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Abstract

Epigenetic mechanisms control phenotypic commitment of mesenchymal stromal/stem cells
(MSCs) into osteogenic, chondrogenic or adipogenic lineages. To investigate enzymes and
chromatin binding proteins controlling the epigenome, we developed a hybrid expression
screening strategy that combines semi-automatic real-time gPCR (RT-gPCR), next generation
RNA sequencing (RNA-seq), and a novel data management application (FileMerge). This strategy
was used to interrogate expression of a large cohort (n>300) of human epigenetic regulators
(EpiRegs) that generate, interpret and/or edit the histone code. We find that EpiRegs with similar
enzymatic functions are variably expressed and specific isoforms dominate over others in human
MSCs. This principle is exemplified by analysis of key histone acetyl transferases (HATS) and
deacetylases (HDACs), H3 lysine methyl transferases (e.g., EHMTSs) and demethylases (KDMs),
as well as bromodomain (BRDs) and chromobox (CBX) proteins. Our results show gender-
specific expression of H3 lysine 9 [H3K9] demethylases (e.g., KDM5D and UTY) as expected and
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upregulation of distinct EpiRegs (n>30) during osteogenic differentiation of MSCs (e.g., HDAC5
and HDAC?7). The functional significance of HDACs in osteogenic lineage commitment of MSCs
was functionally validated using panobinostat (LBH-589). This pan-deacetylase inhibitor
suppresses osteoblastic differentiation as evidenced by reductions in bone-specific mMRNA markers
(e.g., ALPL), alkaline phosphatase activity and calcium deposition (i.e., Alizarin Red staining).
Thus, our RT-gPCR platform identifies candidate EpiRegs by expression screening, predicts
biological outcomes of their corresponding inhibitors, and enables manipulation of the human
epigenome using molecular or pharmacological approaches to control stem cell differentiation.
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1 Introduction

Epigenetic mechanisms are critical during germ-line transmission and development to
ensure that cells maintain a correct spatio-temporal memory of their environmental
conditions and identity through meiotic or mitotic inheritance. Heritable patterns of gene
expression in progeny cells can be transferred through a number of major epigenetic
mechanisms, including methylation of genomic DNA, post-translational modifications of
histone tails, transcription factors that bookmark genes at mitosis [Zaidi et al., 2010], non-
coding RNAs [Gibney and Nolan, 2010], and the transmission of MRNAs during mitosis
[Varela et al., 2016]. The advent of next-generation genomic and proteomic technologies has
allowed a greater understanding of the epigenetic states of different cell types [de Wit and de
Laat, 2012; Laird, 2010; Rando and Chang, 2009]. Epigenetic mechanisms respond to
environmental cues and external biological factors, and can be effectively applied in stem
cell-based engineering strategies for musculoskeletal tissue regeneration [Dudakovic et al.,
2015a; Dudakovic et al., 2016; Dudakovic et al., 2015b; Dudakovic et al., 2013].

Abnormal skeletal development and/or maintenance, such as non-healing fractures and
osteoporosis, are debilitating biological conditions that diminish the quality of life.
Epigenetic events may contribute to these bone disorders and therefore the enzymes that
mediate epigenetic gene regulation represent potential therapeutic targets. Key osteogenic
genes are controlled by DNA methylation [Lee et al., 2006b; Villagra et al., 2002] and
critical osteogenic transcription factors that associate with chromatin modifying enzymes
[Kang et al., 2005; Schroeder et al., 2004; Westendorf et al., 2002]. Several studies have
shown that modifications in the epigenetic code contribute to osteogenic differentiation. For
example, modulating the activity of histone deacetylases (HDACSs), the WD-repeat domain
protein WDR5, which is associated with a histone 3 lysine 4 (H3K4) methyltransferase
complex, and the H3K9 methyl transferase SUV420H2 can stimulate osteogenic
differentiation of MSCs and/or pre-osteoblasts [Di Bernardo et al., 2009; Dudakovic et al.,
2013; Farzaneh et al., 2016; Gordon et al., 2015; Gori et al., 2001; Gori et al., 2006; Lee et
al., 2009; Schroeder and Westendorf, 2005]. Other studies have demonstrated that
suppression of histone 3 lysine 27 trimethylation (H3K27me3) or altering CpG methylation

Gene. Author manuscript; available in PMC 2018 April 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Dudakovic et al.

