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miR-125b-5p enhances 
chemotherapy sensitivity to 
cisplatin by down-regulating Bcl2 in 
gallbladder cancer
Dong Yang1,*, Ming Zhan1,*, Tao Chen1, Wei Chen1, Yunhe Zhang1, Sunwang Xu1, Jinchun Yan2, 
Qihong Huang3 & Jian Wang1

Gallbladder cancer represents the most common malignancy of the biliary tract and is highly lethal with 
less than 5% overall 5-year survival rate. Chemotherapy remains the major treatment for late-stage 
patients. However, insensitivity to these chemotherapeutic agents including cisplatin is common. 
MicroRNAs (miRNAs) have been shown as modulators of drug resistance in many cancer types. We used 
genome-wide gene expression analysis in clinical samples to identify miR-125b-5p down-regulated 
in gallbladder cancer. miR-125b-5p up-regulation promoted cell death in gallbladder cancer cells in 
the presence of cisplatin. In contrast, knockdown of miR-125b-5p reduced cell death in gallbladder 
cancer cells treated with cisplatin. Up-regulation of miR-125b-5p significantly decreased tumor growth 
in combination with cisplatin in a mouse model. We identified Bcl2 as a direct target of miR-125b-5p 
which mediates the function of miR-125b-5p in gallbladder cancer. In clinical samples, miR-125b-5p was 
down-regulated in gallbladder cancer whereas Bcl2 was up-regulated and their expression was inversely 
correlated. Moreover, low miR-125b-5p expression or high expression of Bcl2 is correlated with poor 
prognosis in gallbladder cancer. Taken together, our findings indicate that miR-125b-5p is a potent 
chemotherapy sensitizer and may function as a new biomarker for the prognosis of gallbladder cancer 
patients.

Gallbladder cancer (GBC) is the most common biliary tract cancer in clinic worldwide1. Chemotherapies such 
as cisplatin (CDDP) remain the major treatment for patients with gallbladder cancer or cholangiocarcinoma2. 
However, resistance to chemotherapies leads to dismal prognosis3. The overall survival is less than 12 months 
even with the combination of cisplatin and gemcitabine4. Therefore, it is crucial for an extensive and thorough 
understanding of the molecular mechanisms of chemotherapy resistance in GBC.

MicroRNAs (miRNAs) are 20–22 nucleotide long molecules that function as post-transcriptional regulators. 
They bind directly to the 3′​ untranslated regions (3′​ UTRs) of target mRNAs and mediate their degradation. 
MicroRNAs have been shown to play important roles in cancer development including gallbladder cancer5–7. 
However, their functions in chemotherapy resistance are not well studied.

The Bcl2 family proteins are key regulatory components of the intracellular apoptosis pathway which is critical 
for cancer development8. Bcl2 is uniformly expressed in chronic lymphocytic leukemia and promotes leukemia 
cell survival9. Additionally, it has been documented that Bcl2 promotes cell migration and invasion in colorectal 
cancer10 and hepatocarcinoma cells11. However, whether and how Bcl2 is involved in the development of gallblad-
der cancer has not been studied.

We recently found that miR-125b-5p is significantly down-regulated in gallbladder cancer from genome-wide 
microRNA expression profiling in GBC and neighboring normal tissues. miR-125b-5p directly suppresses Bcl2 
expression and increases the sensitivity of cisplatin treatment in gallbladder cancer cells and mouse models.  
Because miR-125b-5p was identified in clinical samples prior to adjuvant therapy, it contributes to intrinsic 
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resistance to chemotherapy, rather than acquired resistance. The expression of miR-125b-5p and Bcl2 is inversely 
correlated and predicts prognosis. These results suggest novel therapeutic targets in gallbladder cancer treatment.

Results
Identification of gallbladder cancer-related miRNAs by genome-wide miRNA expression  
analysis in clinical samples.  To identify potential miRNAs involved in gallbladder cancer progression, we 
performed a genome-wide miRNA expression analysis in six pairs of gallbladder cancer samples and their neigh-
boring normal tissues. The expression of sixty miRNAs was found to be significantly altered between cancer and 
neighboring normal tissues (Fig. 1A). Among the top miRNA candidates, miR-125b-5p is highly down-regulated 
in tumor tissues than normal tissues. miR-125b-5p has been shown to be involved in endometriosis, myocardial 
infarction and chronic hepatitis B12–14, but its functions in cancer development have not been studied.

