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Abstract

Exposure of murine and human tissues to ionizing radiation (IR) induces the expression of 

p16INK4a, a tumor suppressor gene and senescence/aging biomarker. Increased p16INK4a 

expression is often delayed several weeks post exposure to IR. In this context, it remains unclear if 

it occurs to suppress aberrant cellular growth of potentially transformed cells or is simply a result 

of IR-induced loss of tissue homeostasis. To address this question, we used a conditional p16INK4a 

null mouse model and determined the impact of p16INK4a inactivation long-term post exposure to 

IR. We found that, in vitro, bone marrow stromal cells exposed to IR enter DNA replication 

following p16INK4a inactivation. However, these cells did not resume growth; instead, they mostly 

underwent cell cycle arrest in G2. Similarly, delayed inactivation of p16INK4a in mice several 

weeks post exposure to IR resulted in increased BrdU incorporation and cancer incidence. In fact, 

we found that the onset of tumorigenesis was similar whether p16INK4a was inactivated before or 

after exposure to IR. Overall, our results suggest that IR-induced p16INK4a dependent growth 

arrest is reversible in mice and that sustained p16INK4a expression is necessary to protect against 

tumorigenesis.
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INTRODUCTION

Exposure to ionizing radiation (IR) leads to an increase in p16INK4a expression in various 

murine tissues 16, 31. Similarly, p16INK4a expression is also elevated in skin biopsies of 

leukemia survivors previously exposed to radiation therapy and in T cells collected from 
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breast cancer survivors treated with anthracycline-based chemotherapy 17, 23. Several other 

inducers of p16INK4a have also been described such as oncogenic signalling and telomere 

dysfunction 22. Most of these inducers seem to have in common the activation of a DNA 

damage/stress response that in some instances may prelude downstream neoplastic 

conversion 3, 27, 32.

Loss of p16INK4a is observed in many human cancers and predisposes mice to tumorigenesis 
24, 25. In fact, p16INK4a is a cyclin dependent kinase inhibitor that acts by preventing the 

phosphorylation of the retinoblastoma (pRb) family proteins and ultimately cell cycle 

progression 26. Following IR-induced DNA damage, it is believed that most cells will alt cell 

cycle progression by a mechanism that entails primarily an ATM/p53/p21 cascade 33. On the 

other hand, expression of p16INK4a is more complex as it seems to occur in a delayed 

manner to DNA damage or oncogenic signalling 13, 29, 32. For example, normal fibroblasts 

exposed to IR in vitro induce transient but rapid (within hours) upregulation of p53 and p21 

protein levels, while p16INK4a expression is not detected until several days later 13, 20. The 

reason for this delayed increase in p16INK4a expression following DNA damage is unknown. 

One hypothesis is that exposure to IR may induce neoplastic stress that later induce 

p16INK4a in an indirect manner 2, 32. Alternatively, p16INK4a expression may rise in response 

to the accumulation of reactive oxygen species or as a bystander effect of IR-induced loss of 

tissue homeostasis 10, 11, 32.

Whether induced following exposure to IR or during normal aging, expression of p16INK4a 

seems to occur preferentially into possibly exhausted progenitor and stem cell populations, 

preventing adequate tissue renewal 12, 14, 18, 28, 30, 31. For example, we recently showed 

increased neurogenesis in the irradiated mouse brain in absence of p16INK4a expression (Le 

et al. submitted). Thus, while p16INK4a expression prevents damaged cells from 

proliferating, it likely also diminishes the regenerative potential of aged/irradiated tissues. In 

the absence of reliable markers, it remains unknown whether irradiated cells expressing 

p16INK4a are truly senescent in vivo or maintained in check long term. However, we believe 

that exposure to IR is likely to lead to senescence in most cells either directly through a 

persistent DNA damage response or by forcing premature exhaustion of cycling progenitor 

cells.