Page 3

can significantly enhance osteogenic differentiation and inhibit adipogenic differentiation of
MSCs [Dudakovic et al., 2016; Dudakovic et al., 2015b; Hemming et al., 2014; Jing et al.,
2015; Thaler et al., 2016; Wei et al., 2011]. These studies demonstrate that the epigenetic
landscape is deformable to favor selective commitment of mesenchymal stromal/stem cells
to the osteogenic lineage.

Genome-wide studies have been performed to assess the epigenetic state of cells at different
stages of osteogenesis. We have utilized ChIP-seq analysis in osteoblasts to demonstrate that
the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) modifies the epigenomic
fingerprint of histone H4 acetylation in differentially regulated genes [Dudakovic et al.,
2013]. Other genomic studies have successfully mapped multiple histone modifications and
chromatin conformations in pre-osteoblasts, differentiated osteoblasts, and/or osteocytes
[Barutcu et al., 2014; Dudakovic et al., 2016; Meyer et al., 2014; Pike et al., 2015; St John et
al., 2014; Tai et al., 2014; Wu et al., 2014]. To improve our understanding of the epigenome
in supporting differentiation of mesenchymal cell types, it is necessary to characterize which
EpiRegs are expressed at specific biological stages. Therefore, we assessed the expression
pattern of more than 300 EpiRegs by RNA-seq and RT-qPCR analysis in MSCs. Our data
reveal which EpiRegs are most highly expressed, variable among patients and/or modulated
in a lineage-specific manner.

2 Materials and Methods

2.1 Culture conditions for adipose tissue-derived MSCs

Platelet-lysate expanded MSCs derived from the stromal vascular fraction of adipose-tissue
are “Good Manufacturing Practice'-compliant pericyte-like immature fibroblasts that are
used in clinical trials, have multi-lineage potential and express all relevant markers expected
of mesenchymal stem cells [Camilleri et al., 2016; Dudakovic et al., 2014; Dudakovic et al.,
2015a; Riester et al., 2016]. MSCs were harvested from lipo-aspirates obtained from
consenting healthy donors as previously described [Crespo-Diaz et al., 2011; Mader et al.,
2013] with approval from the Mayo Clinic Institutional Review Board. Fat tissue was
enzymatically digested using 0.075% Type | collagenase (Worthington Biochemicals) for
1.5 h at 37°C. Adipocytes were separated from the stromal vascular fraction by low speed
centrifugation (400 g for 5 min). The adipose supernatant was removed and the cell pellet
was rinsed with PBS and passed successively through 70 um and 40 pm cell strainers (BD
Biosciences). The resulting MSC cell fraction was maintained in Advanced MEM Medium
containing 5% PLTMax (a clinical grade commercial platelet lysate product
[MillCreekLifeSciences]), 2 mM Glutamax (Invitrogen), 2 U/ml heparin (hospital
pharmacy), 100 U/ml penicillin, and 100 pg/ml streptomycin (Cellgro) as described
previously [Crespo-Diaz et al., 2011].

