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Abstract: The Technion autonomous underwater vehicle (TAUV) is an ongoing project aiming to
develop and produce a small AUV to carry on research missions, including payload dropping, and to
demonstrate acoustic communication. Its navigation system is based on an inertial navigation system
(INS) aided by a Doppler velocity log (DVL), magnetometer, and pressure sensor (PS). In many
INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL) can be used
for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial
DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle
velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS,
and as a result its navigation solution will drift in time. To circumvent that problem, we propose a
DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional
information, thereby deriving an extended loosely coupled (ELC) approach. The implementation
of the ELC approach requires only software modification. In addition, we present the TAUV six
degrees of freedom (6DOF) simulation that includes all functional subsystems. Using this simulation,
the proposed approach is evaluated and the benefit of using it is shown.

Keywords: Doppler velocity log/inertial navigation system (DVL/INS) fusion; loosely coupled;
tightly coupled; autonomous underwater vehicle six degrees of freedom (AUV 6DOF) simulation;
partial measurement

1. Introduction

Underwater operations attract great attention for environmental matters and potential resources,
as well as scientific interest. Therefore, the need for underwater robotic systems has become more
apparent [1]. With the emergence of inspection-class autonomous underwater vehicles (AUVs),
navigation and navigational accuracy are becoming increasingly important in order for the AUV
to complete its task. Without an operator in the loop, the vehicle must use sensors to determine its
position, velocity and orientation. Most AUVs employ an inertial navigation system (INS) as their main
navigation sensor [2–4]. This is for many reasons; one of which is that the INS is a standalone system
that can provide all of the required navigation data: position, velocity and orientation. However,
even with a high-grade INS, the navigation solution drifts in time due to measurement errors of
its inertial sensors. Therefore, INSs are usually aided by other external sensors or data such as the
Doppler velocity log (DVL) for velocity, magnetometers for heading and depth/pressure sensor for
altitude [5,6]. For positioning, global positioning system (GPS) is commonly used in land or air vehicles,
yet it cannot be used underwater [7,8] since the electromagnetic signals decay very quickly in the water.
A common method for overcoming the localization problem of underwater vehicles is to use acoustic
positioning methods such as long baseline (LBL) or ultra-short baseline (USBL) [9]. One drawback of
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such approaches is the need for a priori deployment of beacons. An alternative method for obtaining
localization of underwater vehicles is geophysical navigation which uses physical features of the
AUV’s environment to produce an estimate of the location of the AUV [10,11].

A team at the Technion–Israel Institute of Technology is currently developing an AUV named
the Technion autonomous underwater vehicle (TAUV). The TAUV project goal is to develop and to
produce a small autonomous underwater vehicle, which will serve as a technology demonstrator and
a platform for various research programs. The TAUV diameter is 300 mm and its length is 3000 mm.
The TAUV has four rudders installed in an “x” configuration, and its maximum operation depth is
200 m. The TAUV navigation system based on an INS aided by a DVL, magnetometer, pressure sensor
(PS), and GPS when available [12]. When submerged, the main aiding sensor is the DVL which
provides velocity measurements that can help estimate, in addition to the vehicle velocity, some of the
orientation and inertial sensor error states depending on the vehicle dynamics [13,14].

There are two main approaches for sensor fusion between INS and other sensors: (1) loosely
coupled (LC); and (2) tightly coupled (TC) [15]. We shall refer here to INS/DVL fusion, but the
underlying principles are the same for other sensors as well. A top-level block diagram of LC
and TC approaches is presented in Figure 1. The raw data of the DVL is the relative velocity in
each beam direction. In the LC approach, using parameter estimation the DVL raw data is used to
calculate the vehicle velocity, which in turn is compared with its INS counterpart in the navigation
filter. The advantage of this method is the simplicity of integration and the ability to combine any
off-the-shelf INS with any DVL. However, in order for the DVL to calculate vehicle velocity, it must
operate in bottom lock, which refers to the condition when a sufficient number of beam measurements
(at least three) are available. In the TC approach, the DVL raw data is directly used in the navigation
filter. That is, each beam measurement of the DVL is compared with its calculated INS counterpart
and independently integrated into the navigation filter. Therefore, there is no need for a bottom lock
stage, and aiding may be applied even with a single beam measurement.

