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Introduction and basic principles of intravoxel 
incoherent motion (IVIM)

Diffusion weighted (DW)-magnetic resonance imaging 
(MRI) is sensitive to the thermally driven random motion 
of water protons, which is modified in tissues by their 
interactions with cell membranes and macromolecules. 
In the presence of a magnetic field gradient, diffusion of 
water molecules causes a phase dispersion of the transverse 
magnetization, which results in the attenuation of the MRI 
signal (1). Initially, the diffusion effect was described by a 
mono-exponential decay model (2). However, perfusion 
can contribute to the diffusion measurements significantly 

because of the incoherent motion of blood in pseudorandom 
capillary network at the macroscopic level (1,3-5). Thus, 
diffusion coefficient of water in tissues reflects tissue 
cellularity, the tortuosity of the extracellular space, integrity 
of cell membranes, and viscosity of fluids. IVIM reflects 
the random microscopic motion that occurs in voxels on 
MR images of water molecules (either intra-cellular or 
extracellular) and the microcirculation of blood. In 1986, 
Le Bihan et al. (1,3) proposed the principle of IVIM which 
enables the quantitative parameters that separately reflect 
tissue diffusivity and tissue microcapillary perfusion to be 
estimated. IVIM signal attenuation is modeled according to 
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the equation

SI(b) =SI0[(1-PF)·exp(-b·Dslow) + PF·exp(-b·Dfast)]	 [1]

where SI(b) and SI0 denote the signal intensity acquired 
with the b-factor value of b and b =0 s/mm2, respectively. 
Perfusion fraction (PF) is the fraction of the pseudo-
diffusion linked to microcirculation, Dslow (or D) is the 
true diffusion coefficient representing the pure molecular 
diffusion (slow component of diffusion), and Dfast (D*) is 
the pseudo-diffusion coefficient representing the incoherent 
microcirculation within the voxel (perfusion-related 
diffusion, or fast component of diffusion). According to 
IVIM theory, diffusion and perfusion are affected by several 
tissue characteristics, including the presence of restrictive 
barriers within tissue, the viscosity of the fluid in which the 
spins are diffusing, and the velocity and fractional volume of 
perfusing spins (6). These characteristics may enable IVIM 
MRI to detect and characterize the tissue changes caused by 
diseases. 

Previously, the use of IVIM imaging was limited to 
neuroradiologic applications because the abdominal organs 
can be subject to respiratory and other motion artifacts. The 
advent of respiratory gating combined with parallel imaging 
allows IVIM MRI to be attempted in the evaluation of 
abdominal organs, such as liver (7-12). Yamada et al. (7) 
were the first to assess IVIM MRI in abdominal organs, 
although they used only limited number of b values (30, 
300, 900, and 1,100 s/mm2), and did not calculate pseudo-
diffusion values. Recently there are greater interests of 
using IVIM technique to study diffused liver diseases such 
as liver fibrosis and nonalcoholic fatty liver disease; to detect 
and characterize liver tumor; and to evaluate treatment 
response. 

A prerequisite to translating the growing interest in 
IVIM imaging into clinical applications is its accurate 
measurement of normative value of IVIM parameters and 
acceptable reproducibility across different clinical settings 
(13,14). Nevertheless, accurate IVIM quantification is 
challenging, partially due to the limited sampling and low 
signal-to-noise ratio (SNR) for fast data acquisition of 
the liver (15-17). Even in the brain, where there is almost 
no motion effect, the cross-center agreement has been 
recently shown to be sub-optimal. The recent study of 
Grech-Sollars et al. (13) demonstrated that compared with 
apparent diffusion coefficient (ADC) and diffusion tensor 
imaging (DTI) parameters, the IVIM parameter PF had a 
high intra-scanner coefficient of variation (CoV) of 8.4% 

and inter-scanner CoV of 24.8%. Till now, the actual values 
of PF and Dfast remain unclear, and the optimal clinical 
settings for IVIM imaging are still under debate. This study 
aims to review the mean values and variability of Dslow, 
PF and Dfast of liver in the published literatures, and 
understand how the data acquisition set-up may impact the 
measurement of these values. 

IVIM parameters of healthy liver in published 
literatures

We performed literature search using the PubMed 
searching tool (https://www.ncbi.nlm.nih.gov/pubmed) on 
September 26, 2016. The search word combination was 
“(Intravoxel Incoherent Motion OR IVIM) AND liver”. 
This search generated 28 titles for human study of normal 
liver parenchyma and four titles for animal study (Figure 1). 

