue (63–66). These findings 
from genetic studies have greatly contributed to better un-
derstanding of the etiology of obesity and adiposity.

GENETICS OF DYSLIPIDEMIA

Measurements
In  the  METSIM  study,  we  have  measured  lipids  (total 

cholesterol  and  triglycerides),  lipoproteins  (HDL,  LDL, 
VLDL), and apolipoproteins (apoA1 and apoB). Addition-
ally, we determined lipoprotein subclasses by proton NMR 
in native serum samples that provide quantitative molecu-
lar data on 14  lipoprotein subclasses and their  lipid con-
centrations and composition (72).

GWASs
The METSIM study has been included in many GWAS 

meta-analyses identifying gene variants regulating LDL 
cholesterol,  HDL  cholesterol,  and  triglycerides.  The  first 
such study including the METSIM cohort reported 11 new 
variants for these traits, suggesting that the cumulative ef-
fect of several common variants contribute to polygenic 
dyslipidemia (73). Metabochip analysis, including trans-
ethnic high-density genotyping, demonstrated the pres-
ence of allelic heterogeneity and the identification of 
population-specific variants (74) and the Global Lipids Ge-
netics Consortium study reported the association of lipid 
and lipoprotein loci with metabolic and cardiovascular 
traits, including coronary heart disease and blood pressure 
(75). The most recent of these studies identified associa-
tions of lipid and lipoprotein levels with 62 new loci, bring-
ing the total number of lipid-associated loci to 157 (75). All 
but one of the loci included protein-coding genes. Of the 
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62 new loci, 38 included genes whose role in the regulation 
of blood lipid levels has support from previous literature or 
databases,  but  for  24  loci  such  evidence  has  not  been 
documented.

Functional studies
It  has  been  challenging  to  convert  GWAS  data  into 

mechanistic  insights.  The  METSIM  study  data  has  been 
helpful in generating functional information for some 
GWAS variants, e.g., a variant rs7575840 in the APOB gene 
region associated with LDL cholesterol level. Adipose tis-
sue  RNA expression analysis  indicated  that  rs7575840  al-
ters the expression of APOB and a regional noncoding 
RNA (BU630349) (76). Another study examined the func-
tional regulatory effects of 25 noncoding variants at the 
GALNT2  locus  associated  with  HDL  cholesterol  in  the 
METSIM cohort. This study demonstrated that at least two 
noncoding variants play key roles in influencing GALNT2 
expression (77). We identified a gene locus for high serum 
triglycerides in Mexicans on chromosome 18q11.2 harbor-
ing  a  regulatory  gene  variant  (rs17259126),  and  demon-
strated that it disrupts normal hepatocyte nuclear factor 4 
binding and decreases the expression of the TMEM241 
gene in 795 adipose RNAs from the METSIM cohort. Our 
findings suggest that decreased transcript levels of 
TMEM241 contribute to increased triglyceride levels in 
Mexicans (78).

Summary point
Lipid-associated loci have been shown to associate 

strongly  with  CAD,  T2D,  BMI,  and  blood  pressure  (75). 
Therefore, genetic studies have greatly contributed not 
only to the understanding of the pathways that modify lipid 
and lipoprotein levels in humans, but also to the under-
standing of the links between lipids and lipoproteins and 
other chronic diseases. These studies may also facilitate the 
design of new therapies for cardiovascular and metabolic 
diseases. More mechanistic studies are needed, especially 
for those 24 new gene variants that have recently been as-
sociated with lipids and lipoproteins, having no support 
from previous literature or databases (75).

GENETICS OF BLOOD PRESSURE AND OTHER 
CARDIOVASCULAR RISK FACTORS

Blood pressure
Elevated blood pressure is a heritable trait and an impor-

tant risk factor for CVD. The METSIM study participated in 
the first GWAS meta-analysis for elevated blood pressure in-
cluding  a  total  of  34,433  subjects  of  European  ancestry  in 
which eight common variants were found to be associated 
with systolic or diastolic blood pressure (79). A second GWAS 
meta-analysis including 200,000 individuals of European  
descent identified sixteen new loci (80). A genetic risk score 
based on 29 genome-wide  significant variants was associ-
ated with hypertension, stroke, and CAD (80). Only three of 
the loci associated with blood pressure in Europeans were 

replicated in African Americans (81). A recent study includ-
ing 192,000 individuals identified 30 new blood pressure or 
hypertension-associated genetic regions. This study also iden-
tified three rare missense variants in RBM47, COL21A1, and 
RRAS with larger effects than common variants (82).