To validate the down-regulation of miR-125b-5p expression in gallbladder cancer, we performed qPCR in 
82 paired human gallbladder cancer and their corresponding neighboring normal tissues. The expression of 
miR-125b-5p was down-regulated in cancer tissues when compared with normal tissues (Fig. 1B). To deter-
mine whether the expression of microRNA candidates is correlated with prognosis, we selected two most 
down-regulated microRNAs, miR-125b-5p and miR-376a-3p (Fig. 1A), and two most up-regulated microRNAs, 
miR-3145-5p and miR-3174 (Fig. 1A), in gallbladder cancer to determine the correlation of their expressions and 
survival in clinical gallbladder cancer samples. Low expression of miR-125b-5p is correlated with poor prognosis 
(Fig. 1C), whereas the expression of miR-376a-3p (Fig. 1D), miR-3145-5p (Fig. 1E), and miR-3174 (Fig. 1F) is not 
correlated with prognosis. These data suggested that miR-125b-5p expression is significantly altered in gallblad-
der cancer and its low expression is correlated with poor prognosis.

Figure 1.  miR-125b-5p is down-regulated in human gallbladder cancer. (A) Heatmap demonstrating 
microRNA expression of six paired human gallbladder cancer and neighboring normal tissues. The heatmap 
analysis was performed by R software with gplots package (p value <​ 0.05 and log10 fold change >​2 or <​0.5).  
(B) Validation of miR-125b-5p expression of different stages (All stages; Stage I&II; III; IV) in human 
gallbladder cancer and neighboring normal tissues. miR-125b-5p expression is down-regulated in clinical 
gallbladder cancer samples (*p <​ 0.05, ***p <​ 0.001). (C–F) Gallbladder cancer patient survival was analyzed 
by Kaplan-Meier analysis. P value was calculated using log-rank test. MicroRNA expression which exceeds the 
average level (mean value) is defined as “high” while microRNA expression which is less than the average level 
(mean value) is defined as “low”. (C) Lower miR-125b-5p expression in tumor is correlated with poor prognosis. 
(D) miR-376a-3p expression is not correlated with survival in gallbladder cancer. (E) miR-3145-5p expression 
is not correlated with survival in gallbladder cancer. (F) miR-3174 expression is not correlated with survival in 
gallbladder cancer.
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miR-125b-5p sensitize gallbladder cancer to cisplatin treatment.  miR-125b-5p expression was 
determined in three gallbladder cancer cell lines NOZ, GBC-SD, and SGC-996 by qPCR. NOZ has the low-
est miR-125b-5p expression whereas SGC-996 has the highest (Fig. 2A). It has been shown that NOZ is highly 
resistant to chemotherapy treatment15, thus we determined whether miR-125b-5p played any role in the sen-
sitivity of cisplatin treatment in gallbladder cancer. miR-125b-5p mimics, antisense oligos, control mimics, 
and control antisense oligos were transfected into NOZ, GBC-SD, and SGC-996 cells which were subsequently 
treated with cisplatin or with no treatment. Cell death was measured by Annexin V staining and FACS analysis. 
Over-expression or knock-down of miR-125b-5p did not affect cell death (Fig. 2B). Overexpression of miR-
125b-5p in these cells led to significant cell death when cells were treated with cisplatin (Fig. 2C). In contrast, 
downregulation of miR-125b-5p led to resistance in cells treated with cisplatin (Fig. 2C). IC50s of cisplatin were 
reduced in NOZ, GBC-SD, and SGC-996 cells transfected with miR-125b-5p mimics (Fig. 2D), but increased in 
these cells transfected with miR-125b-5p antisense oligos (Fig. 2D). These results indicated that miR-125b-5p is 
involved in cisplatin sensitivity in gallbladder cancer cells.

