
sensors

Article

Diagnosis by Volatile Organic Compounds in Exhaled
Breath from Lung Cancer Patients Using Support
Vector Machine Algorithm

Yuichi Sakumura 1,*, Yutaro Koyama 1, Hiroaki Tokutake 1, Toyoaki Hida 2, Kazuo Sato 3,
Toshio Itoh 4, Takafumi Akamatsu 4 and Woosuck Shin 4,*

1 Department of Information Science and Technology, Aichi Prefectural University, Nagakute 480-1198, Japan;
sonic.h.0715@gmail.com (Y.K.); tokusanpc@gmail.com (H.T.)

2 Department of Thoracic Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku,
Nagoya 464-8681, Japan; 107974@aichi-cc.jp

3 Department of Mechanical Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan;
sato@aitech.ac.jp

4 Department of Materials and Chemistry, National Institute of Advanced Industrial Science and
Technology (AIST), Shimo-Shidami, Moriyama-ku, Nagoya 463-8560, Japan; itoh-toshio@aist.go.jp (T.I.);
t-akamatsu@aist.go.jp (T.A.)

* Correspondence: sakumura@ist.aichi-pu.ac.jp (Y.S.); w.shin@aist.go.jp (W.S.);
Tel.: +81-561-64-1111 (Y.S.); +81-52-736-7107 (W.S.)

Academic Editor: W. Rudolf Seitz
Received: 15 November 2016; Accepted: 29 January 2017; Published: 4 February 2017

Abstract: Monitoring exhaled breath is a very attractive, noninvasive screening technique for
early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient
accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very
low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and
healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed
a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung
cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced
the number of VOCs and used support vector machine (SVM) algorithm to classify the samples.
We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is
sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of
a desktop GC-sensor analysis system for lung cancer.

Keywords: lung cancer; volatile organic compounds (VOCs); exhaled air; screening; gas chromatography–
mass spectrometry analysis; support vector machine (SVM)

1. Introduction

Balancing the quality of life and sharp increase in healthcare expenses is an important social issue.
Breath analysis is a noninvasive technique, allows easy sample collection, and provides quick results;
thus, it is gaining attention as a new diagnostic technology. Breath is composed mainly of nitrogen
(the most abundant gas in the atmosphere) along with carbon dioxide produced by respiration, oxygen
that was not consumed, and water vapor. In addition, it contains more than 100 additional types of
gas components in different concentrations, which provide information that may be useful to monitor
health conditions such as disease or stress. Gas-sensing technologies (e.g., selective and quantitative
gas detection) are necessary to measure the concentration of different gas species related to halitosis,
metabolism, and diseases.
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Some volatile organic compounds (VOCs) in exhaled breath are expected to be useful as
biomarkers for diseases, including cancer [1,2]. Lung cancer has become a major concern in Japan
because it is the top cause of death by disease in the country. Lung cancer has a high mortality rate
because it has often progressed by the time a patient perceives any symptoms and is diagnosed. If lung
cancer is detected earlier, it can be treated by surgery and subsequent chemotherapy. However, no good
early diagnostics are available. It is difficult to detect lung cancer using chest X-ray radiography
(CXR) [3]; thus, diagnosis is provided after sputum analysis and extensive examination with low-dose
computed tomographic (LDCT) scanning.

Monitoring the breath is one of the most noninvasive screening techniques available for early
diagnosis [4–11]; however, this method is limited by its poor accuracy because the exhaled breath
has many VOCs at very low concentrations (ppb level), and there is no clear protocol of breath
sampling [12]. Gas chromatography–mass spectrometry (GC/MS) is one of the best methods for detecting
low-concentration VOCs; however, this method is expensive, and the instrumentation is not portable.

If some specific VOCs have sufficient information for diagnosing diseases, one could measure
these VOCs with relatively high resolution using a suitable technique, and detection of the other gas
species would not be necessary. VOCs have been reported as biomarkers for lung cancer [5,8,13–18];
however, various other compounds have also been reported as possible biomarkers, suggesting
disagreement in literature. For these reasons, VOC patterns (i.e., not single VOCs, but combinations
of several VOCs) should be used for exhaled breath analysis for the diagnosis of diseases [5,8,13–19].
Here, we seek to determine which gas species are more important and how many are necessary to
ensure system reliability. The optimized prototype system should be of reasonable size and cost;
the number of gas species used should be fewer than 10, and the system should be able to detect the
essential components of those gases.