The results of reported PF, Dslow and Dfast value 
were shown in Tables 1,2 with frequency distribution and 
scatter plot shown in Figure 2. One study (18) was excluded 
due to unreasonable PF values of 369.14%±31.50%, as 
by definition PF has to be less than 100%. The results 
show Dslow is the most reliable parameter among the 
three parameters, with the mean and medium being both 
1.09 ×10-3 mm2/s. However, among the published studies, 
considerable variation still exists, with a CoV of 0.16. The 
measurement of PF showed a considerable variability, with 
a median value of 22.40% and a CoV of 0.37. Liver receives 
a total blood flow of 100–130 mL/min per 100 g liver in 
man, and of this 25–30% is supplied by the hepatic artery 
and the remainder by the portal vein (25-29). It is estimated 
that hepatic artery accounts for 1%, portal vein for 5%, 
hepatic vein for 5%, and small-vessel content for 14% of 
blood flow (25,29-32). In addition, blood volume account 
for 1/3 water content in liver (25). According to IVIM, PF 
is defined as partial volume of the whole capillary vascular 
fraction. PF can be estimated by multiplying the percentage 
of blood taking account for water (1/3) by the percentage 
of capillary blood taking account for total hepatic blood 
volume (14%/25%=56%), which is estimated to be around 
18% (25). 

Lemke et al. (33) demonstrated that overestimation of PF 
is dependent on echo time. To simplify the reasoning Lemke 
considered only the T2 effect. The longer the echo time, 
the greater the signal decays at low b values, which indicates 
the increase of estimated PF. This phenomenon is due to 
the faster transverse relaxation of the tissue compartment 
signal (i.e., the liver), which increases the signal fraction of 
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Figure 1 Flow diagram of literature selection. The result from four animal studies is shown in the Table S1. 

Table 1 Results of reported PF, Dslow and Dfast values*

Results Dslow (×10-3 mm2/s) PF (%) Dfast (×10-3 mm2/s)

Median 1.09 22.40 70.60

Range 0.66–1.50 5.50–47.07 13.60–136.00

Mid 50% data distribution** 1.005–1.163 17.70–28.00 44.00–91.99

Mean 1.09 23.05 70.02

SD 0.17 8.48 31.01

CoV 0.16 0.37 0.44

*, data of Chen et al. (18) were excluded as outlier because of extreme large PF value (369.14±31.50%). According to IVIM principle, PF 
should be presented as percentage and range from 0% to 100%, unreasonable large PF value indicates erroneous IVIM fitting process; **, 
mid 50% data distribution: middle two quartiles; PF, perfusion fraction; SD, standard deviation; CoV, coefficient of variation.

the vascular component. In addition, it is necessary to take 
into account of complexity of the signal in EPI sequence for 
IVIM acquisition, in particular the susceptibility effect. The 
effects of susceptibility are rather complex, which depend 
on the shift of phase during the reading. These shifts of 
phase in turn depend not only on the magnetic field but 

also on, among others, the K-space acquisition ordering 
mode, image resolution, acquisition segmentation, and 
receiver bandwidth. The iron (Fe+++), mainly as intracellular 
deposits of ferritin, also influences DW signal and thus 
IVIM estimation. Hemochromatosis deposits are mainly 
in hepatocytes, while for hepatosiderosis the iron is mainly 

94 articles found in 
PubMed 

Papers involving healthy human 
liver parenchyma IVIM 

measurement 

Papers involving human liver 
tumor

Papers involving human liver 
fibrosis or cirrhosis 

Papers involving liver tumor 
therapy monitoring 

Animal studies involving healthy liver 
tissue (Table S1) 

• Only measurement on diseased animal liver were provided (n=5) 
• IVIM parameters were not presented numerically (n=24) 
• Review (n=13) 
• Phantom study (n=1) 
• Study on organs other than liver (n=1) 

n1=28

n2=9

n3=13

n4=4

3 animal studies and 
1 human study

Excluded

n5=4
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situated in the Kupfer, stellate and mesenchymal cells. 
This can partially explain the differences in the reported 
results according to the magnetic field or other acquisition’s 
parameters (34-38).