Bcl2 is a direct target of miR-125b-5p and mediates its function in gallbladder cancer.  To iden-
tify the direct targets of miR-125b-5p, we used microRNA target prediction program TargetScan 7.016 and find 
Bcl2 is one of the potential targets which contain miR-125b-5p binding site at its 3′​UTR region. Bcl2 has been 
shown to be involved in cell death17,18 that is highly relevant to the cisplatin sensitivity phenotype. Immunoblotting 
was used to determine the expression of Bcl2 in gallbladder cancer cells. Introduction of miR-125b-5p mimics in 
NOZ, GBC-SD, and SGC-996 cells substantially decreased Bcl2 protein expression whereas miR-125b-5p anti-
sense oligos increased Bcl2 expression (Fig. 3A,B, Supplementary Figure 1). To test whether Bcl2 is a direct target 
of miR-125b-5p, we constructed reporter plasmids containing the 3′​UTR of Bcl2 (Fig. 3C). Co-transfection of 
miR-125b-5p and the reporter plasmids showed that the introduction of miR-125b-5p significantly suppressed 
the expression of a luciferase gene containing the 3′​UTR of Bcl2 but not the one containing the 3′​UTR of Bcl2 with 
the mutation in the miR-125b-5p binding site (Fig. 3D). Conversely, knockdown of miR-125b-5p by antisense 

Figure 2.  miR-125b-5p increases cytotoxic sensitivity to cisplatin treatment in human gallbladder cancer 
cells. (A) miR-125b-5p expression in human gallbladder cancer cell lines, NOZ, GBC-SD, SGC-996, was 
quantified by qPCR. (B–C) NOZ, GBC-SD, SGC-996 cells were transfected with miR-125b-5p mimic or control 
mimic oligos, antisense miR-125b-5p or control anti-sense oligos. Cells were treated with cisplatin for 24 hours 
or with no treatment. Apoptosis were measured using Annexin V/PI staining. Student t test was used to 
calculate p value. *P <​ 0.05; **P <​ 0.01; ***P <​ 0.001; n.s, no significance. (B) miR-125b-5p mimics or antisense 
oligos did not affect cell death. (C) miR-125b-5p mimics sensitized gallbladder cells to cisplatin treatment 
and miR-125b-5p antisense oligos increased resistance to cisplatin treatment in gallbladder cancer cells. (D) 
IC50s of NOZ, GBC-SD, SGC-996 cells treated with cisplatin were calculated using cell viability data in Fig. 
2B. Ectopic expression of miR-125b-5p decreased IC50 when compared with that of cells transfected with 
control oligos. Inhibition of miR-125b-5p by anti-sense oligos increased IC50 when compared with that of cells 
transfected with control anti-sense oligos.
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oligos increased the luciferase signal containing 3′​UTR of Bcl2 but not 3′​UTR of Bcl2 with mutant miR-125b-5p 
binding site (Fig. 3D). These results suggested that Bcl2 is directly regulated by miR-125b-5p.

To determine whether Bcl2 mediates the function of miR-125b-5p in cisplatin sensitivity, we co-transfected 
miR-125b-5p and Bcl2 cDNA without the 3′​UTR which contains the miR-125b-5p binding site into NOZ, 
GBC-SD, and SGC-996 cells. Introduction of both miR-125b-5p and Bcl2 significantly reduced cell death in 
these cells treated with cisplatin when compared with miR-125b-5p and a control vector (Fig. 3E). These results 
suggested that Bcl2 is a critical mediator in the cisplatin sensitivity function of miR-125b-5p.

miR-125b-5p enhances cisplatin therapy in a mouse model.  To further confirm the function of miR-
125b-5p in cisplatin sensitivity, we transplanted GBC-SD cells into mice which were then treated with cisplatin 
or saline control. Tumor volume was measured to determine tumor growth. Introduction of miR-125b-5p did 
not affect tumor growth in vivo (Fig. 4A,B). Bcl2 expression was decreased in tumor cells with miR-125b-5p 
(Fig. 4C,D), which further confirmed that miR-125b-5p down-regulates Bcl2. Apoptosis of the tumor cells were 
similar in cells with or without miR-125b-5p overexpression (Fig. 4E,F), which is consistent with our observa-
tion that miR-125b-5p alone does not affect cell death or proliferation in vitro. miR-125b-5p markedly sensitize 
tumor cells to cisplatin treatment (Fig. 4A,B). Bcl2 expression in the tumor cells were further decreased in cells 
with miR-125b-5p and cisplatin treatment (Fig. 4C,D). Apoptosis of transplanted tumor cells were significantly 
increased in cells which were introduced with miR-125b-5p and treated with cisplatin when compared with cells 
with a control vector and cisplatin treatment (Fig. 4E,F). Taken together, these results further confirmed the func-
tion of miR-125b-5p in cisplatin sensitivity in vivo.