The selected TAUV INS can only receive from the DVL an external velocity vector
measurement [16]. Therefore, INS/DVL fusion with the TC approach is not possible, and thus
the LC approach must be used. In some situations—such as operation in close proximity to the
seafloor, or when experiencing extreme tilt angle or beam malfunction—one or more of the DVL beams
may not provide the reflection required for determining velocity [17]. In such cases of partial beam
measurements, the DVL fails to maintain bottom lock and is unable to estimate the AUV velocity.
Thus, the TAUV INS navigation solution will drift in time.
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In this paper, we propose the extended loosely coupled (ELC) approach for calculating vehicle
velocity when only partial DVL measurements are available. This is made possible by using the partial
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measured raw data from the DVL combined with additional information. This calculated vehicle
velocity is fed back to the TAUV INS and used for aiding the INS, as in the regular LC approach.

Related approaches in similar situations where partial measurements are available can be found
in the literature for INS/GPS fusion or LBL positioning. In [18], a single beacon measurement and
two virtual ranging measurements were used to triangulate and solve the vehicle position with the
LBL method. Another method is to utilize the knowledge of the vehicle dynamics under a specific
scenario. For example, in [19] the authors utilized the vehicle dynamics in a straight trajectory scenario
to improve navigation performance with low-cost GPS. In [20] the construction of virtual GPS satellites
was suggested in order to facilitate GPS receiver position and velocity solutions in cases of partial GPS
availability, thereby enabling the fusion of GPS/INS in the LC approach.

In order to examine and demonstrate the improvement of the navigation performance under the
ELC approach, we developed the TAUV six degrees of freedom (6DOF) simulation, which includes
all functional sub-systems. This simulation consists of the AUV guidance, navigation and control
subsystems and uses a complete hydrodynamic model. Simulation results show great improvement
in the navigation performance using the proposed approach compared to the standalone TAUV
INS solution.

The rest of the paper is organized as follows: Section 2 describes the TAUV 6DOF simulation
and in particular its navigation system. In Section 3 the ELC approach is derived. In Section 4 6DOF
simulation results are presented to demonstrate the effectiveness of the partial measurements approach
on the TAUV navigation system. Finally, Section 5 provides the conclusions.

2. TAUV 6DOF Simulation

A top-level block diagram of the TAUV 6DOF simulation with its main subsystems is presented
in Figure 2. The purpose of each subsystem is discussed next.
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Figure 2. Technion autonomous underwater vehicle six degrees of freedom (TAUV 6 DOF) simulation
layout. IMU: inertial measurement unit.

Hydrodynamic and Motion block: This model calculates the forces and moments applied on
the TAUV for the 6DOF rigid body motion model. The motion model solves the vehicle kinematics
to produce the true values of the vehicle’s position, velocity, attitude, and acceleration. The model
contains a complete hydrodynamic model derived for the TAUV.

Control system block: The control system is used to stabilize the vehicle attitude by determining
the angles of the four TAUV servos. The vehicle velocity is stabilized by controlling the thruster
rotation speed. The TAUV control system contains four proportional integrative derivative (PID)
controllers: three for the attitude control and one for the velocity control.
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Guidance system block: The guidance laws in the TAUV are based on target tracking
methods [21]. This subsystem determines the vehicle steering command and the desired velocity in
order to follow the AUV’s desired trajectory.

Sensors generator block: The block calculates sensors’ outputs, including their errors,
by statistical means. The sensors are: accelerometers, gyros, DVL, PS, magnetometer, and GPS.

Navigation block: The navigation block represents the navigation system of the TAUV, including
the navigation equations and navigation filter. The TAUV navigation system is presented in detail in
the following section.

2.1. TAUV Navigation System

In Figure 3, a top-level block diagram of the TAUV navigation system is shown. The accelerometer
and gyro measurements are integrated into the INS system in order to produce its standalone solution
for position, velocity, and attitude. The extended Kalman filter (EKF) [22–24] fuses the INS with
measurements from the other sensors: the magnetometer, PS, DVL and GPS. By comparing the INS
state calculation and aiding the sensor measurements, the EKF estimate corrects the error state vector
comprising the INS states and inertial sensor error terms. Notice that each aiding sensor operates at a
different sampling rate, yet in each time instance that a measurement arrives, it is fused with the INS.
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The navigation equations and the EKF are expressed in a coordinate frame, known as the platform
frame. The platform frame is located at the center of buoyancy of the vehicle. The navigation frame is
determined by the INS frame. For simplicity of the dynamics equations, we assume that the platform
frame and the INS frame are located at the same point at the AUV and with identical orientation.
The TAUV platform frame and the tangent frame are represented in Figure 4. The vehicle velocities
(u, v, w) are expressed in the platform frame, and the vehicle attitudes expressed in the tangent frame
by the roll, pitch, and yaw (φ, θ, ψ) Euler angles.
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2.1.1. Navigation Filter