With the 27 studies, Dfast has a mean value of 
70.02 mm2/s (median: 70.60 mm2/s), and a high CoV of 
0.44, which is the worst among the three parameters. 
Pekar et al. (39) commented that Dfast in particular 
tends to be unstable unless an unrealistically high SNR is 
achieved. It can be seen in Figure 2 that while both Dslow 
and PF values tend to aggregate around the medium value, 
Dfast values remain scattered. 

That Dslow has better reproducibi l i ty,  PF has 
sub-optimal reproducibility and Dfast has the worse 
reproducibility has been demonstrated in individual 
publications. Andreou et al. (n=14) (17) reported 95% 
confidence intervals of percentage difference between the 
paired measurements for Dslow, PF, and Dfast of −5.12% 
to 8.09% (median: 1.0×10-3mm2/s), −24.3% to 25.1% 
(median: 18.6%) and −31.2% to 59.1% (median: 51.9× 
10-3mm2/s) respectively. Kakite et al. (n=11) (40) reported 
CoV of Dslow, PF, and Dfast of 13.2% (range, 1.2–28.5%), 
25.3% (range, 9.3–84.9%), and 59.0% (range, 2.4–121.3%) 
respectively, and the Bland-Altman limits of agreement for 
Dslow, PF, and Dfast was −32.8% to 28.4%, −74.6% to 

56.4%, and −151.2% to 132.7% respectively. It has been 
reported that IVIM parameter reproducibility also varies 
with tissue properties. Andreou et al. (17), Kakite et al. (40), 
ter Voert et al. (34) demonstrated that reproducibility of 
IVIM parameters was generally better in healthy liver 
parenchyma compared to liver tumors. Of note, ter Voert 
et al. (34) performed study with extensive b values (n=25), 
and reported a Dslow value of 0.83±0.18×10-3 mm2/s, PF 
of 30±6.8%, and Dfast of 124.4±84.5×10-3 mm2/s. Wurnig  
et al. (41) performed study with optimized b values 
(n=13) and reported the measured results of Dslow of 
0.74±0.13×10-3 mm2/s, PF of 22.6±7.4%, and Dfast of 
88.7±42.5×10-3 mm2/s for right liver lobe. 

Patel et al. (12) and Hectors et al. (35) reported that 
there was no information overlap (or can be interpreted as 
poor correlation) between IVIM parameters and dynamic 
contrast enhanced (DCE) MRI metrics.

Factors influencing IVIM parameter 
measurement accuracy

Magnetic field strength

All the liver IVIM data included in this analysis were 
acquired at 1.5 or 3 T. For the reported 27 studies, median 
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value for Dslow is 1.11×10-3 mm2/s (mean: 1.13×10-3 mm2/s)  
and 1.02×10-3 mm2/s (mean: 1.04×10-3 mm2/s) for 1.5 
and 3 T respectively (P=0.072); median value for PF is 
22.00% (mean: 21.54%) and 22.65% (mean: 24.46%) for 
1.5 and 3T respectively (P=0.512); and median value for 
Dfast is 67.01 (mean: 68.87) and 73.40×10-3 mm2/s (mean:  
73.46×10-3 mm2/s) for 1.5 and 3T respectively (P=0.438) 
(Table 3). The results of Figure 3 concur with the recent 
paper by Cui et al. (50). Cui et al. reported a lower 
Dslow value at 3 T (0.99±0.16×10-3 mm2/s) than 1.5 T  
(1.12±0.16×10-3 mm2/s, P=0.005), and higher PF value at 
3 T (19.0±5.5%) than at 1.5 T (16.0±4.1%). A higher PF 
value at 3 T than at 1.5 T was also noted in Barbieri et al.’s  
paper (37). Therefore Dslow and PF are likely to be field 
strength dependent. Although the image artifacts, e.g., 
susceptibility induced artifacts, are less pronounced at  
1.5 T than at 3 T; the relatively low SNR may compromise 
the precision of the calculated IVIM parameters. 

Number of b values on IVIM parameters

IVIM parameters strongly depend upon the choice of 
the b value and the threshold used for computation. 
Including more b values and applying an optimized b value 
distribution reduces errors in the IVIM parameter estimates 
(16,34,49). ter Voert et al. (34) suggested the mean relative 
error of IVIM parameters depends on the number of b 
values and their distribution. In the calculated optimal 
IVIM protocols, the mean relative errors decreased by 40% 
or more when the number of b values included increased 
from 4 to 16. This effect is even more pronounced in 
inhomogeneous tumor compared with that in normal 
liver tissue. The recent ISMRM-Sponsored Workshop 
Consensus Statement on DW imaging outside the brain did 
not propose an IVIM data acquisition protocol (36). The 
optimal b value distribution has been suggested to be organ 
specific (41). 