In this context, the development of strategies that would prevent or limit p16INK4a 

expression in progenitor/stem cells becomes attractive, as it may allow better tissue 

regeneration in cancer survivors. In support of this approach, it was shown that p53/Arf 

activity is not necessary to protect mice from IR-induced lymphoma 5. In fact, only transient 

(as short as six days) p53 and p19Arf expression was sufficient to protect against 

development of cancer. Whether transient or sustained p16INK4a expression is necessary to 

exert a similar tumor suppressive effect remains unknown. Actually, it is unknown if the 

delayed IR-induced p16INK4a expression occurs to prevent neoplastic progression. We 

answered this question using a conditional p16INK4a null mouse model and showed that 

while the inactivation of p16INK4a stimulates cell cycle progression in irradiated cells and 

tissues, its long-term expression is necessary to protect against IR-induced cancer.
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RESULTS AND DISCUSSION

Irradiated bone marrow stromal cells do not resume growth following p16INK4a deletion

We first examined in vitro the role of p16INK4a in preventing cell cycle progression and 

proliferation following exposure to IR. We chose to use bone marrow derived stromal cells 

for our primary cell cultures as we found that these cells do not transform easily in vitro 
when compared to mouse embryonic fibroblasts which grow robustly in presence of a high 

level p16INK4a expression 19. Bone marrow stromal cells (defined as Cre p16L/L) were 

derived from p16INK4a specific conditional allele transgenic mice expressing Cre-ERT2 

recombinase under the human ubiquitin C (UBC) promoter 21. We found that exposure to 10 

Gy resulted in over 90% of the cells to express the senescence-associated β-galactosidase 

(SAβ-gal) biomarker (Figure 1a and Supplementary Figure 1a). In contrast, about 20% of 

non-irradiated control cells had SAβ-gal staining. As expected, treatment of these cells with 

4-hydroxy tamoxifen (4-OHT) on day 5 following exposure to IR efficiently reduced 

expression of p16INK4a both at the RNA and protein levels (Figure 1c and Supplementary 

Figure 1b). However, while deletion of p16INK4a expression did not reduce the proportion of 

cells staining positive for SAβ-gal, it allowed a fraction of these cells to resume cell cycle 

and to incorporate BrdU (Figure 1c). Importantly, no increase in BrdU incorporation was 

observed in bone marrow stromal cells lacking the Cre recombinase treated with 4-OHT 

(defined as p16L/L, Figure 1c). Cell cycle analysis performed five days post exposure to IR, a 

time at which the senescence phenotype is already initiated, showed that stromal cells are 

arrested in both G1 and G2 (Figure 1d). Treatment of these irradiated cell populations with 

4-OHT, but not the control vehicle, induced a proportion of cells to progress in S and G2 

phases with a greater proportion of cells in G2 being detected at 48 hours post treatment. 

Finally, we observed no increase in the total cell number up to 96 hours post 4-OHT 

treatment (Figure 1e). These results suggest that deletion of p16INK4a in irradiated stromal 

cell allows for cell cycle re-entry in a significant fraction of cells but that these cells fail to 

resume growth in vitro.

Increase BrdU incorporation in mice tissues following deletion of p16INK4a

Murine stromal cells are known to be sensitive to in vitro growth conditions and can undergo 

telomere and p16INK4a independent premature senescence19. Therefore, it is not surprising 

to see about 20% of the early passaged cells (<3) to stain positive for SAβ-gal in absence of 

IR despite being cultured under low (3%) oxygen concentration (Figure 1a). In this context, 

we believe that the absence of cell proliferation following p16INK4a inactivation in vitro 
could be the result of a premature stress-induced senescence and thus may not adequately 

represent the in vivo situation. To address this issue, we irradiated Cre p16L/L mice at the 

sub lethal dose of 2.5 Gy and then waited 8 weeks for p16INK4a expression to increase. We 

had previously performed time course studies and found that a minimum of 6–8 weeks is 

necessary to observe robust IR-induced p16INK4a expression in mouse tissues 16. Treatment 

of Cre p16L/L mice with tamoxifen for 5 days resulted in efficient (50–80%) recombination 

and consequent reduction of IR-induced p16INK4a expression in both liver and spleen 

(Figure 2a and Supplementary Figure 2). As expected, no decrease in p16INK4a expression 

was observed in Cre deficient mice injected with tamoxifen (Figure 2b).
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In line with our in vitro data, we found that liver cryosections collected from tamoxifen 

treated Cre p16L/L mice showed marked increase in BrdU incorporation (4–8 fold) 

independently of whether mice were previously exposed or not to IR (Figure 3a–c). Not 

surprisingly, we found that liver from irradiated mice had incorporated lower levels of BrdU 

and that treatment of Cre deficient mice with tamoxifen did not increase BrdU levels. 

