Skip to main content
. Author manuscript; available in PMC: 2018 Apr 1.
Published in final edited form as: Inf Sci (N Y). 2016 Aug 16;384:298–313. doi: 10.1016/j.ins.2016.08.038

Table 2.

Learning Rules

Algorithm Learning Rules

Contrastive Divergence ΔWij=t(vi,thj,tdvi,thj,tr)
Δai=t(vi,tdvi,tr);Δbj=t(hj,tdhj,tr)
ΔAifu,tk=t(vi,tHfu,tkdvi,tHfu,tkr)
ΔBjfu,tk=t(hj,tHfu,tkdhf,tHfu,tkr)
Δβi=t(vi,tdvi,tr)ηtu;Δβj=t(hj,tdhj,tr)ηtu

Back-Propagation C(θ)sj=t(yty^t)hj;C(θ)c=t(yty^t)
C(θ)Wij=t(yty^t)sjhj(1hj)vi
C(θ)ai=t(yty^t)sjhj(1hj)Wij
C(θ)bj=t(yty^t)sjhj(1hj)
C(θ)Aifu,tk=t(yty^t)sjhj(1hj)WijHfu,tk
C(θ)Bjfu,tk=t(yty^t)sjhj(1hj)Hfu,tk
C(θ)βi=t(yty^t)sjhj(1hj)Wijηtu
C(θ)bj=t(yty^t)sjhj(1hj)ηtu