The overall impact of the number of values on IVIM 
parameters is shown with Figure 4. For Dslow and PF, an 
increase of total b value number or low b value number 
(<100 s/mm2) leads to a decrease of CoV of individual 
studies. An increase of low b value (<100 s/mm2) number 
and total b value number leads to a slight increase of Dslow 
value, a decrease of PF value, and a substantial increase of 
Dfast value. Together with the results of ter Voert et al. (34), 
it is probable that an accurately measured Dfast value is 
greater than what have been reported by most of the papers. 

In ter Voert et al.’s study, including more b values and 

applying an optimized b value distribution significantly 
reduce errors in the IVIM parameter estimates, thereby 
increasing its accuracy. A useful b value distribution should 
have more b values in the 0 to 50 s/mm2 range and fewer in 
the midrange of 450 to 800 s/mm2 and up to 1,000 s/mm2 (16).  
The largest gain in error reduction is in the range when 
moving from 4 to 11 b values. Therefore, ter Voert et al.  
suggest 11 b values an absolute minimum; usually 16 b values 
are needed (34). In ter Voert’s study, the imaging time for 
IVIM was 5 to 6 minutes which is clinically acceptable. In 
these 5 to 6 minutes, they were able to acquire a 25 b value 
IVIM scan protocol. The distribution of the b values is also 
fundamental. The Dfast is more related to the low b values. 
This corresponds to the steep part in the measured signal 
versus b value graph. On Figure 5 it can be seen that the 
curves are virtually parallel in the parts of 100–800 s/mm2 
(area almost exclusively influenced by Dslow); however they 
differ in the 0–100 s/mm2 area which is the most sensitive 
part to differentiate the curves and most difficult to fit 
reliably, especially in the tissue with high perfusion factor. 
The problem with the published data is there were often few 
measurements in this part of the curve.

Respiratory triggering (RT) or free-breathing (FB) for 
liver data acquisition

Blurred images due to respiratory motion result in 
erroneous IVIM parameter estimation. Dyvorne et al. (15) 
found that RT sequence has higher image quality than FB 
sequences, the latter being much more prone to motion-
related blurring. Additionally, left lobe may be more prone 
to cardiac motion artifacts which potentially can alter 
diffusion measurement (15). However, Barbieri et al. found 
that the use of RT did not have a significant effect on the 
measured parameter values (37).

Table 4 shows CoV of individual data of RT data 
acquisitions and FB data acquisitions, and no advantage 
of RT data is shown. It can be shown that only breath-
hold (BH) can truly freeze the liver position, while RT is 
unavoidably associated with some extent of motion (Figure 6). 
It should be noted that respiratory and cardiac gating would 
roughly double the total IVIM acquisition time. Increasing 
the number of signal averages could also lead to blurring 
due to motion. Additionally, this does not change the errors 
due to Rician noise. With the limited data available, this 
review does not show that RT offers much advantage over 
FB, as the measured values were both scattered (Figure 7).

The larger relative error in tumor compared with that 
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Table 3 CoV of reported IVIM parameter acquired with 1.5 T* or 3 T**

CoV Dslow (×10-3 mm2/s) PF (%) Dfast (×10-3 mm2/s)

CoV at 1.5 T 11.67% 34.35% 51.49%

CoV at 3 T 18.79% 39.46% 37.37%

*, 1.5 T data from references (10-12,15,20,22,23,42-47); **, 3.0 T data from references (9,19,21,24,40,41,48-55); CoV, coefficient of 
variation; IVIM, intravoxel incoherent motion.
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Figure 3 Dslow (D), perfusion fraction (PF), and Dfast (D*) values in healthy liver with data acquired with 1.5 T magnet or 3 T magnet. 
Solid line represents the median value of each group. PF, perfusion fraction.

in normal-appearing tissue could also be partially explained 
by motion and partial volume (34). Respiratory motion, 
cardiac motion and aortic pulsations cause the position 
of the tumor to move considerably during scanning. As a 
result, surrounding liver tissue could move in and out of 
the tumor ROIs. In addition, because tumor tissue is often 
less homogeneous than liver tissue, motion in a tumor ROI 
could have a larger effect on IVIM parameter estimation 
than motion in a normal liver ROI. 