miR-125b-5p and Bcl2 expressions are biomarkers for prognosis in human gallbladder cancer.  
We have shown that miR-125b-5p was down-regulated in gallbladder cancer samples (Fig. 1A,B) and suppressed 
Bcl2 expression in vitro and in vivo. To investigate whether miR-125b-5p negatively regulates Bcl2 in clinical 
samples, we determined the Bcl2 expression in human gallbladder cancer samples. The expression of Bcl2 is 
higher in gallbladder cancer tissues than in neighboring normal tissues (Fig. 5A). Immunohistochemistry stain-
ing of Bcl2 showed higher Bcl2 expression in gallbladder cancer when compared with that in neighboring normal 
tissues (Fig. 5B). The expression of miR-125b-5p and Bcl2 are inversely correlated in gallbladder cancer samples 
(Fig. 5C). Low miR-125b-5p expression is inversely correlated with survival (Fig. 1C). Interestingly, high Bcl2 
expression is correlated with poor survival in gallbladder cancer (Fig. 5D). Moreover, the combination of miR-
125b-5p low expression and Bcl2 high expression is highly correlated with poor prognosis in clinical samples. 

Figure 3.  Bcl2 expression is directly suppressed by miR-125b-5p. (A,B) Human gallbladder cancer cell  
lines, NOZ, GBC-SD, SGC-996, were tranfected with miR-125b-5p mimics, or control mimics, anti-sense  
miR-125b-5p, or control anti-sense oligos. Bcl2 mRNA expression in these cells were quantified by qPCR  
(A) and Bcl2 protein expression were measured by immunoblotting (B). (C) Bcl2-luciferase reporter plasmid 
construction. Seed sequence of miR-125b-5p targeting Bcl2 was indicted in grey. Mutant sequence of the 
reporter plasmid was indicted in white. (D) NOZ, GBC-SD, SGC-996 cells were transfected with wildtype or 
mutant Bcl2-luciferase reporter plasmid and miR-125b-5p mimics or control mimics or miR-125b-5p anti-
sense oligos or control anti-sense oligos. Firefly luciferase activity was measured and normalized to the Renilla 
luciferase activity. (E) Bcl2 mediates the function of miR-125b-5p in apoptosis. NOZ, GBC-SD, SGC-996 cells 
were transfected with a Bcl2 cDNA plasmid without the 3′​UTR and miR-125b-5p mimics or control mimics. 
Apoptosis were measured using Annexin V/PI staining. Student t test was used to calculate p value. *P <​ 0.05; 
**P <​ 0.01; ***P <​ 0.001.
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Figure 4.  miR-125b-5p sensitize human gallbladder cancer cells to cisplatin treatment in a mouse model. 
(A,B) Human gallbladder cancer GBC-SD cells expressing miR-125b-5p or a control vector were transplanted 
in mice subcutaneously. Mice were treated with cisplatin or saline. Tumor volume (A) and tumor weight 
(B) were measured. P value was determined by student t test. **P <​ 0.01; ***P <​ 0.01; n.s, no significance. 
Tumor growth was significantly suppressed in mice expressing miR-125b-5p treated with cisplatin. (C,D) 
Representative images of Bcl2 expression in tumor tissues in mouse model (C). Bcl2 expression was determined 
using immunohistochemistry (D). Bcl2 expression was decreased in tumors expressing miR-125b-5p. (E,F) 
Representative images of apoptosis in tumor tissues in mouse model (E). Apoptosis was determined using 
TUNEL staining (F). Apoptosis was increased in tumor cells expressing miR-125b-5p and treated with cisplatin.