An error state EKF is implemented in the TAUV navigation system. The error state vector δx
is defined by the difference between the true state vector and Kalman filter estimate and expressed
by [17]:

δxk = xk − x̂k (1)

where k is the time step. The standard INS error state vector is in accordance with [22]:

δx =

[ (
δrt

t/p

)T
δρT

(
δvp

t/p

)T
δbT

a δbT
g

]T
∈ R15 × 1 (2)

where δrt
t/p is the position error vector expressed in the tangent frame; the vector δρ is the orientation

error also referred to as the frame misalignment error; δvp
t/p is the velocity error vector expressed in

the platform frame; δba is the accelerometer biases error expressed in the platform frame; and δbg is the
gyro biases error expressed in the platform frame. The INS error state model has the following form:

δ
.
x(t) = FINS(t)δx + GINS(t)wINS(t) (3)

where FINS(t) is the matrix that relates the error state to the dynamic state [17]:

FINS =



03×3 −
[

R̂t
pv̂p

t/p×
]

R̂t
p 03×3 03×3

03×3 −Ω̂t
i/e 03×3 03×3 −R̂t

p

03×3 F32 F33 −I3 −
[
v̂p

t/p×
]

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


∈ R15 × 15 (4)

R̂t
p is the estimated transformation matrix from platform frame to tangent frame, and Ω̂t

i/e is a skew
symmetric matrix of the earth’s rotation rate expressed in the tangent frame. The expressions for F32,
F33 can be found for example in [17]. The matrix GINS(t) relating the error state to the noise process is
defined by:
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GINS(t) =



03×3 03×3

03×3 −R̂t
p

−I3 −
[
v̂p

t/p×
]

03×3 03×3

03×3 03×3

03×3 03×3

03×3 03×3

03×3 03×3

I3 03×3

03×3 I3


∈ R15 × 12 (5)

The process noises vector is defined by:

wINS(t) =
[

wT
a wT

g wT
ba wT

bg

]T
∈ R12 × 1 (6)

where wa, wg are the accelerometers and gyros noise vectors are modeled as zero-mean white Gaussian
processes, wba is the noise vector of the accelerometer biases modeled as random walk and wbg is the
noise vector of the gyro biases modeled as random walk.

In the linear case, the measurement model is:

δy = H × δxk + nw (7)

where nw is zero-mean Gaussian white noise. The matrix H relates the measurement to the error
state and is known as the measurement matrix. For each aiding sensor and for each measurement,
a measurement rejection algorithm is applied, by examining if the data is within range of three standard
deviations compared to the INS estimation.

In the presented navigation system model, we augment the INS state vector from Equation (2)
with five additional error states of the DVL: four to model the DVL biases of each beam, and one for
common DVL scale factor error. Thus, the augmented error state vector:

δx =

[ (
δrt

t/p

)T
δρT

(
δvp

t/p

)T
δbT

a δbT
g δbT

DVL δSFDVL

]T
∈ R20 × 1 (8)

where δbDVL is the DVL biases error expressed in the DVL frame and SFDVL is the DVL scale factor
error. The corresponding dynamics matrix F is given by:

F(t) =

[
FINS 015×5

05×15 05×5

]
∈ R20×20 (9)

The corresponding noise process matrix G is expressed via:

G(t) =

[
GINS 015×5

05×12 I5

]
∈ R20×17 (10)

where the filter process noises vector is modified via:

w(t) =
[
wT

a wT
g wT

ba wT
bg wT

bDVL wT
s f DVL

]T
∈ R17 × 1 (11)

where wbDVL is a noise vector modeled as random walk of the DVL biases, and ws f DVL is zero-mean
Gaussian white noise of the DVL scale factor.
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2.1.2. Doppler Solution

The DVL measures the Doppler frequency shift for each depth cell and each beam and then
computes the component of relative flow velocity in the direction of each acoustic beam. Based on [25],
the relative velocity of each beam can be assumed as:

Vrel =
(

FD + bFD + nFD

)C(1 + SFc)

2Fs
1000 (12)

where FD is the Doppler frequency shift, bFD is the frequency shift bias, nFD is the frequency shift
noise, C is the velocity of sound in water at transducer face, Fs is the transmitted acoustic frequency,
SFc is the scale factor error of the velocity of sound in water, and nFD is zero-mean Gaussian white
noise. The scale factor is due to the variation of the velocity of sound under different temperatures and
salinity level of the water. From Equation (12) we can observe that the DVL measurement model has
three main errors: (1) bias error (2) scale factor error and (3) white noise.