Only one study had breath-holding for a block of b 
values (44). This study shows that Dfast had a high value 
which agreed with the data of ter Voert et al. (34) using a 
high number of 25 b values. With fast data acquisition being 
continuously developed, breath-holding IVIM protocol 
should be further developed and validated.

Image post-processing methods for IVIM parameters 

As IVIM processing requires complex modeling than does 
ADC measurement, the post-processing method should be 
sufficiently robust. Various fitting algorithms have been used 
to determine IVIM parameters, including asymptotic fitting 

(9-12,19-21,24,41,45,46,48,51,53), nonlinear least square 
(usually Levenberg-Marquardt) fitting (23,42,47,52,54,55), 
and Bayesian fitting (15,22,40,43,50). Current review 
cannot draw conclusion which one is better than others, nor 
can the mean values be compared (Figure 8).

Asymptotic fitting is the most commonly used method 
in the published IVIM studies. Asymptotic fitting is 
based on the assumption that the Dfast is much larger 
than Dslow and the impact of pseudo-diffusion on signal 
attenuation decreases with increasing b value, so Dslow 
can be calculated by fitting mono-exponential equation 
with large b value, where perfusion effects expected to be 
negligible. After Dslow been determined, PF and Dfast can 
be calculated by either stepwise or simultaneous fitting. For 
asymptotic method, it is essential to choose a threshold that 
separate diffusion and perfusion. According to Wurnig 
et al. (41), the optimal threshold is organ-specific, and, 
surprisingly liver. exhibited optimal thresholds of 20– 
40 s/mm2 which is much lower than the thresholds used 
in the literature (150 or 200 s/mm2). From a mathematical 
point of view this method has some limitations. Even in 
the first part of the curve (signal with b value under the 
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Figure 4 Variation of Dslow, CoV-Dslow, PF, Cov-PF, Dfast, and CoV-Dfast with the number of b value (all b value or small b value 
<100 s/mm2). For Dslow and PF, an increase of the number of total b value or small b value (<100 s/mm2) leads to a decrease of CoV of 
individual studies. An increase of the number of small b values (<100 s/mm2) and total b values lead to a slight increase Dslow value. An 
increase of the number of small b values lead to a decrease of PF value, and a substantial increase of Dfast. CoV, coefficient of variation; PF, 
perfusion fraction.
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67Quantitative Imaging in Medicine and Surgery, Vol 7, No 1, February 2017

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(1):59-78qims.amegroups.com

threshold) Dslow-related signal still accounts for a large 
fraction of the measured signal. However this information 
sometimes, depending on the fitting models, is not 
included for Dslow calculation. Furthermore, for reliable 
measurement, it is necessary to have high b values (around 
800 s/mm2) where SNR is low and the noise may be no 
longer in Gaussian distribution, in particular when there is 
an iron overload. This tends to underestimate Dslow and 
finally errors of Dslow calculation can be brought into the 
rest of calculation and degrade the other results.

Another widely used method is simultaneous non-linear 
least square fitting which estimates three parameters at 
the same time, usually based on Levenberg-Marquardt 
algorithm. Different from asymptotic fitting that optimizes 
the measurement of Dslow, it gives an identical weight to 
each variable. However, it has been reported that least-
squares fitting has less stability compared to asymptotic 
fitting since it is sensitive to data outliers and image noise 
(38,48,53).

Bayesian-fitting approach has been recommended 

for IVIM parameter determination recently. Rather 
than calculating and minimizing an error residual, the 
Bayesian method yields estimates of the uncertainty of 
each parameter in the model and uses prior distributions 
on PF, Dfast, and Dslow to determine the joint posterior 
probability over all parameters, given a set of measured b 
value samples (56). It has been shown in previous IVIM 
studies that it is more stable against signal fluctuations than 
least-squares fitting approach, especially when SNR is low 
(17,38,56).

The choice of fitting algorithm should be based on 
the purpose and dataset of study. It has been proposed 
to average multiple data points per patient in order to 
improve the SNR and image quality (22,33). Another 
possible way to increase SNR is to scan with duplicated 
b values and rejecting data points that are affected by 
motion during post-processing. This way, the increased 
scan time could lead to an increase in SNR, depending on 
the number of data points that are not rejected. Instead 
of rejecting data points, perform motion correction is 

A B

C D

Figure 6 Screen shot of respiratory triggering (RT) window screen. (A,B) The subject was holding the breath, the diagram show a straight 
line; (C,D) the subject was free-breathing (FB). It can be expected that even RT cannot satisfactorily freeze the liver. 

