View full-text article in PMC Inf Sci (N Y). Author manuscript; available in PMC: 2018 Apr 1. Published in final edited form as: Inf Sci (N Y). 2016 Aug 16;384:298–313. doi: 10.1016/j.ins.2016.08.038 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information PMC Copyright notice Table 2. Learning Rules Algorithm Learning Rules Contrastive Divergence ΔWij=∑t(〈vi,thj,t〉d−〈vi,thj,t〉r) Δai=∑t(〈vi,t〉d−〈vi,t〉r);Δbj=∑t(〈hj,t〉d−〈hj,t〉r) ΔAifu,t−k=∑t(〈vi,tHfu,t−k〉d−〈vi,tHfu,t−k〉r) ΔBjfu,t−k=∑t(〈hj,tHfu,t−k〉d−〈hf,tHfu,t−k〉r) Δβi=∑t(〈vi,t〉d−〈vi,t〉r)ηtu;Δβj=∑t(〈hj,t〉d−〈hj,t〉r)ηtu Back-Propagation ∂C(θ)∂sj=−∑t(yt−y^t)hj;∂C(θ)∂c=−∑t(yt−y^t) ∂C(θ)∂Wij=−∑t(yt−y^t)sjhj(1−hj)vi ∂C(θ)∂ai=−∑t(yt−y^t)sjhj(1−hj)Wij ∂C(θ)∂bj=−∑t(yt−y^t)sjhj(1−hj) ∂C(θ)∂Aifu,t−k=−∑t(yt−y^t)sjhj(1−hj)WijHfu,t−k ∂C(θ)∂Bjfu,t−k=−∑t(yt−y^t)sjhj(1−hj)Hfu,t−k ∂C(θ)∂βi=−∑t(yt−y^t)sjhj(1−hj)Wijηtu ∂C(θ)∂bj=−∑t(yt−y^t)sjhj(1−hj)ηtu