Metabolic syndrome
We conducted a GWAS on the metabolic syndrome and 

its component traits in four Finnish cohorts consisting of 
2,637 cases and 7,927 controls, both free of diabetes. A pre-
viously known lipid locus, the APOA1/C3/A4/A5 gene clus-
ter region, was associated with the metabolic syndrome in 
all four study samples. However, we did not find evidence 
for a common genetic basis for clustering of metabolic syn-
drome traits (83). We have also identified a variant in 
SIRT3 that is suggestive of a genetic association with the 
metabolic syndrome (84).

Adiponectin
Circulating levels of adiponectin, a hormone produced 

predominantly by adipocytes, are highly heritable. The 
METSIM study has contributed to a GWAS meta-analysis of 
39,883 individuals of European ancestry where eight novel 
loci were identified for adiponectin level. The genetic risk 
score, including several common risk variants for adipo-
nectin level, showed an association with T2D, increased 
triglycerides, obesity markers, fasting insulin, and insu-
lin resistance (85). However, a Mendelian randomization 
study did not support the conclusion that the association 
of adiponectin levels with insulin resistance and T2D is 
causal (86).

Summary point
Several new gene variants have recently been associated 

with blood pressure. More importantly, these studies have 
proved the causal link between elevated blood pressure 
and stroke and CAD, given the fact that the genetic risk 
score for blood pressure was associated directly with CVD 
endpoints. Our study has not found evidence for a com-
mon genetic basis of the metabolic syndrome (83), and 
similarly there is no causal link between adiponectin and 
insulin resistance and T2D.

GENETICS OF CAD

CAD is a major disease causing morbidity and mortality 
worldwide. Therefore, it is important to understand the ge-
netic  basis  of  CAD.  The  METSIM  study  participated  in  a 
GWAS meta-analysis of 63,746 CAD cases and 130,681 con-
trols that identified new loci for CAD. Fifteen loci reached 
genome-wide significance and all 46 putative susceptibility 
loci explained approximately 10.6% of CAD heritability. 
The four most significant pathways mapping to these net-
works were linked to lipid metabolism and inflammation, 
underscoring the causal role of these pathways in the genet-
ics of CAD (87). Importantly,  this study showed that both 
LDL cholesterol and triglyceride levels, but not HDL cho-
lesterol levels, were causally related to the risk of CAD (87).
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The METSIM cohort was involved in another study inves-
tigating specifically the possibility that increased triglycer-
ide  levels  are  causally  associated  with  CAD.  Using  185 
common variants mapped for plasma lipids, the study dem-
onstrated that total triglyceride levels correlated with the 
magnitude of its effect on CAD risk, taking into account 
the  effects  on  LDL  cholesterol  and/or  HDL  cholesterol 
levels. This study suggests that triglyceride-rich lipopro-
teins can causally influence the risk for CAD (88).

Summary point
Accumulating evidence from genetic studies demonstrates 

that the levels of LDL cholesterol and triglycerides are caus-
ally associated with the risk of CAD, whereas this causality is 
missing for HDL cholesterol level. These results have had im-
portant implications for the treatment of dyslipidemia.

TRANSCRIPTOMICS AND MicroRNA

Transcriptomics and RNA sequencing
The GWAS approach has been highly successful in the 

identification of common genetic variation contributing to 
normal and pathological traits. However, the mechanistic 
steps between genetic variation and different traits often 
remain poorly understood (89). Only a limited number of 
large-scale human population studies are available where 
extensive genotyping, phenotyping, and transcriptomics 
have been performed to obtain information on the func-
tionality of the gene variants.

The first large study including samples from peripheral 
blood (N = 1,002) and subcutaneous fat (N = 673) was pub-
lished  from  the  Icelandic  population.  The  study  showed 
that more than 50% of all gene expression traits in adipose 
tissue strongly correlated with clinical traits related to obe-
sity, compared with only about 10% in blood (90). Herita-
bility was a highly significant contributor to variation in 
gene expression, and there was an approximately 50% over-
lap of genetic  signals between the  two tissues (90). Given 
the fact that adipose tissue is very important for metabolic 
diseases and CVDs, we collected subcutaneous abdominal 
adipose tissue biopsies from 1,410 randomly selected MET-
SIM  participants  who  did  not  have  chronic  diseases  or 
chronic medication. Expression profiling using the Affyme-
trix  U219  microarray  expression  quantitative  trait  locus 
(eQTL) mapping was performed for 770 METSIM individu-
als with both genotype and expression data available. We 
provided evidence for >100 loci for which eQTLs are coin-
cident with GWAS loci, suggesting that these genes may be 
involved in human metabolic traits (91).