Recent studies have demonstrated computer-assisted diagnosis by measuring multiple VOCs.
Various algorithms have been applied to examine lung cancer diagnosis using multiple VOCs;
for example, forward stepwise discriminant analysis [5,13], partial least-squares regression [14],
logistic regression [15,18], random forest classification [20], weighted digital sum discriminator [21],
and linear canonical discriminant analysis with principal component analysis (PCA) [17]. The support
vector machine (SVM) is a powerful supervised machine learning model based on statistical learning
theory [22]. SVM has been successfully used in the field of brain science to classify brain tumors [23,24],
Alzheimer’s disease [25,26], and depression [27,28], based on magnetic resonance imaging (MRI)
data. SVM-based research has been performed for VOC analysis to classify lung cancer cells [29],
smoking subjects [30], patients with chronic obstructive pulmonary disease [31], and patients with
head-and-neck cancer [32]. Many studies have examined VOCs in the exhaled breath; however,
SVM-based analysis with a raw VOC data set has not been examined to select the essential VOCs for
diagnosing lung cancer.

We have developed a prototype system for monitoring exhaled breath that can replace GC/MS.
It combines a highly sensitive gas sensor with GC to separate the gases. The prototype system has
simple GC columns, a simple gas-condenser unit, and SnO2-based semiconductor gas sensors [33].
For further development of the prototype system, we analyzed the VOCs detected in the breath of lung
cancer patients and healthy subjects (controls) to determine the most effective combination of VOCs
for diagnosing lung cancer. We applied a nonlinear SVM classification to various subsets of the VOCs
detected by the GC/MS system and did not preprocess the VOCs by PCA because it is difficult to select
VOCs from the principal components, which are composed of the multiple VOC features, and validate
diagnose ability by the selected VOCs. We also did not select VOCs that have a significant difference
in concentration between cancer and healthy samples. It is likely that the diagnosis is possible by
the VOCs that have no significant difference in VOC concentration. We performed leave-one-out
cross-validation of the samples (patients and controls) for each of the combinations of VOCs and
evaluated the true positive rate (sensitivity) and accuracy of diagnosis for the left-out sample. We found
that a specific combination of a small number of VOCs could diagnose lung cancer with a high accuracy.
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2. Breath Gas Analysis and Diagnosis Methods

2.1. Breath Collection and Analysis

After obtaining approval from the local ethics committees of Aichi Cancer Center and the National
Institute of Advanced Industrial Science and Technology and written informed consent from the
participants, 107 patients with lung cancer and 29 healthy individuals were enrolled in this study.
The stage and histology of the lung cancer were omitted and it was simply labeled as “lung cancer”.
The numbers of patients with stage I, II, III and IV lung cancer were 55, 15, 28 and 9, respectively.
The numbers of smoker, ex-smoker, and nonsmoker for lung cancer patients were 47, 15 and 45 and
those for healthy individuals were 5, 3 and 21, respectively.

Human breath and ambient air in a room at Aichi Cancer Center were collected using
an Analytic Barrier Bag (Omi Odor-Air Service Corp., Omihachiman, Japan). Before sample collection,
the volunteers did not eat or smoke for several hours and they stayed in the room for at least 10 min.
All volunteers blew their alveolar breath into a 1 L Analytic Barrier Bag immediately after they exhaled
their respiratory tract air in a consultation room. The breath was analyzed using a GCMS-QP2010
instrument (Shimadzu, Kyoto, Japan) equipped with a TD-2 gas-condensing unit (Shimadzu) (Figure 1).
The TD-2 has a gas aspiration unit and a cold trap for condensation of low-concentration VOCs.
The GC/MS system used helium gas (99.9995% purity, Taiyo Nippon Sanso, Japan) as the carrier
gas. A DB-1 series 123-1063 gas column (Agilent Technologies, Santa Clara, CA, USA) was used.
The background VOCs in the room air and the VOCs from the exhaled air were analyzed, and the
concentrations of background VOCs were subtracted from the results for the exhaled air prior to data
analysis. The concentrations of these VOCs were excluded from the results of breath analysis in this
study. The details are reported elsewhere [33].
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Figure 1. Breath sampling and gas analysis by GC/MS.