2.2 Osteogenic differentiation

MSCs were plated in 6-well plates in maintenance medium (4,000 cells/cm?2). The following
day (day 1), maintenance medium was replaced with osteogenic medium (maintenance
medium supplemented with 10 uM beta-glycerol-phosphate, 50 pg/ul ascorbic acid, and 0.1
UM dexamethasone). Media were changed every three days. RNA was isolated at the
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indicated times. The pan-HDAC inhibitor LBH-589 (10 nM) or vehicle was added three
days after induction of osteogenic differentiation (day 4) and administered for two
consecutive three-day periods (until day 10). On day 7, cells were fixed in 10% neutral
buffered formalin and stained with 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue
tetrazolium to monitor the enzymatic activity of alkaline phosphatase (Promega). On day 14,
cells were fixed in 10% neutral buffered formalin and stained with 2% Alizarin Red to
visualize calcium deposition. Absorption of alizarin red and alkaline phosphatase stains was
quantified with ImageJ software [Schneider et al., 2012].

2.3 Western blotting

MSCs (4,000 cells/cm?) were plated in 6-well plates in maintenance medium. Cells were
treated with vehicle or HDAC inhibitor (10 nM LBH-589) as described. Cells were lysed in
radio-immunoprecipitation buffer (150 mM NaCl, 50 mM Tris pH 7.4, 1% sodium
deoxycholate, 0.1% sodium dodecyl sulfate, 1% Triton X-100) supplemented with protease
inhibitor cocktail (Sigma) and phenylmethylsulphonyl fluoride (Sigma). Lysates were
cleared by centrifugation. Protein concentrations were determined by the DC Protein Assay
(Bio-Rad). Proteins were resolved by SDS-PAGE and transferred to polyvinylidene
difluoride membranes. After blocking in 5% non-fat dry milk for 45 minutes at room
temperature, primary antibodies were added overnight at 4°C, followed by secondary
antibodies for 1 hour at room temperature. Proteins were visualized using an ECL Prime
detection Kit. Primary antibodies used were: Actin (1:10,000; sc-1616; Santa Cruz), H3
(1:10,000; 05-928; Millipore), and Ac-H3 (1:10,000; 06-599; Millipore).

2.4 Analysis of mMRNA expression by real-time reverse transcriptase quantitative PCR (RT-

gPCR)

Total cellular RNA was isolated using the miRNeasy kit (Qiagen) and subjected to reverse
transcription into cDNA using the SuperScript I11 First-Strand Synthesis System
(Invitrogen). Gene expression was quantified using RT-qPCR whereby each reaction was
performed with 10 ng cDNA per 10 pl, QuantiTect SYBR Green PCR Kit (Qiagen), and the
CFX384 Real-Time System machine (BioRad). Transcript levels were analyzed using gene
specific primers (Supplementary Table 1), quantified using the 222Ct method and initially
normalized to the housekeeping gene GAPDH (set at 100). None of multiple other
housekeeping genes we tested (e.g., HPRT, ACTB) was truly constant across all samples,
and exhibited changes in expression relative to GAPDH. Therefore, to account for biological
variation in expression of GAPDH and other housekeeping genes, we standardized
expression values using sample averages across a matrix of all probes and RNA samples by
log2 transformation, row centering and normalization.

2.5 High throughput RNA sequencing and bioinformatic analysis

RNA was isolated from non-proliferative (confluent) MSCs derived from three different
donors. High throughput next generation RNA-sequencing (RNA-seq) of polyA mRNAs and
bioinformatic analyses were performed as previously reported [Camilleri et al., 2016;
Dudakovic et al., 2014]. Gene expression is expressed in reads per Kilobasepair per million
mapped reads (RPKM) and are accessible through the NCBI Gene Expression Omnibus
using series accession number GSE84322.

Gene. Author manuscript; available in PMC 2018 April 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Dudakovic et al.

Page 5

2.6 Database analysis using FileMerge

To facilitate comparison of RNA-seq data (n > 20,000 genes) with results from our multi-
gene qPCR platform (n > 300 genes), we developed an application (FileMerge) with a user-
friendly Windows-based graphical interface for rapid extraction of a large subset of genes
from any larger dataset. In essence, the application merges a simple text file with a list of
gene identifiers (Gene IDs) and any associated meta-data (e.g., gene ontology terms) with a
text file that contains all expression and meta-data from other large data sets (e.g., micro-
arrays, RNA-seq, ChIP-seq). The merged data sets are then available for import into Excel or
other spreadsheet applications.