However, these results also showed that p16INK4a expression in relatively young (18 weeks 

old) non irradiated mice is sufficient to restrict cell cycle progression in a high proportion of 

cells in the liver. To confirm these results, we made single cell suspension from control and 

irradiated livers, and determined BrdU incorporation using flow cytometry. Again, we found 

that p16INK4a inactivation leads to increase BrdU incorporation (Figure 3d). Likewise, 

inactivation of p16INK4a led to a significant increase in BrdU incorporation in the spleen but 

failed to do so in previously irradiated tissues (Figure 3d). Further analysis revealed that 

increase in BrdU incorporation in the spleen was restricted to cells of non-hematopoietic 

origin (defined as negative for the CD45 marker - see Supplementary Figure S3b). It is 

unclear at the moment why such a high proportion (25–35%) of non-hematopoietic splenic 

cell, but not liver cells, incorporated BrdU upon p16INK4a inactivation (Supplementary 

Figure S3). Such a high proportion of splenic stromal cells expressing p16INK4a may help 

explain previous results from our laboratory showing lymphopoiesis is INK4a/ARF-

dependent4. In fact, we have shown that the absence of INK4a/ARF expression leads to a 

non-cell-autonomous increase in B cells and common lymphoid progenitor cell populations 

in the spleen 4. However, whether there is a direct relationship between p16INK4a expression 

in the spleen stroma and altered lymphopoiesis remains to be determined.

Sustained p16INK4a expression is necessary to limit cancer incidence

We have shown that p16INK4a expression is increased in tissues long-term following 

exposure to IR and that this limits cell cycle progression. Yet, we don’t know if this 

expression occurs as a tumor suppressive mechanism or simply as a bystander effect to 

genotoxic stress. Neither do we know if persistent expression of p16INK4a is necessary to 

protect against cancer development or if transient expression would be sufficient to induce 

an irreversible growth arrest in damaged cells. In light of these possibilities, inhibition of 

p16INK4a functions after damage could favour tissue regeneration without increasing the risk 

of developing cancer. Hence, to test this hypothesis, we injected conditional p16INK4a null 

mice with tamoxifen for 5 days either before or after exposure to 2.5 Gy irradiation and 

monitored tumor incidence over one year (a schematic of the different groups used is shown 

in Figure 4a). Inactivation of p16INK4a alone (group B) or exposure to IR alone (group C) 

was shown to induce cancer in about 60% of mice (Figure 4b). In contrast, none of the 

untreated mice (group A) had develop cancer during that time. Inactivation of p16INK4a 

before exposure to IR (group D) increased cancer incidence with only about half the mice 

alive 30 weeks post treatment. More importantly, mice that received tamoxifen 8 weeks post 

exposure to IR (group E), removing sustained p16INK4a expression long after damage 

induction, displayed a significant increase in cancer incidence with only about half the mice 

alive 30 weeks post treatment. In fact, inactivation of p16INK4a after exposure to IR, 

compared to inactivation before IR, seemed to worsen the incidence of cancer one-year post 

treatment. Analysis of tissues revealed that inactivation of p16INK4a had only a modest 

impact on the type of cancer occurring with a high proportion of mice in all groups 
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developing mostly (50–84%) lymphomas (Supplementary Figure S4a). Furthermore, PCR 

analysis showed that randomly selected tumours derived from all groups had deleted 

p16INK4a, even in mice not treated with tamoxifen (Supplementary Figure S4b). More 

importantly, none of the analyzed tumors seemed to have concomitantly deleted p19ARF 
gene (Supplementary Figure S4b). Overall, these results suggest that sustained IR-induced 

p16INK4a expression is necessary to protect against cancer progression. These results are 

similar to what was observed following the deletion of p539, suggesting an equivalent role 

for p16INK4a in maintaining tumorigenic cells in check. Yet, these results are in opposition to 

a model where transient expression of p53 (6 days only) was shown to be sufficient to 

protect mice from IR-induced lymphoma 5. Reason for such discrepancy is unclear but likely 

involves variation in the models used (germline vs somatic inactivation).

Many reasons may explain why a transient 8 weeks p16INK4a response, at the time of 

damage, failed to protect, if not worsen, cancer progression. First, the simplest explanation 

would be that p16INK4a-induced senescence/growth arrest is reversible in mice, a phenotype 

also previously observed in mouse embryo fibroblasts following the inactivation of p538. 

