Skip to main content
. 2017 Mar 3;7:42717. doi: 10.1038/srep42717

Table 1. Statistical performance of SVM classification models for substrate or inhibitor of pharmacokinetics-relevant protein, P-gp and CYP.

Model SwissADME Previous models
TR/TS[a] ACCCV[b] AUCCV[c] ACCext[d] AUCext[e] TR/TS ACCCV AUCCV ACCext AUCext Reference
P-gp substrate 1033/415 0.72 0.77 0.89 0.94 544/n.c. 0.71[f] n.c. n.c. n.c. 53
            484/300 0.64 n.c. 0.59 n.c. 71
            332/n.c. 0.74[f] 0.77[f] n.c. n.c. 15
            212/120 0.74 n.c. 0.88 n.c. 57
CYP1A2 inhibitor 9145/3000 0.83 0.90 0.84 0.91 9145/3000 n.c. n.c. 0.88 0.95 54
            12099/2804 0.82[f] n.c. 0.68 0.81 77
            7208/7128 0.88[g] n.c. n.c. 0.93 55
CYP2C19 inhibitor 9272/3000 0.80 0.86 0.80 0.87 9272/3000 n.c. n.c. 0.85 0.91 54
            11885/2691 0.79[f] n.c. 0.81 0.84 77
            6038/5923 0.81[g] n.c. n.c. 0.89 55
CYP2C9 inhibitor 5940/2075 0.78 0.85 0.71 0.81 8720/3000 n.c. n.c. 0.83 0.90 54
            12130/2579 0.78[f] n.c 0.89 0.86 77
            6627/6530 0.83[g] n.c. n.c. 0.89 55
CYP2D6 inhibitor 3664/1068 0.79 0.85 0.81 0.87 9726/3000 n.c. n.c. 0.84 0.88 54
            11881/2860 0.84[f] n.c. 0.88 0.88 77
            7788/7761 0.90[g] n.c. n.c. 0.85 55
CYP3A4 inhibitor 7518/2579 0.77 0.85 0.78 0.86 8893/5135 n.c. n.c. 0.84 0.92 54
            11536/7025 0.78[f] n.c. 0.76 0.78 77
            2334/6738 0.81[g] n.c. n.c. 0.87 55

aNumber of molecules in the training set (TR) and in the test set (TS); b10-fold cross-validation accuracy; c10-fold cross-validation area under receiver operating characteristic (ROC) curve; dexternal validation accuracy; eexternal validation area under ROC curve; f5-fold cross-validation; g7-fold cross-validation.