The FileMerge application was built using the Microsoft technology stack within the
Microsoft Visual Studio Integrated Development Environment (IDE, Microsoft). The
graphical components of the application were built using Windows Presentation Foundation
(WPF, Windows), while all of the remaining code is in C# (Microsoft). Additional open
source frameworks used to build the application include the MVVVM Light toolkit, which
was used to separate logical layers within the application, and the Metro Ul toolkit of
MahApps, which was used to generate a user-friendly graphical interface. The FileMerge
application and instructions for use are available upon request.

2.7 Comparison of expression profiling using RT-gPCR versus high throughput RNA

sequencing

FileMerge was used to compare expression data obtained by RNA-seq analysis with results
from semi-automated RT-qPCR using a large panel of gene-specific primer pairs for many
annotated human epigenetic regulators (Supplementary Tables 2 and 3). FileMerge acquired
normalized read data (i.e., RPKM values) for all epigenetic regulators (321 genes) within
our RNA-seq data set (23,398 genes) and aligned these data with the corresponding relative
expression values obtained by RT-qgPCR (hormalized expression, GAPDH = 100). For most
genes (n = 295), the arbitrary ratio of RNA-seq and RT-qPCR values represents a continuous
variable (i.e., ratios ranging between 50 and 0.5) (Fig. 1). Because RNA-seq detection
depends on amplification of bar-coded cDNA libraries, while RT-gPCR amplifies cDNAS
using gene-specific primer pairs, differences in the RNA-seq/RT-gPCR ratio may reflect the
relative efficiency by which each method detects a given gene.

While both methods exhibit fairly gradual differences in detection for each EpiReg, there are
two subsets of genes with either disproportionally high (n = 19; ratio > 50) or low (n = 7;
ratio < 0.5) ratios of the arbitrary values obtained by RNA-seq versus RT-qPCR. This
observation indicates that either one of the two methods is not reliable for detection of these
minor subsets of genes (e.g., highly inefficient RT-qgPCR primers or technical bias in the
preparation of the RNA-seq library). More importantly, combined analysis of RNA-seq and
the RT-gPCR platform validates the relative expression levels of mRNAs for almost 300
EpiRegs mRNAs, thus permitting quantitative expression screens for these annotated
epigenetic regulators in human cell or tissue samples.
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2.8 Statistics

3 Results

Statistical analysis was performed with unpaired Student's t-test. When applicable,
significance is noted in the figures with a standard asterisk convention (*: p < 0.05, **: p <
0.01, and ***: p < 0.001).

3.1 Expression pattern of epigenetic regulators in MSCs

To understand which epigenetic regulators define the epigenome of a given cell type, we
generated a hybrid strategy that combines semi-automated qPCR with RNA-seq and a novel
data management application (FileMerge). This strategy permits expression screening for a
large cohort of human epigenetic regulators [Liu et al., 2012] and includes all major proteins
that affect chromatin by chemical alterations of DNA, post-translational modifications
(PTMs) of histone proteins, or changes in the topology or architecture of chromatin
[Kouzarides, 2007] (Fig. 2A). EpiRegs that functionally and directly regulate the
transcriptional competency of chromatin are of particular importance, and this subset
includes methyltransferases and demethylases that add, read and/or remove methyl-moieties
on biologically important lysine (K) residues in histone H3 (i.e., K4, K9, K27, K36 and
K79) (Fig. 2B).