Table 4 CoV of individual data of RT data acquisition* and FB data acquisition**

CoV Dslow (×10-3 mm2/s) PF (%) Dfast (×10-3 mm2/s)

CoV of RT data (n=17) 17.06% 40.41% 51.04%

CoV of FB data (n=6) 8.72% 16.90% 24.00%

*, RT data acquisitions data from references (9-11,15,23,24,42,43,45,46,48,51,53-55); **, FB data acquisitions from references (19-
21,40,41,47). CoV, coefficient of variation; RT, respiratory triggering; PF, perfusion fraction; FB, free-breathing.
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another approach. As the high b value images have only 
a limited amount of signal and are therefore difficult to 
register, data can be collected with alternating low b value 
and high b value scans. 

Other post-processing technique such as image de-
noising and registration may also be helpful for IVIM 
quantification. These processing could potentially be more 
effective if it is applied on the images of the individual 
directions before averaging or directly on the raw data, 
which has not been attempted with IVIM study (35). 
However, it should be noted that the noise characteristics 
on MR magnitude images are much dependent on many 
factors of hardware, acquisition and reconstruction. 
Inappropriate de-noising technique simply applying on 

magnitude MR images may potentially alter the supposed 
bi-exponential decay in IVIM. 

IVIM for liver fibrosis evaluation

Liver fibrosis is associated with a progressive increase in 
connective tissue. The increased proportion of collagen 
fibers impairs Brownian water motion within fibrotic livers. 
Accumulation of collagen deposits and activated stellate cells 
contribute to increased hepatic resistance to portal blood 
flow, development of portal hypertension, and reduced 
portal blood perfusion. The decrease of blood perfusion can 
arise from a number of concomitant alterations in the tissue 
microenvironment, including collagen deposition, fatty 

Figure 7 Values and coefficient of variation (CoV) of Dslow (D), perfusion fraction (PF), and Dfast (D*) in healthy liver parenchyma with 
data acquired by respiratory triggering (RT) (9-11,15,23,24,42,43,45,46,48-51,53-55), free-breathing (FB) (19-21,40,41,47), and breath-hold 
(BH) (44). Solid line represents the median value of each group.
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infiltration, hepatitis, cell necrosis/apoptosis, inflammatory 
cell infiltration, and fibroblast proliferation with different 
degrees. The relative short T2 and T2* of liver tissue, 
coupled with susceptibility effect, motion, the presence 
of fatty tissue and highly variable iron content, makes it 
challenging to apply IVIM for liver. 

With IVIM technique, Luciani et al. reported that Dfast 
was significantly reduced in the liver fibrosis compared 
with those in the healthy liver group, but there was no 
significant difference between Dslow and PF measurements 
in the healthy liver (n=25) and the liver fibrosis (n=12) 
groups (11). Guiu et al. (9) reported that Dslow and 
Dfast were significantly lower in steatotic compared with 
nonsteatotic livers; however, PF was significantly higher 

in steatotic compared with nonsteatotic livers. In another 
study, Patel et al. (12) reported that the value of Dslow, PF 
and Dfast in liver cirrhosis were lower than non-cirrhosis 
liver; however, no further grading was performed within 
their liver cirrhosis subjects as only three patients had 
histopathology data. In a rat model of diethylnitrosamine-
induced liver fibrosis, Zhang et al. (57) reported that PF 
values decreased significantly with the increasing fibrosis 
level; but Dslow was poorly correlated with fibrosis level. 
In a carbon tetrachloride induced rat liver fibrosis model, 
Chow et al. (58) reported that as liver fibrosis progressed, 
Dslow and Dfast decreased, however there was no change 
in PF. Joo et al. (59) reported that PF was significantly lower 
in rabbits with nonalcoholic fatty liver disease than in those 
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with a normal liver, and it decreased further as severity 
of nonalcoholic fatty liver disease increased; however, 
Dslow and Dfast did not differ significantly between the 
nonalcoholic fatty liver disease severity groups.