We detected 63 VOCs. Among them, three VOCs may come from cancer treatment drugs and
40 VOCs were present at low concentrations, close to the detection limit of GC/MS. We deleted these
43 VOCs and examined the SVM diagnosis using the remaining 20 VOCs (Table 1).

Table 1. Selected volatile organic compounds (VOCs) for the computer-assisted diagnostic analysis.

Butane †,‡ CH3CN †,‡ CHCl3
†,‡ Methanol † Acetone ‡

CHN ‡ Ethanol ‡ 1-Propanol 2-Propanol C8H16
Isoprene Dichlorobenzene C8H17OH Xylene Methylcyclohexane
Toluene C2H3CN Limonene Nonanal Unknown 1

† Wilcoxon test: p < 0.05; ‡ Kolmogorov–Smirnov test: p < 0.05; 1 this VOC could not be identified.
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2.2. Data Sets

As listed in Table 1, many of the VOCs have no significant differences between cancer and healthy
samples, and the concentration distributions of the VOCs (nine VOCs are selected and shown in
Figure 2) show unclear boundaries between the cancer and healthy control samples. Some of the lung
cancer samples contained higher concentrations of VOCs than the healthy samples; however, there
was a wide overlap of the types of VOCs found in each sample. This suggests that it is quite difficult
to diagnose lung cancer using a single VOC; thus, diagnosis using multiple VOCs is necessary.

Sensors 2017, 17, 287 4 of 12 

 

2.2. Data Sets 

As listed in Table 1, many of the VOCs have no significant differences between cancer and 
healthy samples, and the concentration distributions of the VOCs (nine VOCs are selected and 
shown in Figure 2) show unclear boundaries between the cancer and healthy control samples. Some 
of the lung cancer samples contained higher concentrations of VOCs than the healthy samples; 
however, there was a wide overlap of the types of VOCs found in each sample. This suggests that it 
is quite difficult to diagnose lung cancer using a single VOC; thus, diagnosis using multiple VOCs 
is necessary. 

 

 
(a) (b) 

 
(c) 

 
(d) (e) (f) 

(g) (h) (i) 

Figure 2. Comparison of VOC concentration distributions from lung cancer (red, n = 107) and healthy 
(green, n = 29) controls’ breath; (a) CH3CN; (b) CHCl3; (c) methanol; (d) CHN; (e) ethanol; (f) 1-propanol; 
(g) isoprene; (h) C2H3CN; and (i) limonene. The VOCs in (a–e) show significant differences between 
samples, while those in (f–i) do not show significant differences (Table 1). The distributions of the 
remaining 11 VOCs are shown in the Supplementary Information (Figure S1). 

There are 1,048,575 (= ∑ Cଶ ଶୀଵ , where C  represents ݇-combinations of ݊ elements) VOC 
combinations of the 20 VOCs listed in Table 1. We applied nonlinear SVM diagnosis to each of the 
combinations and evaluated their accuracy levels, as described below. A VOC that has no 
contribution toward improving the diagnostic accuracy should be removed from the data set even 
if it has a large contribution to the principal component space, and vice versa. In addition, reducing 
the number of possible VOCs is helpful for designing a portable VOC detector. 

The imbalanced sample numbers in the VOC data set (lung cancer patients: 107; healthy 
individuals: 29) likely cause an inappropriate classification. To complete the sample numbers, we 
introduced a synthetic minority oversampling technique [34–36]. One original sample (healthy 

0 0.1 0.2 0.3
ppb)

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty

CH3CN

0 0.5 1 1.5 2 2.5
ppb)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ob

ab
ili

ty

CHCl3

0 20 40 60 80 100
ppb)

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Methanol

0 1 2 3
ppb)

4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ob

ab
ili

ty

CHN

0 50 100 150 200
ppb)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ob

ab
ili

ty

Ethanol

0 2 4
ppb)

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ob

ab
ili

ty

1-Propanol

6

0 50 100 150
ppb)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ob

ab
ili

ty

Isoprene

0 1 2 3
ppb)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ob

ab
ili

ty

C2H3CN

4 0 0.5 1 1.5
ppb)

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty

Limonene

Figure 2. Comparison of VOC concentration distributions from lung cancer (red, n = 107) and
healthy (green, n = 29) controls’ breath; (a) CH3CN; (b) CHCl3; (c) methanol; (d) CHN; (e) ethanol;
(f) 1-propanol; (g) isoprene; (h) C2H3CN; and (i) limonene. The VOCs in (a–e) show significant
differences between samples, while those in (f–i) do not show significant differences (Table 1).
The distributions of the remaining 11 VOCs are shown in the Supplementary Information (Figure S1).