To define base-line expression values of EpiRegs, we assessed their expression in confluent
(non-proliferating) MSCs. The MSCs used in this study were isolated from the stromal
vascular fraction of adipose tissue and represent a cell culture model for the basal state of
non-induced undifferentiated mesenchymal progenitor cells. These cells have tri-lineage
potential and can differentiate into osteogenic, adipogenic and chondrogenic lineages
[Dudakovic et al., 2014; Dudakovic et al., 2015a; Dudakovic et al., 2015b].

We performed RNA-seq with MSCs derived from three healthy donors [Camilleri et al.,
2016; Dudakovic et al., 2014] and used a novel database application (FileMerge) to extract
expression values of a large set of epigenetic regulators (>300 genes) (Supplementary Table
2) from the total RNA-seq data set (> 23,000 genes). RNA-seq values (in RPKM) for MSCs
(n = 3) were rank ordered to identify epigenetic regulators with highest expression (Fig. 2C).
Our analysis revealed robust expression of several epigenetic enzymes that can be
potentially inhibited by small molecules, such as histone deacetylases (e.g., HDAC1 and
HDACT7) and methyltransferases (e.g., PRMT1, SETD7, and SMYD3) that are expressed at
higher levels than their known isoforms in MSCs.

The highest expressing epigenetic regulators are DDB1, H2AFZ, and SND1 (average
expression > 50 RPKM), while many genes such as SP140, SMYD1 and the testis-specific
bromodomain protein BRDT have relatively low expression (< 0.3 RPKM) (Supplementary
Table 2). The most highly expressed EpiRegs that were analyzed have a similar expression
pattern, as reflected by minimal standard deviations in mMRNA levels observed in MSCs from
three donors (Fig. 2D and Supplementary Table 2). This subset of constitutively and highly
expressed genes may represent a core set of epigenetic regulators that execute cellular
housekeeping functions, maintain the pericyte-like stromal fibroblast phenotype and/or
multi-lineage differentiation potential of MSCs.
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Modifications on H3, especially acetylation and methylation, are major epigenetic events
that control gene expression in mesenchymal progenitor cells [Gordon et al., 2015]. To
understand which epigenetic regulators contribute to the epigenetic landscape in MSCs, we
assessed the expression pattern of the principal H3 methyltransferases and demethylases in
post-proliferative confluent MSCs (Fig. 3). We find similar levels of expression for H3K4
methyltransferases, but the H3K9 methyltransferases SUV39H1 and SUV39H2 are
expressed at less pronounced levels (Fig. 3A). EZH1 and SMYD?2 are the highest expressed
H3K27 and H3K36 methyltransferases, respectively, and are expressed at levels higher than
their isoforms (e.g., EZH2 and SMYDJ). Interestingly, unlike the H3 methyltransferases that
appear to be expressed at fairly uniform levels, distinct types of H3 demethylases that target
different lysine residues appear to exhibit greater variation in expression (Fig. 3B). For
example, specific isoforms of the H3K4 demethylases (i.e., KDM1A, KDM5B, and
KDMS5C), H3K9 demethylases (i.e., KDM4A, KDM4B, and PHF2) and H3K36
demethylases (i.e., KDM2A) in each case are the highest expressed isoforms in their
respective classes, while the three known H3K27 demethylases (i.e., JHDM1D, KDMB6A,
KDME6B) are expressed at relatively similar levels. Together, our results indicate that H3
demethylases are more variably expressed compared to H3 methyltransferases in
undifferentiated non-proliferating MSCs.

One key capability of our RT-qPCR platform is the rapid characterization of variations in
EpiReg expression in cells and tissues under different biological or clinical conditions. For
example, variations in EpiReg expression among different patients may provide insight into
disease-related epigenomic events. As a proof-of-principle for achieving patient stratification
using EpiReg data, we investigated gender-related expression differences between MSCs
from six distinct donors (i.e., female: n = 3 & male: n = 3). We removed all genes exhibiting
non-significant differences in expression between female and male donors (P < 0.05 using
Student's t-test). Of the remaining genes (n = 9), seven EpiRegs had only marginal
differences in expression (less than two-fold) between males and females. The remaining
two EpiRegs exhibited robust expression in male but not female patients (i.e., KDM5D and
UTY) (Fig. 4). Hence, EpiReg expression analysis reveals that KDM5D and UTY are male-
specific epigenetic regulators, consistent with their known localization on the Y-
chromosome. Furthermore, these results provide proof-of-concept that patient-stratification
(e.g., in this case by gender) can be achieved using mRNAs for EpiRegs as biomarkers.