We also compared the results with those in 100 diverse 
commercially available inbred strains of mice, called the Hy-
brid Mouse Diversity Panel (HMDP), and found consistent 
associations between the traits and the expression of 25 genes 
in humans and mice (91). The HDMP is a collection of ap-
proximately 100 well-characterized inbred strains of mice 
that can be used to analyze the genetic and environmental 
factors underlying complex traits (92, 93). There are several 

benefits of the HMDP. It makes it possible to control environ-
mental factors, guarantees the access for global molecular 
phenotyping, and makes it possible to integrate separate 
studies. All published data of the HMDP are available (92).

In another study, we sequenced 600 adipose tissue RNA 
samples  from  METSIM  participants  (Illumina  TrueSeq 
RNA Prep kit and the Illumina Hiseq 2000 platform) and 
implemented a new method to identify genes whose ex-
pression is significantly associated with complex traits in 
individuals without directly measured expression levels. 
This method integrates gene expression measurements 
with summary association statistics from large-scale GWASs 
to identify genes whose cis-regulated expression is associ-
ated with complex traits. We identified 69 new genes sig-
nificantly associated with obesity-related traits (BMI, lipids, 
and height). Many of these genes were also associated with 
relevant phenotypes in the HMDP (10).

MicroRNA
MicroRNAs (miRNAs) are  small noncoding RNAs  that 

regulate gene expression and determine how genetic vari-
ants  affect  different  phenotypes.  Information  about  ge-
netic factors contributing to miRNA expression is limited; 
therefore, we examined variation of miRNA expression in 
adipose  tissue  in  200  METSIM  participants.  We  reliably 
quantified  356  miRNA  species  expressed  in  human  adi-
pose tissue using genome-wide expression arrays and 
next-generation sequencing. Genetic variation of miRNA 
expression  was  substantially  less  than  that  of  mRNAs. 
Twenty-four miRNAs were significantly associated with the 
traits of the metabolic syndrome (94).

Summary point
Adipose tissue gene expression studies have been impor-

tant to reveal eQTLs that contribute to the understanding 
of the function of the genes. However, adipose tissue gene 
expression studies also have limitations. Gene expression 
in a single tissue may not be relevant for the mechanisms of 
some of the cardiometabolic traits, and the colocalization 
of an eQTL with a disease locus may be coincidental. Ad-
ditionally, adipose tissue includes several cell types affect-
ing gene expression profile, and adipose tissue gene 
expression is also influenced by gender, diet, and other 
environmental factors (91).

FUTURE PLANS

Genome sequencing
Extensive genotyping and exome sequencing have been 

performed  for essentially all participants of  the METSIM 
study. Genome sequencing has been performed for >2,000 
METSIM study participants with and without CVD events, 
and continues in 2017–2018. (Fig. 3) 

Prediction models
The METSIM follow-up study and registry follow-up allow 

continuous monitoring of the incidence of several diseases, 
including T2D and CAD, that makes it possible to develop 
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genetic and nongenetic prediction models for T2D, cardio-
vascular complications, and cardiovascular risk factors. How-
ever, observational studies do not prove causality of a given 
risk factor. Therefore, we will apply Mendelian randomiza-
tion methods by using genetic variants to estimate the causal 
contribution of a given risk marker to the risk of a given dis-
ease (95). This information is crucial for the planning of pre-
vention of complex diseases, including T2D and CVD.

Omics
Recent major advances in omics technologies (metabo-

lomics, proteomics, etc.) have enabled high-throughput 
analysis of a variety of molecular processes. We will con-
tinue our deep phenotyping by applying these technolo-
gies, as well as epigenomics and microbiota studies aiming 
to associate these phenotypes with common, low frequency, 
and rare gene variants. Integrative analyses across multiple 
omics platforms are important as we investigate the etiolo-
gies of complex diseases.

Metabolome and proteome
Proton NMR and mass spectrometry allow high through-

put analysis of multiple metabolites. In the METSIM study, 
we  have  proton  NMR  data  for  >10,000  participants  and 
mass spectrometry-based metabolomics results currently 
for 2,292 participants. These data make it possible to cor-
relate metabolite concentrations with clinical traits and 
adipose tissue gene expression data, and to identify gene 
variants that regulate metabolite concentrations. Pro-
teomics allows studies of the entire set of proteins, the pro-
teome, by mass spectrometry and other methods. Recent 
advances in mass spectrometry and computational analysis 
of the results have made this technology an attractive 
method  to characterize  the proteome (96). As  shown  in 
Fig. 4, we have RNA  sequencing (N = 795) and adipose 
tissue  methylation  data  (N  =  758)  especially  from  those 

METSIM study participants who also have mass spectrom-
etry-based  metabolomics  data  (N  =  2,292).  Additionally, 
we have so far collected stool samples from 532 METSIM 
participants for gut microbiota sequencing and about 50% 
of them also have metabolomics data.