Second, it may be possible that the accumulation of p16INK4a positive cells, which occurs in 

group E but not in group D, is detrimental to cancer free survival, especially several weeks 

following IR. This may be possible if the accumulation of damaged cells in irradiated tissues 

favours cancer development through, for example, the secretion of inflammatory cytokines 
6, 15. However, cytokine arrays performed on serum and spleen lysates collected from mice 8 

weeks after IR did not show any meaningful changes compared to age-matched non 

irradiated animals (Supplementary Tables 1). Nonetheless, we speculate that it is possible 

that variation in certain cytokines, either not measured in these arrays or undetectable at the 

systemic level, may still have an impact, in the splenic or bone marrow microenvironment 

(for example). Still, the fact that inactivation of p16INK4a 8 weeks after exposure to IR did 

not somehow delay cancer incidence was very surprising. Third, we cannot rule out the 

possibility that tumors may have arisen from irradiated cells that had not yet increase 

p16INK4a expression prior to tamoxifen treatment, avoiding the need to bypass senescence. 

However, once again, one would have expected a reduction in cancer incidence in the event 

that cancer progression is stochastic and not limited to a subtype of cells which have delayed 

(more than 8 weeks) or do not at all increase p16INK4a expression upon IR.

Overall, IR-induced p16INK4a expression is necessary to maintain growth arrest long-term, 

in at least a subset of oncogenically activated cells. In fact, inactivation of p16INK4a in these 

cells may have directly lead to cancer progression and the G2 cell cycle arrest we observed 

in vitro is likely a culture artefact that does not occur in vivo (see Figure 4c). We speculate 

that if a G2 block would have occurred in mice, it would have been expected to at least delay 

cancer incidence, which it did not. Still, the scenario of a G2 block occurring in vivo may be 

reconcilable with our data if the protective effect of cell cycle block is masked by the pro-

tumorigenic inflammatory phenotype. Direct elimination of damaged cells and their 

secretory phenotype using newly developed mice strains containing a suicide gene under the 

control of the p16INK4a promoter may help resolve this question 1, 3, 7.

In conclusion, it will be interesting to determine if there is a link between the development 

of lymphoma and the proportion of senescent cells observed in the spleen. We believe it is 
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conceivable that senescent splenic stromal cells act in a non-autonomous manner to foster 

the development of lymphoma, the same way we previously showed they act on 

lymphopoiesis 4. Also, given the apparent necessity for sustained p16INK4a expression to 

protect against cancer progression, we believe it is of utmost importance to identify the 

inducers of p16INK4a at the molecular level. The identification and subsequent modulation of 

these inducers may make it possible to increase the regeneration of irradiated/aged tissues 

without increasing the risk of developing cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Deletion of p16INK4a in irradiated bone marrow stromal cells allows for cell cycle 

progression but not cell growth. (a) Proportion of cells staining positive for SA-β-

galactosidase (SA-β-gal) 9 days post-exposure or not to 10 Gy IR. Where indicated, cells 

were treated (+) or not (−) with 100nM 4-Hydroxy Tamoxifen (4-OHT) overnight on day 5 

post-IR. Bone marrow stromal cells expressing or not the Cre recombinase (defined as Cre 

p16L/L or p16L/L respectively) were isolated has previously described4 from the femur of 

p16INK4a specific conditional allele transgenic mice. Cells were used at low passage (less 

than 3) and cultured in DMEM containing 10% fetal bovine serum under low (3%) oxygen 

concentration. (b) Differential mRNA expression levels of p16INK4a as determined by qPCR 

in Cre p16L/L cells treated as described above. Shown is fold increase in p16INK4a 

expression normalized to 18S. Student t-test (** p < 0.01). q-PCR was performed using 

SYBR GREEN PCR SensiMix™ low ROX kit (Quantance, CA, USA) using the following 

primers for p16INK4a and S18 genes F5′AACTCTTTCGGTCGTACCCC3′, 

R5′GCGTGCTTGAGCTGAAGCTA3′ and F5′TCAACTTTCGATGGTAGTCGCCGT3′, 

R5′TCCTTGGATGTGGTAGCCGTTTCT3′ respectively. (c) Proportion of cells 

incorporating BrdU (4-day pulse) 5 days after exposure or not to IR as determined by 

immunostaining (BrdU antibody catalogue number 347583, BD Biosciences, USA). 

Inactivation of p16INK4a by 4-OHT was initiated simultaneously with addition of BrdU. 