To assess which epigenetic regulators have the greatest variation in expression, we
calculated the coefficient of variation (i.e., ratio of the standard deviation to the mean) for
their expression in our panel of six MSCs. We selected epigenetic regulators showing clearly
detectable expression (n = 134, average expression value > 1; the arbitrary expression value
for GAPDH was set at 100) (Fig. 5). The expression profiles of the ten most stable genes
across the six MSC samples that displayed the highest (Fig. 5A and B) or lowest (Fig. 5C
and D) variability in relation to the mean. Three genes with very low standard deviations
represent lysine methylome-associated genes (i.e., SUV420H1, SETD7, and KDM1A),
while three representative genes with a high coefficient of variation are lysine acetylome-
related genes (i.e., HDAC4, HDACS5, and HDAC10). Thus, while some epigenetic regulators
show limited variation in expression among different patients, genes that exhibit highly
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variable expression across MSCs may be useful as epigenome-related biomarkers for patient
stratification and/or different biological conditions.

3.2 Altered expression of epigenetic regulators during osteogenic differentiation of MSCs

To identify epigenetic regulators that may contribute to the osteoblast phenotype, we
performed RT-gPCR analysis of EpiRegs and selected bone-related mRNA markers during
osteogenic differentiation of MSCs (Fig. 6). Progression of differentiation is evidenced by
enhanced expression of osteoblast-related genes, including Alkaline Phosphatase (ALPL),
Collagen Type | a1 chain (COL1A1), and Osteoprotegerin (OPG/TNFRSF11B) during
osteogenic commitment of MSCs (Fig. 6A). For comparison, chondrogenic markers
including the transcription factor "SRY (Sex Determining Region Y)-Box 9' (SOX9) and
Collagen Type X a1 chain (COL10AL1) are suppressed during osteogenic differentiation in
MSCs. These data are generally consistent with the osteogenic potential of these multi-
potent MSCs that was established in previous studies [Dudakovic et al., 2014; Dudakovic et
al., 2015a; Dudakovic et al., 2015b].

We performed RT-qPCR expression profiling using our entire RT-gPCR primer panel for
detection of human epigenetic regulators (321 genes) across all four time points of the
differentiation time-course to define which EpiReg isoforms control the epigenome during
lineage-commitment of MSCs. To increase confidence of identifying differentially expressed
genes, we sorted for genes with clearly detectable levels of expression (arbitrary average
signal > 0.1 (n = 258), GAPDH was arbitrarily set at 100) (Fig. 6B and Supplementary Table
4).

Hierarchical clustering analysis and heat map presentation shows that there are at least two
different groups of EpiRegs that are either down-regulated or up-regulated during osteogenic
differentiation. Further analysis of our datasets using numerical filters yielded several tens of
epigenetic regulators that are either up-regulated (e.g., the H3K27 demethylases JHDM1D
and KDM6B) or down-regulated (e.g., H3K27me3 transferase EZH2) (Table 1). Several
genes up-regulated during MSC differentiation are HDACs (i.e., HDAC5, HDAC9, and
HDAC11) each are elevated by 3 to 4 fold relative to undifferentiated cells, while HDAC?2 is
the only member of this class that is significantly down-regulated by more than 2 fold when
MSCs commit to the osteogenic lineage (Fig. 6C). Taken together, our analyses demonstrate
that several epigenetic regulators, including HDACS, are differentially expressed between
undifferentiated and differentiating MSCs.