Microbiome
Diet plays an important role in obesity, metabolic syn-

drome, and other metabolic diseases, especially in T2D. Re-
cently, the gut microbiota has become a focus of interest 
because it is at the intersection of diet and metabolic health. 
Both animal models and human studies have accumulated 
data to show that the gut microbiota mediates the effects of 
the diet on the host metabolic status (97). In 2017–2018, we 
aim to collect additional stool samples from about 500 
METSIM participants for microbiota studies.

Epigenetics
Methylation  of  DNA  cytosine  bases  plays  an  important 

role in the regulation of gene expression. DNA methylation 
is variable among human populations, in part heritable, 
and controlled by genes both in cis and in trans  (98). To 
examine  the methylation pattern  in  the METSIM cohort, 
we have constructed reduced representation bisulfite se-
quencing libraries from adipose tissue biopsies. The se-
quences obtained from bisulfite sequencing libraries are 
enriched in genes and CpG islands, and cover approxi-
mately two million CpGs out of the 30 million CpGs in the 
human genome. The Illumina HiSeq platform is used for 
sequencing of the libraries. We aim to sequence about 800 
adipose tissue DNA samples in 2017–2018.

CONCLUSIONS

The METSIM study provides a resource for nongenetic 
and genetic studies of metabolic diseases and CVDs. It is a 

Fig. 3. A roadmap for the genome and phenome analyses in the 
METSIM study. The whole-genome sequencing and extensive pheno-
typing are ongoing. Phenotyping includes metabolomics, proteomics, 
epigenomics, adipose tissue transciptomics, and microbiome analysis. 
The interaction between the genome and phenome will be extensively 
investigated as well as the interaction between the genome and life-
style/environmental factors and aging. Prediction models will be de-
veloped using the Mendelian randomization approach by using 
genetic variants to estimate the causal contribution of a given risk 
marker to the risk of a given disease (especially T2D and CAD).

Fig. 4.  The number of the METSIM participants having data on 
adipose tissue RNA sequencing (N = 795), adipose tissue methyla-
tion (N = 758), and gut microbiota (N = 532) in relation to mass 
spectrometry-based metabolomics (N = 2,292). About 90% of par-
ticipants  who  have  RNA  sequencing  and  methylation  results  and 
about 50% of participants who have microbiota analyses also have 
metabolomics data.
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randomly selected large population-based sample of men 
(N = 10,197) from Eastern Finland having unique genetic 
background and extensive genetic data (OmniExpress 
chip, exome chip, and exome sequence in nearly all, ge-
nome sequence in many). We have performed deep phe-
notyping of this cohort and are currently expanding the 
phenotype further to include data on microbiota, RNA se-
quencing, adipose tissue methylation, and mass spectrom-
etry for metabolites and proteins. Our findings, so far, 
suggest that we are able to identify new nongenetic bio-
markers for T2D, insulin secretion, and insulin sensitivity. 
Additionally we have been able to find new low-frequency 
and rare variants  in the METSIM study alone and in col-
laboration with others, and we have reported their associa-
tion with proinsulin levels and insulin secretion. The 
METSIM study data have been useful in several meta-anal-
yses to identify new common variants for T2D, hyperglyce-
mia, anthropometric traits, and cardiovascular risk factors.

The METSIM study is a part of the Accelerated Medi-
cines Partnership Type 2 Diabetes (AMP T2D) project 
supported by the Foundation for the National Institutes 
of Health (99). This project is designed to create a knowl-
edge  portal  by  building  a  database  of  DNA  sequence, 
functional genomic and epigenomic, and clinical data 
from T2D studies with cardiac and renal complications. 
A broad range of genetic and phenotype data from the 
METSIM study will soon be available from the database 
of genotypes and phenotypes (dbGaP). The generation 
of a phenotype and genotype  resource  in  the METSIM 
study allows us and other investigators to proceed toward 
a “systems genetics” approach (100), which includes sta-
tistical methods to quantitate and integrate intermediate 
phenotypes, such as transcript, protein, or metabolite 
levels to provide a global view of the molecular architec-
ture of complex traits.
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