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(BRMs), including: interleukin-6 (IL-6), interleukin-8 
(IL-8), interleukin-18 (IL-18), soluble CD40 ligand 
(sCD40L), and lysophosphatidylcholines (lyso-
PCs)2-8. Despite these decreases, pro-inflammatory 
mediators still accumulate during routine storage of 
LR-RBCs, a number of which have been implicated 
in the pathogenesis of transfusion-related acute lung 
injury (TRALI) and post-injury multiple organ failure 
(MOF), which includes acute lung injury (ALI)5,9. This 
review will detail the mediators/BRMs in question, 
their clinical effects and possible mitigation, as well as 
proposing novel strategies to inhibit their production 
during routine storage. 

Transfusion-related acute lung injury 
TRALI, which is a rare, adverse event, has been 

linked to the infusion of bioactive lipids which 
accumulate during the routine storage of RBCs, and 
are released into and accumulate in the supernatant of 
the RBC units5,10-12. In unmodified RBCs, there are two 
classes of lipids, based upon their retention time via 
normal phase with further characterisation by reverse 
phase high pressure liquid chromatography (HPLC) and 
identification by mass spectrometry: a mixture of lyso-
PCs and non-polar lipids consisting of arachidonic acid, 
5-hydroxyeicosotetraenoic acid (HETE), 12-HETE and 
15-HETE. These data have been reported by a number 
of other groups5,8,13-20. These lipids were increased in 
patients at the time TRALI was recognised, and both 
the supernatants and the lipids from stored RBCs, 
both day (d)28 and d42 of storage, induced TRALI 
as the second event in a 2-event animal model5,12,21,22. 
Pre-storage leucoreduction by filtration, specifically 
the Haemonetics BPF4 filter, removes two logs of 
platelets and the lyso-PCs from LR-RBC units1,5,12. The 
neutral lipids are not affected and may still serve as the 
second event in a 2-event animal model of TRALI5,12,22. 
In addition, this removal of platelets also decreases 
the accumulation of sCD40L, a reported co-factor in 
TRALI, which has the capacity to alter PMN physiology, 
e.g. prime the PMNs through the CD40 receptor on the 
cellular membrane3. Importantly, animal models are 
employed to mimic human disease and to give relevance 
to suspected mediators; however, just because each and 
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Introduction
Transfusion of red blood cells (RBCs) has saved 

numerous lives, far outnumbering any adverse events 
induced by their infusion. RBC transfusions allow 
for lengthy and complicated surgeries, survival 
from life-threatening injuries in both military and 
civilian settings, organ, bone marrow, and stem 
cell transplantation, treatment of malignancies with 
myelotoxic chemotherapy, survival from haemorrhagic 
diatheses, and haematologic disorders in which RBC 
production is significantly decreased or destroyed. While 
the benefits of transfusions far outweigh the risks of a 
reaction, these reactions still occur, and therefore efforts 
have been made to improve haemotherapy in order to 
further decrease clinical morbidity and mortality.

Pre-storage leucoreduction of RBCs (LR-RBCs) by 
buffy coat depletion, simple filtration, or a combination 
of the two removes leucocytes and platelets from 
the RBC units. Buffy coat depletion causes a one 
log depletion of both leucocytes and platelets while 
filtration decreases leucocytes by more than 3 logs and 
platelets by 2 logs1. Universal pre-storage leucoreduction 
significantly decreases febrile non-haemolytic 
transfusion reactions and decreases exposure to HLA 
antigens, HLA alloimmunisation, and decreases the 
accumulation of platelet and leucocyte derived pro-
inflammatory mediators, biological response modifiers 
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every rodent experiences TRALI, for example, does not 
mean that each and every human will also manifest this 
adverse event23.