3.3 Histone deacetylases inhibition suppresses osteogenic differentiation of MSCs

The expression pattern of HDACs is consistent with the overall idea that these enzymes
control osteogenic lineage commitment of MSCs as we have shown in our previous studies
[Dudakovic et al., 2015a; Dudakovic et al., 2013]. Indeed, treatment of MSCs with the pan-
HDAC inhibitor LBH-589 (Panobinostat, Farydak) at low non-cytotoxic concentrations (10
nM) for six days alters osteogenic lineage commitment of MSCs (Fig. 7A). This result
corroborates our previous findings for MSCs obtained with another clinically relevant
HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza) [Dudakovic
et al., 2015a]. Addition of LBH-589 (10 nM) for 24 hours in differentiating MSCs enhances
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acetylation of H3 as expected (Fig. 7B). Furthermore, RT-gPCR analysis shows that HDAC
inhibition suppresses the expression of the osteogenic marker ALPL in particular at the stage
of peak mMRNA expression (day 10) (Fig. 7C). The reduced levels of ALPL mRNA are
supported by suppressed activity of this protein on day 7 of MSCs differentiation based on
colorimetric assays (Fig. 7D). Inhibition of HDACs also reduces calcium deposition as
detected by Alizarin Red staining (at day 14) in MSCs undergoing osteogenic differentiation
(Fig. 7D). Taken together with previous studies (Dudakovic et al., 2015a), inhibition of
HDAC activity by either SAHA or LBH-589 prevents osteogenic cell fate determination of
MSCs.

4 Discussion

In this study, we used an integrated strategy that encompasses semi-automated RT-qPCR
assays, RNA-seq analysis and a data management application (FileMerge) we developed to
assess expression of epigenetic regulators in different biological conditions. While this
expression screening strategy is generally applicable to any biological problem, as a test case
for the robustness of the methodology we applied it to uncommitted MSCs from different
patients and during osteogenic differentiation. Among our key findings are results showing
that uncommitted MSCs (i) robustly express a large number of EpiRegs at a broad range of
expression levels (e.g., HDACs, HATs, KMTs and KDMs), (ii) differentially express distinct
EpiReg isoforms with similar molecular functions (e.g., H3K9 demethylases, and (iii) show
a proof-of-principle for patient-to-patient differences in EpiReg expression (i.e., expression
of KDM5D and UTY is gender-related, as previously reported due to the location of these
genes on the Y-chromosome [Greenfield et al., 1996; Skaletsky et al., 2003; Wang et al.,
1995]. Furthermore, we show that (iv) some epigenetic regulators are stably expressed
across patients and biological conditions while others have more variable expression, (v) that
EpiRegs exhibit differential expression of isoforms during osteogenic differentiation, and
that (vi) selective inhibition of EpiRegs impedes osteogenic differentiation. Taken together,
our study establishes that expression screening of EpiRegs using our RT-qPCR platform is
useful for the identification of principal regulatory factors capable of modifying the
epigenetic landscape and phenotypic memory of progenitor cells during lineage
commitment.