The DVL assembly in the TAUV is constructed in an “x” configuration relative to the platform
frame (“Janus Doppler configuration”), as shown in Figure 5. Generally, each DVL beam direction in
the vehicle frame is defined by:

bi =


cψ̃isθ̃

sψ̃isθ̃

cθ̃

 (13)

where bi represents the direction of each transducer/beam of the DVL expressed in the platform frame,
for i = 1,2,3,4, θ̃ is the pitch angle (relative to platform frame) of each DVL beam, and ψ̃i is the yaw
angle (relative to platform frame) of each DVL beam for i = 1,2,3,4. In the TAUV DVL, θ̃ is equal to 20◦.
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The expression for yaw angle of each beam direction in the TAUV can be written as:

ψ̃i = (i− 1)90◦ + 45◦, i = 1, 2, 3, 4 (14)

The DVL beam velocity is modeled as:

ỹvi =
[
vp

t/p(1 + SFDVL) + ω
p
t/p × lDi

]
× bi + nvi + bDVL,i (15)

where lDi is the position vector of each transducer expressed in the platform frame, ω
p
t/p is the angular

rate vector of the platform expressed in the platform frame, bDVL is a 4 × 1 vector representing the
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bias of each beam, SFDVL is the scale factor error, and nvi is measurement noise. Let A be a matrix
contacting all beam direction vectors:

A =


bT

1

bT
2

bT
3

bT
4

 (16)

Thus, by using Equation (15), the DVL-based velocity measurement of the vehicle can be
expressed by:

ṽp
t/p = ỹvi

(
AT A

)−1
AT (17)

Note that the velocity solution in Equation (17) is based on four beams, of which one beam is for
redundancy due to the beam configuration. Therefore, in practice only three beams are enough to
calculate the vehicle velocity.

2.1.3. DVL Fusion

In the LC fusion technique, the DVL output to the navigation filter is the platform velocity
(Equation (17)). The corresponding measurement matrix is:

H =
[

0 0 I 0 0 0 0
]
∈ R20×3 (18)

and the velocity measurement noise covariance matrix is:

Rvel =
(

ATWA
)−1
∈ R3×3 (19)

where W = R−1
DVL and RDVL is the DVL measurement noise covariance matrix [17], defined as:

RDVL = bT
i
[
lDi×

]
σ2

g I
[
lDi×

]Tbi + σ2
v ∈ R4×4 (20)

In the case of small-level arm lDi , Equation (20) can be well approximated as:

RDVL ≈ diag
(

σ2
v1, σ2

v2, σ2
v3, σ2

v4

)
∈ R4×4 (21)

where σvi is the velocity variance for each beam measurement for i = 1,2,3,4. The variance value of
each beam is taken from the DVL spec [26] or calculated in a lab test.

In the TC fusion technique, the DVL raw data is used to aid the INS. That is, each transducer
measurement is fused with its INS counterpart (no need to calculate the DVL vehicle velocity,
Equation (17)) and the measurement matrix [17] is defined as:

HTC =
[
0 0 A

(
1 + SF̂

)
0 A

[
lDi×

]
I A× v̂p

t/p

]
∈ R20×4 (22)

The measurement noise covariance matrix is taken from Equation (21) for each beam.