In a relatively large cohort study including 17 healthy 
volunteers and 34 patients with histopathologically 
confirmed liver fibrosis patients (stage 1=14, stage 2=8, 
stage 3 & 4=12, METAVIR grading), and with a 1.5 T 
magnet and 10 b values, Lu et al. (10) reported Dslow, PF, 
and Dfast in healthy volunteer livers and patient livers 
were 1.096±0.155 vs. 0.917±0.152 (×10-3 mm2/s, P=0.0015), 
0.164±0.021 vs. 0.123±0.029 (P=0.0001), and 13.085±2.943 
vs. 9.423±1.737 (×10-3 mm2/s, P=0.0001) respectively, all 
significantly lower in fibrotic livers. As the fibrosis severity 
progressed, Dslow, PF, and Dfast values decreased, with a 
significant trend for PF and Dfast (Figure 9). However, due 
to the large overlap of Dslow, PF, and Dfast for different 
fibrosis stages, they cannot be used to diagnose liver fibrosis, 
nor could they reliably differentiate fibrosis of different 
stages (Figure 10). 

IVIM technique for liver tumor detection and 
differentiation

A number of studies reported IVIM technique for liver 
tumor diagnostic evaluation. Liver nodules include 
hepatocellular carcinoma (HCC), hemangioma, focal 
nodular hyperplasias (FNH), liver metastasis (MET) 
or malignant nodules (MAL, pathology not specified) 
(Figures 11,12). Figures 11,12 showed overlap of value 
of IVIM parameters for liver parenchyma and various 
pathologies. It can be seen that IVIM technique has yet to 
show the capability to detect or diagnose liver tumors.

IVIM techniques for liver tumor therapeutic 
effect monitoring

Pilot studies have been published and demonstrated 
the feasibility of using IVIM to monitor and follow-up 
therapies, mostly on animal models. However, the relatively 
low reproducibility of PF and Dfast hinders their use as 
quantitative biomarkers (15). The PF of regions at a large 
tumor’s core is generally lower than that of the liver, which 
means that the signal allowing the measurement of Dfast is 
even lower, which will further decrease the reliability of the 
measurement.

Vascular disrupting agent (VDA) acts on existing tumor 
blood vessels and induce acute collapse of the immature 

tumor vasculature. Because these treatments may be 
effective without initially reducing tumor size, quantitative 
imaging of tumor perfusion is being investigated as an early 
response and predictive biomarker. Contrast-enhanced 
ultrasonography, computed tomography, and MRI have 
been used to quantify tumor perfusion before and after 
antivascular treatments, and decrease in such imaging 
parameters has been demonstrated in responders (60). 
In an implanted rabbit VX2 liver tumor model, in 2014 
Joo et al. (61) demonstrated PF and Dslow significantly 
decreased 4 hours after administration of a VDA (CKD-
516, Chong Kun Dang Pharmaceutical Corp., S. Korea). A 
larger decrease in the perfusion-sensitive IVIM parameters 
was correlated with smaller tumor size increase 7 days after 
treatment. In their study IVIM protocol was performed at 
3 T and using 12 increasing diffusion weightings (b values, 
0–800 s/mm2), with at least eight of these in the low-b 
value perfusion-sensitive range. Further study from the 
same group demonstrated that Dfast and PF had significant 
positive correlations with DCE parameters K(trans) and 
initial area under the gadolinium concentration-time curve 
(iAUC until 60 seconds) (62). Yang et al. (63) reported 
the usefulness of PF for the assessment of the therapeutic 
eff icacy of Sorafenib (Nexavar®,  Bayer and Onyx 
Pharmaceuticals) in a mice orthotopic HCC model, before 
and after 6 weeks each treatment was performed at 1.5 T 
with b0 =0 s/mm2, b1 = 50 s/mm2, b2 = 800 s/mm2. 

Pieper et al. (64) described a human subject study using 
IVIM analysis for evaluation of therapy-induced tumor 
changes and response of breast cancer liver metastases 
undergoing radioembolization. The authors suggested 
that PF can deliver additional information over tumor 
size changes and long-term RECIST response after 
radioembolization of breast cancer liver metastases. 

Conclusions

A reasonable range of Dslow and PF for a healthy liver can 
be estimated. For future studies if Dslow and PF of liver 
fall out of reasonable range, causes should be investigated. 
Imperfection in data acquisition or processing method 
may lead to reduced sensitivity in detecting tissue changes 
(65,66). Systematic bias may also be introduced during 
imaging due to difference of hardware being used. The 
medium values or mean value of IVIM parameters presented 
in this review do not necessarily, or even unlikely, represent 
the true value or physiological value. However, if a value is 
consistently measured, and allow differentiating pathologies, 
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Figure 9 Dslow (D), perfusion fraction (PF), and Dfast (D*) values in healthy livers (n=17) and fibrotic livers (n=34). Dslow, PF, and Dfast 
are significantly lower in fibrotic livers than in healthy livers. As the fibrosis severity progressed, Dslow, PF, and Dfast values decreased, with 
a trend significant for PF and Dfast. However, large overlaps among the values exist [original data from (10)].