There are 1,048,575 (=∑20
i=1 20Ci, where nCk represents k-combinations of n elements) VOC

combinations of the 20 VOCs listed in Table 1. We applied nonlinear SVM diagnosis to each of the
combinations and evaluated their accuracy levels, as described below. A VOC that has no contribution
toward improving the diagnostic accuracy should be removed from the data set even if it has a large
contribution to the principal component space, and vice versa. In addition, reducing the number of
possible VOCs is helpful for designing a portable VOC detector.

The imbalanced sample numbers in the VOC data set (lung cancer patients: 107; healthy
individuals: 29) likely cause an inappropriate classification. To complete the sample numbers,
we introduced a synthetic minority oversampling technique [34–36]. One original sample (healthy
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control in our case) was randomly chosen, and two virtual samples were interpolated at a random
point between the chosen sample and the two samples that are nearest to the chosen one (case of
nearest number k = 2; Figure 3). By repeating this process, we provided 107 healthy control samples.
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biology [43,44] and breath gas analysis [5,14,45,46], to evaluate the capability of the SVM diagnosis 
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Figure 3. Schematic illustrating the oversampling technique to obtain the same number of healthy
control samples to that of the lung cancer patients. After one sample (red) is randomly chosen,
two samples (blue) are randomly interpolated on the lines between the chosen sample and the two
nearest samples (yellow).

2.3. SVM Classifier

SVM is an algorithm that determines a flat classification boundary between two-class data sets.
The concentration distribution of the selected VOCs is broad and shows unclear boundaries between
the cancer and healthy samples; thus, it is difficult to clearly classify the VOC samples using linear
SVM [22]. We introduced a nonlinear SVM [37] with a Gaussian kernel function, which is widely used
for classifying biological data sets (e.g., microarray gene expressions [38–40], DNA fragments [41],
and cell shapes [42]). In general, the data point coordinates are transformed to a higher dimensional
coordinate space, where SVM can draw a flat boundary between the transformed two-class data sets
(Figure 4). The coordinate transformation is characterized by the kernel function. We used a Gaussian
kernel function, exp

(
−‖ x1 − x2 ‖2/2σ2

)
, where x1 and x2 represent normalized VOC data points

and σ is a parameter that scales the distance between the points. Another parameter, C, regulates the
penalty for misclassification. Here, we set σ = 1.5 and C = 1000 to reduce the number of data points
that determine the classification boundary (support vectors), by which SVM can avoid overfitting the
dataset. All computations were performed using SVM functions (svmtrain, svmclassify) within the
Statistics and Machine Learning Toolbox of MATLAB (MathWorks).
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2.4. Evaluation of Classification Accuracy

We introduced the leave-one-out cross-validation (LOOCV) method, which is widely used in
biology [43,44] and breath gas analysis [5,14,45,46], to evaluate the capability of the SVM diagnosis for
the given data set. In LOOCV, one data point is left out of the data set to evaluate the accuracy of the
diagnosis, while the remaining data points are used to train the classifier. Then, the left-out data point
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is diagnosed by the trained classifier (Figure 5). This process is repeated for each sample to compute
the true positive rate (TPR = TP/(TP + FN)), true negative rate (TNR = TN/TN + FP), and accuracy
(ACC = (TP + TN)/(TP + FN + TN + FP)), where 29 healthy controls were used as true negative
samples. These values equal 100% if a completely accurate diagnosis is achieved. We applied LOOCV
to all of the VOC combinations to screen the effective combinations for cancer diagnosis.
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Figure 5. Schematic illustrating the leave-one-out cross-validation (LOOCV) procedure. A data point
is repeatedly exchanged to categorize the training and testing data set.