The accumulation of bioactive lipids has been 
questioned; however, these studies measured lyso-
PCs in LR-RBCs, by both buffy coat removal and 
filtration24. Pre-storage leucoreduction nullifies the 
accumulation of these lipids because of effective 
platelet removal (approximately 2 logs). Moreover, 
flow-based measurement of oxidase activity is a 
qualitative test, and because of time constraints, it is 
not amenable to quantification since the actual assays 
are not done simultaneously like the 96-well plate 
assays that measure superoxide dismutase-inhibitable 
reduction of cytochrome c1,24. Lastly, in a prospective 
clinical study of TRALI, bioactive lipids (lyso-PCs) 
were risk factors for TRALI in the univariate but not 
the multivariate analyses25. In addition, the bioactivity 
measurement on PMNs, increased surface expression 
of CD11b/CD66, did not demonstrate significant pro-
inflammatory activity. However, the details of these 
assays are important because: 1) the bioactive lipids 
present: AA and 5-, 12-, and 15-HETEs affect the surface 
expression of CD11b in five minutes and with longer 
incubations the surface expression disappears; and 2) if 
fixed with paraformaldhyde prior to incubation with the 
antibodies to CD11b/CD66, the antigens are changed for 
CD11b such that the increased surface expression may 
be diminished by more than 30%25. As stated above, 
lyso-PCs and sCD40L do not accumulate in LR-RBCs 
due to platelet removal by the filter and the analyses 
looked at lipids that should not be present in the RBCs 
but would be in the platelet concentrates3,5,25.

TRALI mitigation and experimental filtration
Transfusion-related acute lung injury mitigation 

has centred on the male-only plasma donors to obviate 
female plasma which may contain antibodies to human 
lymphocyte antigens (HLA) or human neutrophil 
antigens (HNA) due to pregnancy. These efforts have 
significantly decreased TRALI secondary to plasma 
transfusion but have not eliminated it26-28. Nevertheless, 
there are few formal mitigation strategies for RBC 
transfusions and reported clinical series have shown 
that 20% of TRALI follows RBC transfusions, with this 
percentage likely to increase because of the decrease 
in TRALI to plasma26,27,29. RBCs contain 5-10 mL of 
plasma so the relative amount of antibodies to HLA or 
HNA antigens is relatively sparse compared to plasma 
or even apheresis platelets, although only 10-20 mL 
of antibody-containing plasma may elicit TRALI30,31. 
To this end, an experimental filter was developed 
that removes virtually two logs of IgG. Filtered 
plasma samples from multiparous females known to 

have antibodies to HLA or to HNA-3a were deemed 
negative via measurements with LuminexTM beads 
and flow cytometry at two HLA reference laboratories 
or for HNA-3a at the Granulocyte Laboratory, Blood 
Center of Southeastern Wisconsin, USA, employing 
standard techniques in a blinded fashion1. Lastly, these 
experimental filters also removed neutral lipid priming 
activity which accumulates during routine storage. (This 
will be discussed under the proteomics section)1.

TRALI modelling
The 2-event model of TRALI has been recently 

criticised because humans given endotoxin (LPS) from 
E. coli followed by stored LR-RBCs or the lipids from 
LR-RBCs did not manifest TRALI32,33. Unfortunately, 
these studies are marred by a number of factors, most 
of which appeared in the literature many years ago. 
In rats, LPS from E. coli may not be an effective first 
event; activation of the pulmonary endothelium did not 
result in PMN sequestration, which is to be expected 
because rats are known to live successfully in sewers, 
which have high levels of E. coli and E. coli LPS from 
human waste. Thus, for all rodent experiments, the 
first event was LPS from S. enteritides given via an 
intraperitoneal injection11,34,35. This first event caused the 
animals to become: 1) febrile with rigors and shaking; 
2) tachypneic; and 3) despondent, although they respond 
to pain, with all rats having copious diarrhoea1,11,22,34-37. 
On the cellular level, IP S. enteritides LPS in rats 
causes activation of the pulmonary endothelium and 
sequestration of PMNs to the capillaries as evidenced 
by increased pulmonary myeloperoxidase and the 
lung histology without ALI1,11,22,37. The S. enteritides 
LPS concentration administered is 2 mg/kg with 99% 
animal survival1,11,22,37. Although critics of this model 
have deemed this dose to be supra-physiological, 2 
individuals were injected with 2 mg-1 mg of either 
E. coli or S. enteritides and both became acutely ill 
with fevers, hypotension, gastroenteritis, increased 
respiratory rate, somnolence, and malaise, with one 
admitted to the intensive care unit with mild ALI 
and multi-organ dysfunction; both survived38-40. 
Additionally, the treatment of human neurosyphilus 
was LPS infusion that reached 1 mg intravenous 
(IV) with the overwhelming majority of the patients 
surviving38. Recent human TRALI models gave E. coli 
LPS IV at a concentration of 2 ng/kg which corresponds 
to 40 pg/mL of plasma for males and 48 pg/mL of plasma 
for females and resulted in fever over 38 oC, pulse 
rates of over 90 beats/min, and mild tachypnea with 
respiratory rates over 20 breathes/min32,33. There was no 
evidence that any of the human subjects had pulmonary 
endothelial activation or PMN sequestration in the lung, 
prerequisites for the 2-event model of TRALI32,33. In 
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vitro LPS, whether from E. coli or S. enteritides did 
not cause significant activation of human pulmonary 
microvascular endothelial cells (HMVECs), as measured 
by increased surface expression of intercellular adhesion 
molecule-1 (ICAM-1) or chemokine release, until a 
concentration of 20 ng/mL was reached9,41,42. In addition, 
LPS primes PMNs; however, E. coli LPS did not prime 
fMLF activation of the respiratory burst of human PMNs 
at concentrations of 2 ng/mL and did induce priming of 
the oxidase at 20 ng/mL but to a lesser extent compared 
to S. enteritides LPS, which was reported to have an 
almost identical concentration curve for PMN priming 
of the fMLF-activated respiratory burst and lyso-PC 
activation of the oxidase42. Unlike intact animals, there 
is no way to process or excrete the LPS, and the human 
modelling used concentrations much less than the 
concentrations needed to cause physiological changes 
in human cells; thus, clinical TRALI from the human 
modelling is unlikely because of an insufficient first 
event43-45. Lastly, the administration of LPS (intravenous 
vs intraperitoneal) may also have ramifications for its 
suitability as the first event of a 2-event model of TRALI 
in humans. 