then it can be regarded as reliable “apparent” value. This 
review shows the reported IVIM parameter Dfast is rather 
heterogeneous. Except for increasing the number of b value 
can decrease the CoV of Dslow, with the published data 
we did not see other factors such as higher magnetic field 
strength or respiratory gating (vs. FB) substantially improve 
measurement precision of PF or Dfast. Such heterogeneities 
lead to the doubt that the clinical applicability of the IVIM 
parameters over the accepted ADC which may also use 
multiple b values (8). This review shows the currently 
reported IVIM technique may still not be able to reliably 
detect early fibrosis or differentiate fibrosis grades, or 
contribute to tumor diagnosis in a meaningful way.

Though limited studies showed IVIM technique may be 
able to monitor liver tumor treatment response, its cost-
effectiveness and inter-sites consistency compared with 
other simpler approaches remains unknown. In fact, Klauss 
et al. (67) suggested that ADC performed equally to IVIM-
derived parameters, a straightforward ADC measurement 
may be sufficient for DW imaging, which is possible if the 
acquisition protocol is fixed and that the different variables 
are managed in a coordinated way. 

Moreover, improving the reliability of the measures 
require a better understanding of the physiology of different 
micro-perfusion regions. It remains uncertain whether 

the speed of water molecule is distributed according 
to statistical normal distribution pattern in both the 
intravascular and the interstitial spaces; as this could lead to 
the increased complexity of the model because the perfusion 
circulation at these two regions are quite different. To have 
a deeper understanding of this point as well as being able 
to demonstrate the difference or sameness would provide 
another aspect of the usefulness of diffusion imaging.

For IVIM technique to be reliably applied in abdominal 
organ, more technical innovations are warranted. Since 
there are three variables in Eq. [1], accurate fitting of the 
IVIM parameters demands robust and reliable relations 
between signals and b values. Methods to freeze the 
breathing motion and increase SNR per b value acquisition 
may be explored first of all, as they induce major sources 
of measurement imprecision. Improving the methods of 
calculation is another major topic where progresses are 
possible, such as mathematical modelling, the integration 
of de-noising with different statistical models, and 
management of artifacts. Additionally, the relationship 
between Dslow, as derived from the biexponential model 
between signals and b values (Eq. [1]), and ADC value which 
is derived by taking the assumption of mono-exponential 
relationship between signals and b values, requires in-depth 
exploration. 
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Figure 10 Mean and standard deviation (SD) of Dslow (D, 10-3 mm2/s), perfusion fraction (PF, %), and Dfast (D*, 10-3 mm2/s) values in 
healthy liver and fibrotic livers (n=10). As the fibrosis severity progressed, Dslow, PF, and Dfast values decreased. However, large overlaps 
among the values exist. Blue solid line represents median values of reported healthy liver intravoxel incoherent motion (IVIM) parameters. 
Regions between blue dash lines represent mid 50% data (middle two quartiles) distribution of reported healthy liver value.
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Figure 11 Mean and standard deviation (SD) of Dslow (D, 10-3 mm2/s), perfusion fraction (PF, %), and Dfast (D*, 10-3 mm2/s) values in 
healthy liver parenchyma and liver tumors, including hepatocellular carcinomas (HCC), focal nodular hyperplasias (FNH), haemangioma 
(HEM). Blue solid line represents median values of reported healthy liver intravoxel incoherent motion (IVIM) parameters. Regions 
between blue dash lines represent mid 50% data (middle two quartiles) distribution of reported healthy liver value.
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Figure 12 Mean and standard deviation (SD) of Dslow (D, 10-3 mm2/s), perfusion fraction (PF, %), and Dfast (D*, 10-3 mm2/s) values in 
healthy liver parenchyma (liver) and metastasis (MET) and malignant nodules (MAL, pathology not specified), fibrous region (FB), necrotic 
region (NEC). Blue solid line represents median values of reported healthy liver intravoxel incoherent motion (IVIM) parameters. Regions 
between blue dash lines represent mid 50% data distribution (middle two quartiles) of reported healthy liver value. HYPE, hypervascular; 
HYPO, hypovascular.
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