3. Results and Discussion

3.1. Optimal Number of VOCs for Classification

The diagnostic accuracy using the original data set (n = 107 for lung cancer patients and n = 29
for healthy individuals) and oversampled healthy samples (n = 78) depends on the number of VOCs
trained by the SVM classifier, as summarized in Figure 6a. The accuracy increases as more VOCs
are included, and the maximum accuracy is achieved using 9 or 10 VOCs, while the best TPR is
saturated even for one VOC, and the best TNR decreases above 4 VOCs. In contrast, the numbers of
corresponding support vectors of the ACC and TPR classification are the lowest (18.7% of the data
points) when there are 5 trained VOCs, and that of TNR reaches almost bottom for 4 VOCs (Figure 6b).
These results suggest that, without overfitting, 5 VOCs are sufficient for 89.0% diagnostic accuracy, and
that the 95% TPR- and 89% TNR-based diagnoses are possible when using 5 and 4 VOCs, respectively.
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Figure 6. Dependency of the performance of SVM diagnosis on the number of trained VOCs of the
data set (lung cancer patients, n = 107; healthy individuals, n = 29, oversampling healthy samples,
n = 78). (a) Best accuracy (ACC, blue line) with the corresponding true positive rate (TPR, solid red
line) and true negative rate (TNR, solid green line) within all combinations of each number of trained
VOCs (from 1 to 10). The dashed red and green lines represent the best TPR and TNR, respectively;
(b) The number of support vectors that are used in the classifier in (a) for the best ACC (blue), TPR (red),
and TNR (green). Left and right y-axes represent the actual number of data points and fraction of all
data points, respectively.
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3.2. Effective VOC Combinations for Diagnosing Lung Cancer

We determined effective VOC combinations for diagnosing lung cancer with high values for
ACC (Table 2), TPR (Table 3), and TNR (Table 4) by fixing the number of trained VOCs at the value
that provided a small number of support vectors (n = 5 for ACC, n = 5 for TPR, and n = 4 for TNR;
Figure 6b). The VOC combinations are sorted by ACC, TPR, and TNR. The most important VOC
combinations could not be determined because the differences between the rates in these tables are
not large, and the VOC concentrations may contain noises caused by the sensor or sampling process.
However, certain VOCs were common in each combination while some VOCs (e.g., nonanal and
toluene) were rarely used for diagnosis.

Table 2. Top 10 VOC combinations sorted by ACC (%) (5 VOCs were trained, MC = methylcyclohexane;
boldface: most frequent VOC).

Rank 1 2 2 2 2 6 6 6 9 9
ACC 89.0 88.2 88.2 88.2 88.2 86.8 86.8 86.8 86.0 86.0
TPR 92.5 91.6 93.5 91.6 92.5 91.6 89.7 92.5 91.6 87.9
TNR 75.9 75.9 69.0 75.9 72.4 69.0 75.9 65.5 65.5 79.3

CHN CHN Methanol Methanol Butane CHN CHN C2H3CN CHN CHN
Methanol CH3CN Acetone Isoprene CH3CN Methanol Butane Isoprene Ethanol CH3CN
CH3CN C2H3CN C2H3CN Xylene Isoprene CH3CN CH3CN 1-Propanol Isoprene Isoprene
Isoprene Isoprene Isoprene Unknown-1 1-Propanol 1-Propanol Isoprene Unknown-1 1-Propanol CHCl3

VOCs

1-Propanol CHCl3 1-Propanol C8H17OH Xylene MC CHCl3 C8H17OH Toluene Xylene

Table 3. Top 10 VOC combinations sorted by TPR (%) (5 VOCs were trained, MC = methylcyclohexane;
boldface: most frequent VOC).

Rank 1 2 3 3 3 3 3 3 3 10
ACC 84.6 88.2 86.0 89.0 84.6 88.2 85.3 85.3 86.8 86.8
TPR 94.4 93.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 91.6
TNR 48.3 69.0 62.1 75.9 55.2 72.4 58.6 58.6 65.5 69.0

Butane Methanol Ethanol CHN CHN Butane Ethanol Ethanol C2H3CN CHN
Ethanol Acetone CH3CN Methanol Ethanol CH3CN CH3CN CH3CN Isoprene Methanol
Acetone C2H3CN C2H3CN CH3CN C2H3CN Isoprene Acetone MC 1-Propanol CH3CN
C2H3CN Isoprene Isoprene Isoprene 1-Propanol 1-Propanol 2-Propanol Unknown-1 Unknown-1 1-Propanol

VOCs

Toluene 1-Propanol 1-Propanol 1-Propanol CHCl3 Xylene C2H3CN C8H17OH C8H17OH MC

Table 4. Top 10 VOC combinations sorted by TNR (%) (4 VOCs were trained, MC = methylcyclohexane;
boldface: most frequent VOCs).