Figure 5.  miR-125b-5p and Bcl2 expression are biomarkers for prognosis in human gallbladder cancer 
tissues. (A,B) Bcl2 mRNA (A) expression and protein expression (B) in clinical gallbladder cancer tissues 
and neighboring normal tissues was determined by qPCR and immunohistochemistry. Bcl2 expression was 
up-regulated in gallbladder cancer tissues than neighboring normal tissues. (C) Correlation of miR-125b-5p 
expression and Bcl2 expression in human gallbladder cancer tissues was analyzed using Pearson’s correlation 
analysis. r =​ −​0.594, P <​ 0.001. The expression of miR-125b-5p and Bcl2 were inversely correlated. (D,E) 
Gallbladder cancer patient survival was analyzed by Kaplan-Meier analysis. P value was calculated using 
log-rank test. Bcl2 expression which exceeds the average level (mean value) is defined as “high” while Bcl2 
expression which is less than the average level (mean value) is defined as “low”. (D) Higher Bcl2 expression in 
tumors is correlated with poor prognosis. (E) Patients with both lower miR-125b-5p expression and higher Bcl2 
expression in tumors exhibit poor prognosis.
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These results further supported the regulation of Bcl2 by miR-125b-5p and demonstrated the significance of 
miR-125b-5p and Bcl2 as biomarkers in gallbladder cancer progression.

Discussion
Cisplatin resistance is common among gallbladder cancer patients with cisplatin treatment as adjuvant therapy. 
Discovery of molecules and therapies that sensitize cisplatin in gallbladder cancer is urgently needed. We used 
a genome-wide microRNA expression profiling to identify miR-125b-5p markedly down-regulated in gallblad-
der cancer. Lower miR-125b-5p expression in GBC is correlated with poor prognosis. Moreover, miR-125b-5p 
sensitizes gallbladder cancer cells to cisplatin treatment. Bcl2 is a direct target of miR-125b-5p and mediates its 
functions. These findings suggest a novel therapeutic target for gallbladder cancer.

Although microRNAs have been implicated in gallbladder cancer development5,19, their functions in the 
sensitization of chemotherapies have not been well studied. We recently found that miR-145 is up-regulated in 
gallbladder cancer tissues and sensitize cisplatin treatment by suppressing MRP120. In this work, we found that 
miR-125b-5p is down-regulated in human gallbladder cancer and has different mechanisms to enhance cisplatin 
sensitivity. It contributes to intrinsic resistance to chemotherapy after surgery rather than acquired resistance. 
These results indicate that cisplatin resistance in gallbladder cancer is due to multiple mechanisms. Therapeutics 
that targeting multiple molecules is required to improve therapeutic efficiency of cisplatin in GBC.

In summary, we showed for the first time that miR-125b-5p-Bcl2 pathway is potentially a therapeutic target 
for gallbladder cancer. MicroRNA mimics have been developed for therapeutics21–24, although delivery remains a 
major issue for their use in the clinic. Bcl2 small molecule inhibitors have also been developed and are currently 
in clinical trials for chronic lymphocytic leukemia patients25,26. Although Bcl2 inhibitors are easier to be delivered 
in patients, miR-125b-5p mimics potentially have advantages in therapy because miR-125b-5p target molecules 
in addition to Bcl2 may also contribute to resistance. In combination with cisplatin, these therapeutics would 
potentially overcome cisplatin resistance and improve clinical outcomes in gallbladder cancer.

Materials and Methods
Tissue samples.  Formalin-fixed, paraffin-embedded (FFPE) cancer tissues were collected from 82 patients 
harboring histologically-confirmed GBC who underwent surgical resection of the gallbladder and postoperative 
adjuvant chemotherapy at the Department of Pathology (Renji Hospital) from January 2004 to December 2013 
retrospectively. Fresh GBC tissues and the neighboring noncancerous gallbladder tissues were also obtained from 
82 GBC patients. All fresh tumor samples were collected immediately after the surgical removal and snap-fro-
zen in liquid nitrogen, then stored at −​80 °C until total RNA was extracted. Postoperative survival was calcu-
lated from time of surgery to time of last follow-up or death. The collection and analysis of patient samples 
were approved by the Ethical Committee of Renji Hospital, Shanghai Jiao Tong University School of Medicine, 
and written informed consent was obtained from all patients. All methods and experiments were carried out in 
accordance with the approved guidelines and regulations.

