Table 1. Statistical performance of SVM classification models for substrate or inhibitor of pharmacokinetics-relevant protein, P-gp and CYP.
Model | SwissADME | Previous models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TR/TS[a] | ACCCV[b] | AUCCV[c] | ACCext[d] | AUCext[e] | TR/TS | ACCCV | AUCCV | ACCext | AUCext | Reference | |
P-gp substrate | 1033/415 | 0.72 | 0.77 | 0.89 | 0.94 | 544/n.c. | 0.71[f] | n.c. | n.c. | n.c. | 53 |
484/300 | 0.64 | n.c. | 0.59 | n.c. | 71 | ||||||
332/n.c. | 0.74[f] | 0.77[f] | n.c. | n.c. | 15 | ||||||
212/120 | 0.74 | n.c. | 0.88 | n.c. | 57 | ||||||
CYP1A2 inhibitor | 9145/3000 | 0.83 | 0.90 | 0.84 | 0.91 | 9145/3000 | n.c. | n.c. | 0.88 | 0.95 | 54 |
12099/2804 | 0.82[f] | n.c. | 0.68 | 0.81 | 77 | ||||||
7208/7128 | 0.88[g] | n.c. | n.c. | 0.93 | 55 | ||||||
CYP2C19 inhibitor | 9272/3000 | 0.80 | 0.86 | 0.80 | 0.87 | 9272/3000 | n.c. | n.c. | 0.85 | 0.91 | 54 |
11885/2691 | 0.79[f] | n.c. | 0.81 | 0.84 | 77 | ||||||
6038/5923 | 0.81[g] | n.c. | n.c. | 0.89 | 55 | ||||||
CYP2C9 inhibitor | 5940/2075 | 0.78 | 0.85 | 0.71 | 0.81 | 8720/3000 | n.c. | n.c. | 0.83 | 0.90 | 54 |
12130/2579 | 0.78[f] | n.c | 0.89 | 0.86 | 77 | ||||||
6627/6530 | 0.83[g] | n.c. | n.c. | 0.89 | 55 | ||||||
CYP2D6 inhibitor | 3664/1068 | 0.79 | 0.85 | 0.81 | 0.87 | 9726/3000 | n.c. | n.c. | 0.84 | 0.88 | 54 |
11881/2860 | 0.84[f] | n.c. | 0.88 | 0.88 | 77 | ||||||
7788/7761 | 0.90[g] | n.c. | n.c. | 0.85 | 55 | ||||||
CYP3A4 inhibitor | 7518/2579 | 0.77 | 0.85 | 0.78 | 0.86 | 8893/5135 | n.c. | n.c. | 0.84 | 0.92 | 54 |
11536/7025 | 0.78[f] | n.c. | 0.76 | 0.78 | 77 | ||||||
2334/6738 | 0.81[g] | n.c. | n.c. | 0.87 | 55 |
aNumber of molecules in the training set (TR) and in the test set (TS); b10-fold cross-validation accuracy; c10-fold cross-validation area under receiver operating characteristic (ROC) curve; dexternal validation accuracy; eexternal validation area under ROC curve; f5-fold cross-validation; g7-fold cross-validation.