Rank 1 2 2 2 5 5 5 5 5 10
ACC 84.6 89.0 88.2 84.6 88.2 85.3 86.0 85.3 86.8 86.8
TPR 82.2 86.9 76.6 78.5 77.6 79.4 72.9 78.5 71.0 83.2
TNR 89.7 86.2 86.2 86.2 82.8 82.8 82.8 82.8 82.8 79.3

CHN CHN CHN CHN CHN CHN Methanol CH3CN CH3CN CHN
Isoprene CH3CN Methanol CH3CN Methanol Methanol CH3CN Acetone Isoprene Methanol
Xylene Isoprene 2-Propanol CHCl3 CH3CN Isoprene Isoprene Unknown-1 MC CH3CNVOCs

Limonene CHCl3 Nonanal Dichlorobenzene C2H3CN Limonene Limonene C8H17OH Nonanal CHCl3

The variation of VOC combinations in the top diagnosis above was probably caused by the noise
in the detected concentration, cancer type, or cancer stage. We extracted the VOCs that were frequently
present in the top 10 combinations (Table 5). The results show that: (1) CH3CN and isoprene are
commonly used for all diagnoses; (2) the frequently used combination in ACC is the same as the best
combination in Table 2; (3) 1-propanol, C2H3CN, and ethanol are specific to the TPR-based diagnosis;
(4) the frequently used combination in TPR is same as the third combination in Table 3; (5) CHN,
CH3CN, and methanol are specific to the TNR-based diagnosis; (6) the frequently used combination
in TNR, except for methanol, is the same as the second combination in Table 5; and (7) the group of
VOCs in the ACC-based diagnosis (“Top ACC” in Table 5) contains a mixture of VOCs from the TPR-
and TNR-based diagnoses and justifies the definition of ACC (i.e., the indicator merging TPR and
TNR). If the eight VOCs listed in Table 5 (two from ACC, three from TPR, and three from TNR) were
used, the SVM diagnosis would show a performance of 84.6% for ACC, 91.6% for TPR, and 58.6% for
TNR, with 54.2 ± 5.47 for the number of support vectors. This is not a particularly bad performance,
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but TNR, in particular, would provide a low performance. This is probably caused by the small number
of original healthy controls. The extracted VOCs from the VOCs in Table 1 are different from the result
of our previous study [33], where the selection of target VOCs is different.

Table 5. VOCs that are frequently used in the top 10 ACC (Table 2), TPR (Table 3), and TNR (Table 4)
combinations. The VOCs written in boldface are the same as those in Tables 2–4 and represent the
VOCs that are used most frequently in the ACC-, TPR-, or TNR-based diagnoses. VOCs commonly
used in every diagnosis and those specifically used for TPR- and TNR-based diagnoses are colored by
blue, red, and green, respectively.

ACC TPR TNR
Rank VOC Count Rank VOC Count Rank VOC Count

1 Isoprene 9 1 1-Propanol 7 1 CHN 7
2 CHN 6 2 C2H3CN 6 1 CH3CN 7
2 1-Propanol 6 2 CH3CN 6 3 Methanol 5
2 CH3CN 6 4 Ethanol 5 3 Isoprene 5
5 Methanol 4 4 Isoprene 5 5 CHCl3 3

Furthermore, to examine the discriminability between the cancer and healthy samples, the scatter
diagrams for six combinations of three VOCs in Table 5 were plotted on 3D coordinates (Figure 7).
The results represent much smaller overlaps between the lung cancer and healthy groups than the 1D
representation in Figure 2, and suggest a high discriminability between cancer patients and healthy
subjects using the VOC combination rather than single VOCs.
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Figure 7. VOC distributions on a 3D representation for the list of top accuracy combinations in Table 5.
CHN, isoprene, 1-propanol (a); CHN, methanol, 1-propanol (b); CHN, methanol, isoprene (c); isoprene,
methanol, 1-propanol (d); CH3CN, methanol, isoprene (e); and isoprene, CH3CN, 1-propanol (f).
The red and green circles represent lung cancer patients and healthy controls, respectively, and the blue
circles indicate the oversampling data. The oversampling data are more widely spread than the original
healthy samples in this range because some of the healthy samples exist outside of the axis range.