miRNA microarray.  Total RNA samples were spiked using the MicroRNA Spike-In Kit (Agilent 
Technologies) to assess the labeling and hybridization efficiencies. After the spiked total RNA was treated with 
alkaline calf intestine phosphatase, a labeling reaction was initiated with 100 ng of total RNA per sample. T4 RNA 
ligase, which incorporates cyanine 3-cytidine biphosphate (miRNA Complete Labeling and Hyb Kit; Agilent 
Technologies), was used to label the dephosphorylated RNA. The cyanine 3-labeled miRNA samples were sub-
sequently prepared for one-color hybridization (miRNA Complete Labeling and Hyb Kit). The labeled miRNA 
samples were hybridized to the Agilent Human miRNA Microarray 8 ×​ 60 K Release 16.0 (Release 16.0, 8 ×​ 60 K 
format; Agilent Technologies) for 20 h at 55 °C. After washing the microarray slides with buffers with increas-
ing stringency (Gene Expression Wash Buffers; Agilent Technologies), the slides were dried with acetonitrile. 
Fluorescent signal intensities were detected on an Agilent Microarray Scanner (Agilent Technologies) with the 
Scan Control A.8.4.1 Software (Agilent Technologies) and were extracted from the images using the Feature 
Extraction 10.7.3.1 Software (Agilent Technologies). All of the steps described above were performed according 
to the manufacturer’s instructions. The raw miRNAs microarray data were normalized using the GeneSpring 
GX software version 12.0 (Agilent Technologies). The signal values were transformed to the log base 10, and 
then quantile and percentile shift was applied to obtain an equal distribution of probe signal intensities. The 
comparative analysis of the gallbladder cancer and normal control group samples was performed using the t-test 
(p-values) and SAM (http://www-stat.stanford.edu/~tibs/SAM/). Compared with the expression level of the ref-
erence RNA, the miRNAs were described as differentially expressed if the p-values were <​0.05, and the fold 
change (FC) was greater than 2 or less than 0.5.

Cell culture.  The human embryonic kidney 293 cells (HEK293FT) and two human GBC cell lines, NOZ 
and GBC-SD were maintained in Dulbecco’s Modified Eagle Medium (DMEM), Another human GBC cell line 
SGC- 996 was maintained in RPMI-1640 medium, with all media containing 10% fetal bovine serum (FBS) and 
antibiotics (Gibco, Grand Island, NY, USA). Cells were maintained at 37 °C in a humidified atmosphere consisting 
of 5% CO2. NOZ was purchased from the Health Science Research Resources Bank (Osaka, Japan). GBC-SD and 
SGC-996 cells were provided by the Academy of Life Sciences, Tongji University (Shanghai, China). HEK293FT 
cells were purchased from Invitrogen (MD, USA) and were used for adenovirus amplification. Cisplatin was dis-
solved in dimethyl sulfoxide (DMSO). GBC cells were treated with cisplatin (40 μ​M in NOZ and 4 μ​M in GBC-SD 
or SGC-996 cells) or control DMSO.

Cell transfection.  Human miR-125b-5p expression construct was generated by insertion of the cod-
ing sequence (CDS) of miR-125b-5p into pCDHCMV- MCS-EF1-copGFP (System Biosciences, CA, USA). 
Recombinant lentiviruses were produced by transient transfection of HEK293FTcells, along with package vectors, 

http://www-stat.stanford.edu/%7etibs/SAM/
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using Lipofectamine 2000 (Invitrogen). After transfection for 48 h, the viruses were harvested and viral titers were 
determined. Then, GBC-SD cells were infected with lentiviruses in the presence of 4 μ​g/ml polybrene (Sigma), 
followed by puromycin selection (2 μ​g/ml). Bcl2 expression vector was constructed by cloning Bcl2 cDNAinto a 
pcDNA 3.1 vector (Invitrogen). NOZ, GBC-SD and SGC-996 cells were transfected with the Bcl2 expression plas-
mid using Lipofectamine 2000 (Invitrogen) transfection reagent according to the protocols. The pcDNA3.1 empty 
vector was used as negative control (vector). The miR-125b-5p mimic, miR-125b-5p inhibitor, and siRNA of Bcl2 
were purchased from GenePharma (Shanghai, China). Cells were cultured to 60–70% confluence in six-well 
plates and then transfected using Lipofectamine 2000 (Invitrogen).