Student t-test (* p < 0.05). (d) Cell cycle analysis of Cre p16L/L cells before and 5 days post 
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exposure to IR as determined by flow cytometry. Irradiated cells were then treated with 4-

OHT or ethanol (vehicle) and cell cycle analysed again 24 and 48 hours later. Shown are 

results of a representative experiment from n=3 independent cell populations. (e) Cre p16L/L 

cells were irradiated and 5 day later the cells were treated with 4-OHT or its vehicle. The 

proportion of viable cells was determined 48 and 96 hours later. Data are expressed as mean 

± SD of n=3 independent cell populations.
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Figure 2. 
Conditional deletion of IR-induced p16INK4a expression in mice. 8–10 weeks old mice were 

irradiated at the dose of 2.5 Gy (total body irradiation using a Faxitron CP-160 at a rate of 1 

Gy/min) and 8 weeks later they were treated (+) or not (−) with Tamoxifen (Tam) at a dose 

of 200 mg/kg (diluted in a mixture 1:50 of ethanol and corn oil respectively) by gavage for 5 

consecutive days to inactivate p16INK4a. Expression of p16INK4a relative to 18S was 

determined by qPCR on liver and spleen tissues collected from Cre p16L/L (a) or p16L/L (b) 

mice. n=5 mice per group. Data are expressed as mean ± SD. Student t-test * p < 0.05 and 

** p < 0.01.
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Figure 3. 
Increase BrdU incorporation in irradiated mouse tissues following deletion of p16INK4a. (a) 

Schematic of the experiment. Cre p16 L/L mice were irradiated or not at a dose of 2.5 Gy 

(total body irradiation). 8 weeks later, mice were treated or not with Tam by gavage for 5 

consecutive days. Beginning with the first Tam injection, mice also received daily 

intraperitoneally injection of BrdU (50 mg/kg) for a total of 10 consecutive days. (b) 

Representative images from liver cryosections treated as indicated showing the incorporation 

of BrdU in green and nuclei in blue (stained with DAPI). The BrdU antibody used was from 

BD Biosciences (catalogue number 347583). (c) Number of cells incorporating BrdU was 

determined by counting manually immunostained liver sections collected from both Cre p16 
L/L and p16 L/L mice treated as described in a. Data are expressed as mean ± SD of at least 

5 randomly selected fields (40X) obtained from a minimum of 4 mice per group. ND (not 

determined). (d) Proportion of cells incorporating BrdU from dissociated liver and spleen 

tissues collected from Cre p16 L/L mice as determined on single cell suspensions by flow 

cytometry using the BrdU flow kit (catalogue number 559619 from BD Bioscences, USA) 

and analyzed using a BD-LSRFortesa. Data are expressed as mean ± SD. Dissociated cell 

samples were collected from a minimum of 4 mice per group and analysed individually. 

Student t-test * p < 0.05 and ** p < 0.01.

Palacio et al. Page 12

Oncogene. Author manuscript; available in PMC 2017 September 02.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 4. 
Sustained p16INK4a expression is necessary to protect against cancer. (a) 8–12 weeks old 

Cre p16 L/L male and female mice were randomly distributed in n=21–25 mice per group 

and sacrificed 52 weeks post treatment. In group A, mice were left untreated. In groups B 

and C, mice received respectively Tam for 5 days or a single dose of 2.5 Gy total body 

irradiation. In group D, mice were first treated with Tam for 5 days and then immediately 

irradiated as in group C. In group E, mice were first irradiated and 8 weeks later received 

Tam for 5 days. (b) Kaplan/Meier curves showing cancer free survival of mice treated as 

described in a. Mice were sacrificed 52 weeks post treatment or once they had reach a 
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distress point in accordance to our institutional animal guideline, whatever happened first. 

An autopsy was performed at the time of sacrificed and, when possible, tumor type was 

identified. Groups D and E were not statistically different (Wilcoxon test). Groups B and C 

were statistically different (p<0.001) from group E but not from group D (p=0.09 and 

p=0.06 respectively). (c) Schematic describing the expected role played by p16INK4a 

following exposure to IR. Inactivation of p16INK4a in irradiated cells in vitro leads to cell 

cycle re-entry and subsequent block in G2 that may or may not be dependent on cell culture 

conditions. Upon inactivation of p16INK4a in vivo, following irradiation or normal 

chronological aging, increase S phase and cancer progression is observed. Whether a G2 

block occurs and the extent by which the SASP may contributes to cancer progression is 

unknown.
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