Skip to main content
. 2017 Feb 22;17(2):425. doi: 10.3390/s17020425
Algorithm 1 AdaBN for WDCNN
  Input: Input of neuron i in BN layers of WDCNN for unlabeled target signal p, xt(i)(p)xt(i),where xt(i)={xt(i)(1),,xt(i)(n)}
The trained scale and shift parameters γs(i) and βs(i) for neuron i using the labeled source signals.
  output: Adjusted structure of WDCNN
  For Each neuron i and each signal p in target domain
Calculate the mean and variance of all the samples in target domain:
μt(i)E[xt(i)]
σt(i)Var[xt(i)]
Calculate the BN output by:
x^t(i)(p)=xt(i)(p)μt(i)σt(i)
y^t(i)(p)=γ(i)x^t(i)(p)β(i)
  End for