3. INS/DVL Fusion with the ELC Approach

As mentioned in Section 1, in some situations several or all of the DVL beams do not provide
reflection. With no reflection, the beam cannot provide the relative velocity of the AUV Equation (15).
In cases where only one beam is not available, the DVL can still calculate the vehicle velocity
Equation (17) but without any redundant data. If two beams are not available, the DVL cannot
calculate the vehicle velocity. In this case, no velocity aiding is provided to the TAUV INS.
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In this section, we present the ELC approach, with four different methods for utilizing the partial
measurements from the DVL (instead of not using them at all) together with external information
to construct the DVL based velocity estimate. This velocity is used in the TAUV navigation filter,
as illustrated in Figure 6. The four ELC methods differ in the external information they employ as
elaborated in the following subsections.
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3.1. Virtual Beam

This method utilizes the raw data from the DVL and the filter prediction of the velocity error
in order to solve for the vehicle velocity. Without the loss of generality, we assume that beams #3
and #4 are not available. Let the matrix As relate the velocity in the platform frame to the velocity in
each beam direction. So, for small value of lever arm, following Equation (17) the velocities in beam
directions (#1, #2, and #3) are:

yv = As × vp
t/p As =

[
bT

1 bT
2 bT

3

]T
(23)

From Equation (23), the value of the third beam may be found as:

yv3 = bT
3

[
vp

t/p

]
yv3 ≈ bT

3 [ûk−1 v̂k−1 ŵk−1]
T (24)

where vp
t/p is taken from the last INS step. In this method we estimate only the value of the third

beam. Generally, the value of the fourth beam can be estimated instead. Plugging Equation (24) into
Equation (23) we solve the unknown vehicle velocity vector at time k via: uk

vk
wk

 = [A]−1

 yv1

yv2

yv3

 (25)

It is important to note that now, theoretically, a correlation between the measurement noise and
process noise exists, since the DVL velocity measurement Equation (25) depends on the DVL partial
raw data (with measurement noise) but also on the INS velocity solution Equation (24) (with process
noise). Therefore:

E
〈

nw, wT
〉
6= 0 (26)

Thus, the covariance term Equation (26), which is usually nullified in the EKF formulation,
needs to be included. However, in our current analysis we neglect this term.
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In order to calculate the corresponding measurement covariance matrix, we need to derive an
expression for the constructed third beam measurement standard deviation (STD) σv3. To that end we
use the error covariance matrix pk−1 (last step of the fusing process), to define the velocity STD by:

σu =
√

P7,7; σv =
√

P8,8 ; σw =
√

P9,9 (27)

Using Equation (24) we derive the expression for σv3:

σv3 = n f

√
(b3,1σu)

2 + (b3,2σv)
2 + (b3,3σw)

2 (28)

where bi,j = bi(j) and n f is a factor to compensate for our assumption of neglecting Equation (26).
Using the known values of for σv1 and σv2 and Equation (28), the DVL measurement noise covariance
matrix is:

RVB3D =

 σ2
v1 0 0
0 σ2

v2 0
0 0 σ2

v3

Ws = R−1
VB3D (29)

From Equation (29) the velocity measurement noise covariance matrix is expressed via:

RVB =
(

As
TWs As

)−1
(30)

In summary, in the proposed approach we calculate one velocity beam of the DVL via
Equation (24). Combining the two beam measurement from the DVL, we solve the velocity vector of
the vehicle using Equation (25).

3.2. Nullfying Sway Velocity

In this method we set the sway velocity to be zero, that is vk = 0. This assumption is reasonable
for scenarios such as straight line trajectories, which in practice are the AUV trajectories for most of
the operating time (although the AUV may be influenced by some disturbances that alter the straight
line). Since we assume v = 0, only the other two velocity components (u, w) are to be calculated using
the partial DVL data. Similar to the previous method outlined in Section 3.1, we assume that beams #3
and #4 are not available.

Let:

A0 =

[
b1,1 b1,3

b2,1 b2,3

]
(31)

This matrix relates the beam velocities #1 and #2 (since beams #3 and #4 are not available) to
the vehicle velocity (u and w). Thus, the relation between DVL beam velocities yv1 and yv2 to vehicle
velocities is: [

yv1

yv2

]
= A0

[
u
w

]
(32)

From Equation (32) the surge and heave velocities are:[
uk
wk

]
=
[

A−1
0

][ yv1

yv2

]
(33)

Note that the matrix A0 is not singular, because of the independence of the beams direction
vectors. The DVL measurement noise covariance matrix is then:

RNSV2D =

[
σ2

v1 0
0 σ2

v2

]
W0 = R−1

NSV2D (34)
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and
R0 =

(
AT

zeroW0 Azero

)−1
(35)

From Equation (35) we extract the velocity variances of the calculated vehicle velocity components
(u and w). Therefore, the velocity measurement noise covariance matrix that is plugged into the
navigation filter is:

RNSV =

 R0[1, 1] 0 0
0 ε 0
0 0 R0[2, 2]

 (36)

where ε is a parameter that reflects the assumption of v = 0 and has a value close to zero. Equation (36)
is used for practical considerations since the TAUV INS requires a complete velocity vector with its
corresponding measurement covariance.