Quantitative.  Real-time PCR analysis Total RNA and miRNA were isolated from fresh tissues and cells using 
TRIzol reagent (Invitrogen) and miRNeasy Mini Kit (Qiagen, Hilden, Germany), and miRNAs were extracted 
from FFPE samples using miRNeasy FFPE Kit (Qiagen) according to the manufacturer’s instructions. After syn-
thesizing cDNAs with Reverse Transcriptase M-MLV kit, the expression levels of miR-125b-5p and Bcl2 were 
analyzed using SYBR Premix Ex Taq (Takara, Shiga, Japan) and run with Applied Biosystems ViiA™​ 7 Real-Time 
PCR System (Applied Biosystems, Foster City, CA). Data were analyzed by 2−​Δ​Δ​CT method27 and presented 
relative to the expression of GAPDH for Bcl2 and in relation to the expression of small nuclear U6 RNA for miR-
125b-5p. The primer sequences are listed in Supplementary Table 1.

Cytotoxicity, cell apoptosis, cell proliferation assays.  Cell viability (NOZ, GBC-SD and SGC-996) 
was identified by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium 
assay (MTS; Promega, Madison, WI, USA). Briefly, cells were plated (5 ×​ 103 cells/well) on 96-well plates and 
incubated overnight to allow cell attachment. Then, NOZ cells were treated with cisplatin at a series of concen-
trations of 1, 2, 4, 8, 16, 32, 64, 128 and 256 μ​M while GBC-SD and SGC-996 cells were treated with cisplatin at 
concentrations of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, and 32 μ​M for 24 h, respectively. Subsequently, the MTS reagent 
(20 μ​l) was added to each well, followed by incubation at 37 °C in a humidified, 5% CO2 atmosphere for 2 h. 
Finally, the absorbance was read at 490 nm by using a Synergy 2 (BioTek, VT, USA) plate reader. The cell viability 
was indicated as a percentage relative to control. Cell proliferation was also analyzed using MTS assay (Promega) 
when NOZ, GBC-SD and SGC-996 cells were seeded into a 96-well plate (1 ×​ 103 cells/well) and cultured for 
72 h. Apoptosis of gallbladder cancer cell lines were analyzed using Annexin V/PI Apoptosis Detection Kit (BD 
Biosciences, MA, USA) according to the manufacturer’s instructions. Cells were seeded in six-well plates and 
grown to approximately 60% confluence, followed by treating with cisplatin (40 μ​M in NOZ and 4 μ​M in GBC-SD 
or SGC-996) for 48 h. Cells were harvested and incubated with Annexin V/PI for 15 min in the dark, followed by 
fluorescence-activated cell sorting (FACS) analysis. All the assays were carried out four times.

Reporter vector constructs and dual luciferase reporter assay.  The fragment from Bcl2-3′​-UTR 
containing the predicted miR-125b-5p binding site was amplified by PCR and then cloned into a pmirGLO 
Dual-Luciferase miRNA Target Expression Vector (Promega) to form the reporter vector Bcl2-3′​-UTR wild type. 
The putative binding site of miR-125b-5p in the Bcl2- 3′​-UTR was mutated by using a site-directed mutagenesis 
kit from Fast Mutagenesis System (TransGen Biotech, Beijing, China), and the mutant reporter vector was named 
as Bcl2-3′​-UTR mutant. The miR-125b-5p mimic and vector were co-transfected into 3 human gallbladder cancer 
cells, and Renilla luciferase reporter plasmid (pRL-TK) was also co-transfected as the internal reference. After 
transfection for 48 h, cells were lysed in passive lysing buffer, and then firefly and Renilla luciferase activities were 
analyzed using the Dual-Luciferase Reporter Assay System (Promega). The results of firefly luciferase activity 
were normalized to the Renilla luciferase activity.