3.3. Correlation between Cancer Stage and Distance from the Classification Boundary

Data points near the classification boundary contain a property of each class because SVM
provides a boundary between the two-class data points. In other words, the data points that are far
from the boundary have the specific property of their class. In the SVM diagnosis, the data samples of



Sensors 2017, 17, 287 9 of 12

low cancer stages are located near the boundary and those of high stages are far from the boundary
(Figure 8a). Such a distance-based feature extraction has been theoretically studied [47,48] and applied
to MRI images of the brain [49]. Thus, we computed the distances of the cancer samples from the
boundary using the best VOC combination in the TPR rank with the LOO fashion; the test sample
distances are computed by the classifier developed by the remaining learning samples. The higher
cancer stage samples are located relatively far from the boundary (Figure 8b). This suggests that the
SVM diagnosis could be used for estimating the cancer stage of a patient. The first-stage patients have
relatively long distances. This may be caused by noise in VOCs, mislabeling of stage, or nonlinear
transformation of the VOCs near the boundary.
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Figure 8. (a) Schematic illustration of the hypothesis that the cancer stage correlates with distance from
the SVM boundary in the transformed coordinates space; (b) The y-axis indicates the distance from the
SVM boundary. The learning VOC combination of the best TPR in Table 3 (butane, ethanol, acetone,
C2H3CN, and toluene) was used for computing the test sample distance.

4. Summary and Conclusions

We have applied nonlinear SVM classification to the detection of VOCs for lung cancer diagnosis
with leave-one-out cross-validation, and have determined the optimal VOC patterns for the diagnosis.
Optimal combinations of VOCs depend on ACC, TPR, or TNR (Tables 2–4). The TPR- and TNR-based
optimal combinations are useful for biologically investigating why cancer patients and healthy people
are characterized by these VOCs. The ACC-based optimal combinations will be used for diagnosing
subjects. The TPR-based diagnosis is better for avoiding a risk of false negative. The efficient strategy
is to develop a diagnosis tool based on the ACC-based diagnosis while the TPR-based diagnoses is
used in hospitals because improving the ACC diagnosis also improves the TPR diagnosis.

The TNR results were lower than that for TPR for all VOC combinations. This is possibly caused by
the oversampling of the healthy controls and will be improved by collecting VOCs from more healthy
individuals. For the correlation between the SVM distance and cancer stage, a possible alternative
application would be to classify samples into 5 classes (stages 1–4 and healthy) by SVM. This work may
be performed in the future, because we cannot currently obtain a high accuracy using a multiclass SVM.

The optimal VOC set was selected based on the VOC concentrations, each of which was detected
by the same GC/MS. There is little quantitative variation added by the GC/MS. If we use a different
GC/MS that has different VOC sensitivities, some VOCs will have different measured concentrations.
Even in this case, the SVM diagnosis will select effective VOC combinations similar to those in this
work, because the VOC concentrations are normalized in the SVM; a relative concentration correlation
between samples is important for classification. However, this argument does not hold, and different
VOC combinations are possibly selected, in the case that the detected VOCs differ depending on the
GC/MS because of VOC sensitivity.

We showed that a diagnosis with 89.0% accuracy can be performed using five VOCs. This highly
efficient SVM classification will be integrated into the prototype breath analyzer for lung cancer
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screening utilizing double GC columns and sensors [33], and a new breath test in Aichi Cancer Center
is going to start. It must be confirmed that the selected VOCs are also optimal sets when we diagnose
with the prototype analyzer specialized to these optimal VOCs in future.

We promote this integration and prototype analyzer, expecting that the SVM classifier can be used
for the further development of a desktop GC-sensor analysis system for lung cancer. Furthermore,
if the precise VOC composition of five VOC mixtures is measured, the cancer stage can be predicted,
as it is correlated with the distance of a cancer sample from the SVM classification boundary.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/2/287/
s1, Figure S1: VOC concentration distributions from lung cancer (red, n = 107) and healthy (green, n = 29)
controls’ breath.
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