In summary, in the proposed approach we assume the sway velocity component is zero.
Combining this assumption with the two beams measurements from the DVL, we solve the velocity
vector of the vehicle using Equation (33).

3.3. Partial LC Fusing

This method utilizes the DVL setup configuration in order to calculate one component of the AUV
velocity, u or v, depending on the active transducer order. Therefore, in this approach only one velocity
component measurement is fused into the filter. As in the previous approaches, we assume that beams
#3 and #4 are not available. When the DVL setup is in an “x” configuration, as in the TAUV, we can
derive the following relations between the components of the DVL beam direction vectors based on
Equation (13):

b1,1 = −b2,1

b1,2 = b2,2

b1,3 = b2,3

(37)

If the DVL setup is in a “+” configuration and the available beams are pointing in the same
direction, the two components of the velocity vector—u and w or v and w—can be calculated. If the
active beams are not pointing in the same direction (e.g., beam #1 is aimed toward the surge direction
and beam #2 toward the sway direction) we cannot utilize any data from the DVL using this method.
Here, (under the assumption that only beams #1 and #2 are available), we intend to solve the surge
velocity u, utilizing the partial measurements from the DVL. Using Equation (37) we can express the
velocity of beams #1 and #2 as:

b1,1u + b1,2v + b1,3w = yv1

−b1,1u + b1,2v + b1,3w = yv2
(38)

Subtraction gives:
2b1,1u = yv1 − yv2 (39)

The sway velocity is found using Equation (39):

uk =
yv1 − yv2

2b1,1
(40)

where the corresponding measurement noise covariance is found using Equation (40):

Ru,PLCF =
σ2

v1 + σ2
v2

4b2
1,1

(41)
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For practical considerations in the TAUV INS, the velocity measurement noise covariance matrix
must have a structure of RPLCF ∈ R3×3. So, the matrix that is passed to the filter is defined by:

RPLCF =

 Ru,PLCF 0 0
0 Rv,PLCF 0
0 0 Rw,PLCF

 (42)

Yet, since only the surge velocity, u, is measured, variances Rv,PLCF and Rw,PLCF, corresponding to
sway and heave velocities, are:

Rv,PLCF → ∞, Rw,PLCF → ∞ (43)

To summarize, in the proposed approach we calculate the surge velocity component using
the two beam measurements Equation (40). The filter ignores the two other velocity components
(sway and heave) by setting their measurement variance to infinity. That is, in practice only one
velocity component is used to aid the INS.

3.4. Virtual Heave Velocity

This method is an elaboration of the previous method derived in Section 3.3, where we extract the
surge velocity u from the DVL raw data, while the DVL allows us access to two measured velocities.
In order to utilize the two DVL measurements, we use the velocity prediction from the filter. Therefore,
in this approach two vehicle velocity components are used to aid the INS: u is taken from Section 3.3,
and v is calculated here. To that end, we sum the two equations from Equation (38) to derive the
following expression:

2b1,2v + 2b1,3w = yv1 + yv2 (44)

Thus, we have one equation, Equation (44), with two unknown velocity components, v and w.
To calculate them we use the estimated velocity from the navigation filter. Assuming the AUV is
travelling in a straight line, the heave velocity (w) estimation is probably more accurate due to the
gravitation vector in heave (and even more so if the pressure sensor is active to measure the vehicle
depth). Using Equation (44) and wk−1 from the filter, the sway velocity is:

vk =
yv1 + yv2

2b1,2
− b1,3

b1,2
ŵk−1 (45)

The corresponding velocity variance component is:

Rv,VHV =
σ2

v1 + σ2
v2

4b2
1,2

−
b2

1,3

b2
1,2

σw
2 (46)

From Equations (41) and (46) the velocity measurement noise covariance matrix that is plugged
into the navigation filter is given in Equation (47). As before, for practical considerations in the TAUV
INS, the velocity measurement noise covariance matrix must have a structure of RVHV ∈ R3 × 3;
thus we set Rw,VHV → ∞ , and the measurement noise covariance matrix is:

RVHV =

 Ru,PLCF 0 0
0 Rv,VHV 0
0 0 Rw,VHV

 (47)

where Ru,PLCF is defined in Equation (41) and Rv,VHV is defined in Equation (46).
In summary, in the proposed approach we use the surge velocity component calculated as in

Section 3.3. Using the estimated heave velocity component, the sway velocity component is solved
via Equation (45). The filter ignores the other velocity component (heave) by setting its measurement
variance to infinity. That is, in practice only two velocity components are used to aid the INS.
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3.5. Summary of ELC Methods

Table 1 presents a summary of the four ELC methods. VB: virtual beam; NSV: nullifying sway
velocity; PLCF: partial loosely coupled fusing; VHV: virtual heave velocity

Table 1. ELC Methods.

Method Assumtion External
Information Calculations Setting

VB (Section 3.1) None Last estimated
velocity vector

Velocity vector
Equation (24) None

NSV (Section 3.2) Zero sway velocity None
Two velocity
components

Equation (33)
None

PLCF (Section 3.3) None None
One velocity
component

Equation (40)

Two velocity
components with
infinity variance

VHV (Section 3.4) None Last estimated
heave velocity

Two velocity
components

Equations (40)
and (45)

One velocity
component with
infinity variance

3.6. ELC Implemenation

The DVL enables access to its raw data and its calculated velocity. In the case of partial
measurements, the DVL cannot calculate the vehicle velocity, and only the partial raw data is available.
From the raw data, we can calculate the vehicle velocity and the variance from all four approaches
as presented in the previous sections. Instead of choosing which approach to use in the TAUV,
in Equation (48) we employ a simple selector to pick the best vehicle velocity components out of the
four approaches and use each derived corresponding velocity to aid the INS.

Ru = min{Ru,VB, Ru,NSV , Ru,PLCF, Ru,VHV}
Rv = min{Rv,VB, Rv,NSV , Rv,PLCF, Rv,VHV}

Rw = min{Rw,VB, Rw,NSV , Rw,PLCF, Rw,VHV}
(48)

The velocity measurement noise covariance matrix (with the corresponding velocity measurement)
that goes to the TAUV INS is:

Rvel =

 Ru 0 0
0 Rv 0
0 0 Rw

 (49)

Figure 7 shows the implementation of the ELC approach and LC approach in the TAUV. The red
lines are relevant only in partial measurement scenarios.
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the TAUV will, theoretically, travel in straight lines. The second trajectory follows a figure eight 
pattern. This trajectory contains permanent maneuvers and also a dive with constant velocity. The 
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4. Analysis and Results

4.1. Simulation Scenarios and Parameters

In this section, we evaluate the ELC approach under three commonly used trajectories of the TAUV
and other AUVs. The objective of using several trajectories is to evaluate the navigation performance
of each method under different dynamic conditions. Figure 8 shows the chosen trajectories for the
analysis. The first trajectory is a straight-line trajectory along the north direction while the AUV
travels with constant speed and depth. This trajectory is chosen since in steady state the TAUV will,
theoretically, travel in straight lines. The second trajectory follows a figure eight pattern. This trajectory
contains permanent maneuvers and also a dive with constant velocity. The third trajectory is a classic
seeking trajectory (lawn mower pattern) used for bottom survey. This trajectory begins with a dive at
constant rate, and then in the searching phase constant depth is kept.
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The simulation and navigation parameters used to produce the results in the paper are
summarized in Table 2. The navigation parameters were chosen according to a literature survey [27]
and the actual TAUV sensors specifications [16,26].

Table 2. TAUV 6DOF simulation and navigation parameters.

Parameter Value

Time duration 250 (s)
AUV velocity 2 (m/s)

Accelerometer bias 0.5 (mg/h)
Gyro bias 3 (◦/h)

Accelerometers noise 0.072 (m/s/
√

h)
Gyro noise 0.34 (◦/

√
h)

Accelerometer bias random walk 1× 10−5 (m/s2/
√

s
)

Gyro bias random walk 2.8× 10−5 (◦/s/
√

s)
Position initial error north: 2 (m), east: 2 (m), height: 2 (m)
Velocity initial error u: 0.05 (m/s) × v: 0.05 (m/s) × w: 0.05 (m/s)
Attitude initial error Yaw: 1.14 (◦) roll/pitch: 0.57 (◦)

IMU rate 150 (Hz)
DVL rate 1 (Hz)