Western blot analysis.  For protein isolation from NOZ, GBC-SD and SGC-996 cells, RIPA buffer supple-
mented with proteinase inhibitor cocktail was used. The protein concentration was determined using the BCA 
assay. Equal amounts of cell lysates were loaded on a 10% sodium dodecyl sulfate-polyacrylamide gel for electro-
phoresis (SDS-PAGE) and transferred to PVDF membranes (Millipore, IL, USA). The membranes were blocked 
for 1 h at room temperature using Tris-bufferred saline with 0.05% Tween 20 (TBST) and 5% skimmed milk, 
and then the following primary antibodies were applied overnight at 4 °C: anti-Bcl2 (Santa Cruz, CA, USA) 
and anti-β​-actin (Sigma). After washing three times with TBST, the membranes were incubated with secondary 
antibody at room temperature for 2 h and washed again with TBST. Images of target proteins were detected by 
chemiluminescence HRP substrate kit (Millipore).

Immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling 
assays.  All specimens from patients and subcutaneous xenografts fixed in 10% buffered formalin were 
embedded in paraffin blocks. Consecutive 4-μ​m thick sections were analyzed using a standard immunohisto-
chemistry protocol and stained by antibodies of Bcl2 (1:100, Santa Cruz). Positive staining cells were visualized 
by DAB systems and counterstained with hematoxylin. The stained sections were photographed and converted to 
a digital image using light microscopy equipped with camera (Olympus, Tokyo, Japan). The scoring of immuno-
histochemistry (IHC) is based upon the staining intensity (I) and the proportion of stained quantity (q) of tumor 
cells to obtain a final score (Q) defined as the product of I ×​ q and was performed by two independent pathol-
ogists. The scoring system for I was 0 =​ negative, 1 =​ low, 2 =​ moderate, 3 =​ intense immunostaining; and for q 
was 0 =​ negative, 1 =​ 1–9% positive, 2 =​ 10–39% positive, 3 =​ 40–69% positive, and 4 =​ 70–100% positive cells. 
Cell apoptosis of xenograft sections was also detected by using In Situ Cell Death Detection Kit, POD (Roche, 
Basel, Switzerland) according to the manufacturer’s instruction. The sections were visualized with DAB and 
counterstained with hematoxylin. The number of terminal deoxynucleotidyl transferase dUTP nick end labeling 
(TUNEL)-positive cells was randomly counted in five fields, and the apoptosis index for each field was calculated 
as the percent of TUNEL-positive cells relative to the total cells.
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In vivo studies.  Animal maintenance and experimental procedures were strictly performed following the 
guidelines of the Animal Care and Use Committee of Shanghai Jiao Tong University and approved by IACUC com-
mittee of Shanghai Jiao Tong University. A total 1 ×​ 106 GBC-SD/pcDNA3.1 miR-125b-5p or GBC-SD/pcDNA3.1 
empty vector cells in 60 μ​l medium were subcutaneously transplanted into 4-week-old male nude mice of each 
group (group 1, vector; group 2, miR-125b-5p; group 3, vector +​ cisplatin; group 4, miR-125b-5p +​ cisplatin;  
n =​ 6/group). When the average tumor size reached approximately 0.1 cm3, cisplatin was administered via 
intraperitoneal injection at a dose of 4 mg/kg at Day 14 and Day 24. Saline was used as a control. Tumor vol-
umes were examined using external caliper once every 4 days and were calculated based on the equation: 
V =​ (length ×​ width2)/228. All mice were sacrificed at the 44th day, and the tumors were dissected out for hema-
toxylin and eosin (H&E) staining, IHC staining, and TUNEL staining. All methods and experiments were carried 
out in accordance with the approved guidelines and regulations.

Statistics.  Data are expressed as mean ±​ SEM. Two-group comparisons were performed with unpaired 
two-tailed Student’s t test. Survival probabilities were determined using Kaplan-Meier analyses and compared by 
the log-rank test. Each experiment consisted of at least four replicates per condition. SPSS 17.0 software was used 
for all statistical analysis. P <​ 0.05 was considered statistically significant.
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