The proteome of the RBC supernatant
To determine the role of pre-storage leucoreduction 

on the release of proteins during routine storage, 5 units 
of red blood cells were drawn; 50% (by weight) were 
left unmodified and the other 50% was pre-storage 
leucoreduced by filtration. Both were stored in AS-546. 
The protein concentration increased 2-3-fold in both 
the unmodified- and LR-RBCs from day (d)1  to d42 of 
storage46. Leucoreduction decreased the total number of 
proteins in the supernatant from 401 to 231, and of these, 
84 proteins increased (>2-fold increase) with 42 being 
unique to d42, 30 decreased (<2-fold decrease) with 
7 being unique to d1, and 117 remained unchanged46. 
Preliminary data with 3 RBC/LR-RBC units from female 
donors compared to 3 RBC/LR-RBC units from male 
donors only demonstrated an increase in pregnancy 
zone protein, which is increased in the female sex46. As 
expected, the leucocyte and platelet-derived proteins, 
present in the unmodified RBCs, were not present in the 
LR-RBC supernatant. However, the glycolytic enzymes 
were more pronounced in LR-RBC supernatant, 
including: transaldolase, fructose-bisphosphate aldolase, 
phosphoglycerate kinase, and α-enolase46. Other 
proteins of interest that increased in the LR-RBC 
supernatant included: latexin (also known as endogenous 
carboxypeptidase inhibitor and implicated as a mediator 
of the haematopoietic stem cell compartment), Prdx1, 
Prdx2, and Prdx6. These all increased during storage in 
the LR-RBC supernatant likely due to protease activity. 
Importantly, Prdx6 contains a phospholipase domain 

which requires either acidic pH or T-phosphorylation for 
activity; immunoblotting of the Prdx6 in LR-RBCs showed 
T-phosphorylation indicating an active enzyme38,47-50. 
There was also significant accumulation of MMP-8 and 
MMP-9, which display extracellular protease activity, 
most proteosome subunits, and a drastic decrease in 
cystatin C46,51,52. The presence of an active phospholipase 
in LR-RBCs may explain the accumulation of AA and 
5-, 12-, and 15-HETEs, which have been implicated in 
TRALI5. In addition, these lipids can be used as not only 
the second event, but also the first event in a 2-event 
animal model of ALI.