DVL noise 0.042 (m/s)
DVL bias 0.005 (m/s)

DVL bias random walk 5× 10−5 (m/s/
√

s)
DVL scale factor 0.7 (%)

DVL scale factor random walk 5× 10−3 (%/
√

s)
Magnometer noise Yaw: 5.72 (◦) × roll/pitch: 1.15 (◦)

Pressure sensor noise 194 (Mpa)
Magnometer rate 0.5 (Hz)

Pressure sensor rate 0.25 (Hz)

4.2. Simulation Results

The navigation performance obtained using Monte Carlo runs with the 6DOF simulation is
presented in terms of the root mean square (RMS) errors of the velocity vector and the attitude error
under the scenarios of trajectories #1, #2 and #3. The accelerometer and gyro biases are not presented
since they behave as expected when fusing any other velocity measurements. That is, when the vehicle
travels with constant velocity (trajectory #1) only the z-axis accelerometer bias and x and y gyro bias
are observable. When maneuvering (trajectories #2 and #3) the estimation performance improves in
terms of more observable error states.

We compare the performance of the ELC to the performance of the standalone INS (which is
the case in the TAUV with partial DVL measurements scenario) and TC fusion, in order to test the
effectiveness of the approach. We note that the analysis was made only for DVL/INS fusion. We expect
that when using other available sensors on the TAUV (such as PS or magnetometer), the performance
of the proposed approach will improve but this is not the subject of the paper.

In the next figures, the following notations are used: TC (tightly coupled; Section 2.1.3), VB (virtual
beam; Section 3.1), NSV (nullifying sway velocity; Section 3.2), PLCF (partial loosely coupled fusing;
Section 3.3), VHV (virtual heave velocity Section 3.4).

4.2.1. Trajectory #1 Simulation Results

The velocity RMS errors for all the methods (including TC) are presented in Figure 9.
Not presented in the figure is the standalone INS performance, which is 34 m/s of error after 250 s.

All the proposed approaches improved the standalone INS performance; in particular, the NSV
reduced the RMS velocity error to 0.05 m/s. In addition, the NSV approach and the VHV approach
also performed better than the TC approach. The reason for this result is the assumption that the AUV
does not have velocity in the sway direction, and in the case of a straight trajectory this assumption is
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reasonable. The PLCF obtained the worst performance but still improved the standalone INS solution
by 131%.
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Figure 10 shows the RMS errors of the orientation misalignment. The standalone INS performance
is 1.4◦ after 250 s. All proposed approaches improved the standalone INS; in particular the NSV and
VB approaches achieved 33% improvement. The PLCF attitude error seemed to converge in time,
due to the observation of the roll angle (in this method we use surge velocity aiding).
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4.2.2. Trajectory #2 Simulation Results

The velocity RMS errors for all the methods (including TC) are presented in Figure 11.
Not presented in the figure is the standalone INS performance, which is 31.8 m/s of error after
250 s. All the proposed approaches improved the standalone INS; for example, the PLCF approach
reduced the RMS velocity error to 1.2 m/s. In addition, the NSV approach also managed to perform
better than the TC approach, but only with minor differences. Notice that all approaches, including
TC, achieved better performance than in trajectory #1 due to the maneuvering of the AUV.
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4.2.3. Trajectory #3 Simulation Results

Figure 13 presents the velocity RMS errors of all ELC approaches and the TC approach.
The standalone INS velocity error in this trajectory is 36.5 m/s after 250 s. As seen in Figure 10,
all the proposed approaches improved the standalone INS, and the VB approach reduced the RMS
velocity error to 0.5 m/s. The NSV approach managed to obtain similar performance to that of the TC,
although its velocity error oscillates due to the change in the maneuvering direction. In the first 30 s,
the velocity errors of methods VB and PLCF drift rapidly in time. The reason for this behavior is that
the vehicle performs diving in that time period. After the TAUV completes the diving and reaches its
desired depth, the velocity error of the VB approach does not drift in time.
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5. Conclusions

In the presented study the ELC approach for INS/DVL fusion with partial DVL measurements
was investigated, applying four different methods. The TAUV simulation was developed in order to
evaluate the ELC methods.

Results show that the presented approaches significantly improved the navigation performance of
the TAUV in cases where only partial measurements from the DVL are available. In order to implement
the suggested approach in the TAUV, only software modifications are needed.
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