RBC supernatant lipids and proteins and the 
injured patient

Massive RBC transfusion, more than 6 units in 
the first 12 hours, was an independent risk factor 
for the development of post-injury MOF53-56. With a 
more conservative transfusion target, haemoglobin 
of 7.0 g/dL, the transfusion of fewer RBCs has resulted 
in less MOF, despite increasing patient age and increased 
injury severity scores, both risk factors for MOF57. In 
these early studies that controlled for the number of RBC 
units transfused, older, stored RBCs were implicated in 
MOF56. As stated, MOF has decreased; however, post-
injury ALI still plagues more than 12.5% of severely 
injured patients ISS more than 1758. In older LR-RBCs, 
neutral lipids accumulate, notably AA and 5-, 12-, 
and 15-HETEs, and pilot data have demonstrated that 
they induce activation of HMVECs and human liver 
sinusoidal endothelial cells (LSECs) at concentrations 
that would be reached by 2, 4 and 6 units of LR-RBCs 
transfused5. 

The proteome of LR-RBCs and that of the injured 
patients may provide some insight into the development 
of trauma-induced coagulopathy (TIC). Recent work 
on TIC has subdivided trauma patients based on their 
thrombolytic phenotype: systemic hyperfibrinolysis, 
physiological fibrinolysis and fibrinolysis shutdown59,60. 
A number of proteins in the LR-RBC supernatants have 
an affinity for plasminogen, especially α-enolase which 
is the plasminogen cellular receptor, and may be involved 
in the prolongation of TIC with respect to fibrinolysis: 
shutdown, physiological or hyperfibrinolysis9.

Preliminary data have implicated a role for α-enolase 
in injured patients at risk for ALI (based on the number 
of transfusions) who also have evidence of fibrinolysis 
shutdown. These patients are also prone to organ injury, 
as well as venous thromboembolism (VTE). In vitro, 
α-enolase significantly increased ICAM-1 surface 
expression on HMVECs and induced the adherence of 
PMNs to these activated endothelial cells9. This HMVEC 
activation was inhibited by anti-proteases, required 
human plasma, and served as the first event in a 2-event 
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model of PMN cytotoxicity9. α-enolase was shown to 
also co-precipitate with PAR-2 and plasminogen/plasmin 
in HMVECs and enzymatic activity was not required9. 
Thus, proteins that accumulate during RBC storage as 
a risk factor for ALI, such as α-enolase, may also elicit 
previously unrecognised adverse clinical events, both 
TIC and ALI. 

Possible mitigation
Experimental filtration of RBC units, as discussed 

above, not only removes 2 logs of IgG but it also 
significantly decreases the priming activity and 
obviated stored RBCs as the second event in a 2-event 
animal model of TRALI1. In addition, the measured 
concentrations of AA and 5-HETE were also decreased 
in the units that underwent experimental filtration vs 
those that were just leucoreduced using the Haemonetics 
BPF4 filter1. As stated previously, active Prdx6 
accumulates during RBC storage. When inhibitors of 
phospholipase activity were added (aristocholic acid and 
MJ33, a specific inhibitor of the Prdx6 phospholipase), 
the generation of lipid priming activity was significantly 
decreased by 25±3% and 26±2%. In addition, when the 
structure of 5-lipoxygenase activating protein (FLAP) 
and 5-lipoxygenase were investigated, they demonstrated 
more than 10% homology with IgG and thus may be 
removed by the experimental filters. To investigate this 
removal, immunoblots from pre-filtration supernatants, 
and supernatants from both the leucoreduced (control) 
or experimentally filtered units, demonstrated that 
the FLAP and 5-LO immunoreactivity, present in 
pre-filtration and in leucoreduced supernatants, was 
removed by the experimental filters (Figure 1). These 
data demonstrate that these experimental filters not only 
remove the immunoglobulins implicated in TRALI, but 
also the enzymes required to generate the neutral lipids 
during storage, which have been implicated in both 
TRALI and post-injury ALI1.

Conclusions
Pre-storage leucoreduction of RBCs results in 

fewer febrile transfusion reactions, decreased HLA 
alloimmunisations, decreased exposure to CMV, and 
decreased amounts of pro-inflammatory molecules 
including leucotrienes, lyso-PCs, and sCD40L. It also 
decreases the release of proteins from contaminating 
leucocytes and platelets. The non-polar lipids which 
do accumulate may be obviated by the use of a new 
leucoreduction filtration system, and possibly by the use 
of additive solution-3 (AS-3) and other novel storage 
methods. While transfusions of LR-RBCs has saved 
countless lives, further work is needed to continue to 
improve efficacy.
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