To develop novel biological strategies for manipulating the epigenome, it is necessary to
understand which epigenetic regulators are expressed in different cell types and biological
conditions. Beyond studies from our own group [Dudakovic et al., 2016; Dudakovic et al.,
2015b; Dudakovic et al., 2013; Farzaneh et al., 2016], other studies have used various
screening methods to assess expression and function of epigenetic regulators. These studies
utilized technologies such RNA interference [Bajpe et al., 2015; Cellot et al., 2013; Fazzio et
al., 2008], high-content cell-spot microarrays [Bjorkman et al., 2012], as well as large-scale
reverse genetic screening [Huang et al., 2013] to screen for epigenetic regulators in various
tissues, organism, and disease states. Our approach integrates RNA-seq and RT-qPCR
technologies with data management application (FileMerge) to screen for epigenetic
regulators. The advantage of RNA-seq is the absolute quantification of expression levels
relative to the entire transcriptome and its apparent robustness (i.e., expression analyses are
remarkably reproducible). The advantage of the RT-qgPCR platform we developed is that it
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complements and validates RNA-seq analysis, but also circumvents some of the major
challenges with RNA-seq (e.g., technically demanding, expensive and time-consuming). Our
side-by-side analysis of the two methods revealed that a small fraction of EpiRegs (n=321
total analyzed) are not properly detected by RNA-seq (n=7) or RT-qPCR (n=19), presumably
due to technical limitations (e.g., gPCR primer efficiency and/or RNA-seq library
preparation). More importantly, our studies validated the relative expression of >90% of all
epigenetic regulators examined in human MSCs using both RNA-seq and RT-qPCR, and
analysis of these genes by RT-gPCR will now suffice for future studies.

Accumulating evidence indicates that epigenetic mechanisms control osteoblast
differentiation [Gordon et al., 2015]. Therefore, one major goal of our laboratory is to
characterize epigenetic regulators that are differentially expressed in the basal ground state
of undifferentiated MSCs versus and early stages of mesenchymal lineage commitment in
MSCs (e.g., during differentiation into osteoblastic cells). Using the method we described
here in detail, we identified the H3K27 methyltransferase EZH2 as the most prominently
down-regulated epigenetic regulator during osteogenic commitment of MSCs [Dudakovic et
al., 2015b]. Our group and others collectively showed that EZH2 is a principal epigenetic
regulator of osteogenic lineage commitment of MSCs and a suppressor of osteoblast
maturation [Dudakovic et al., 2016; Dudakovic et al., 2015b; Hemming et al., 2014; Hui et
al., 2014; Wei et al., 2011].

Our EpiReg expression screen also identified several HDACSs that are differentially
expressed between uncommitted and differentiated MSCs. For example, our results show
that HDAC2 is down-regulated during osteogenic differentiation of clinical-grade human
MSCs, similar to observations for immortalized mouse MC3T3 osteoblasts [Choo et al.,
2009; Lee et al., 2006a]. We also find that several HDACs (e.g., HDACS5 and HDACY) are
up-regulated during osteogenic differentiation of human MSCs. Interestingly, previous
studies have demonstrated that HDACS5 suppresses the WNT-signaling inhibitor sclerostin
(SOST) in murine osteocytes, while HDAC7 controls the transcriptional activity of RUNX2
in mouse C2C12 mesenchymal cells [Jensen et al., 2008; Wein et al., 2015]. These activities
of HDACS5 and HDAC7 may perhaps complement the RUNX2-dependent cell growth
regulatory role of HDAC6 described in mouse MC3T3 osteoblasts [Westendorf et al., 2002].
The differentiation-related up-regulation of HDAC5 and HDAC7 we have observed in our
study suggests that these HDAC isoforms may have a novel biological role during
osteogenic lineage progression of human MSCs that is perhaps linked to WNT-signaling and
RUNX activity.

Enhanced expression of bone-related extracellular matrix proteins (e.g., osteocalcin/
BGLAP) is associated with increased histone acetylation of the corresponding genes [Shen
et al., 2003; Shen et al., 2002]. Therefore, inhibition of HDAC enzymatic activity which will
stimulate genome-wide acetylation of H4 proteins near transcriptional start sites [Dudakovic
et al., 2013], or gene inactivation of HDACs can stimulate differentiation of pre-committed
osteoblasts in vitro in different cell culture models [Di Bernardo et al., 2009; Dudakovic et
al., 2013; Haberland et al., 2010; Hu et al., 2013; Iwami and Moriyama, 1993; Lee et al.,
2009; Schroeder and Westendorf, 2005]. However, inhibition of HDACs with LBH-589 in
human MSCs (this study) or SAHA in either human or mouse MSCs [Dudakovic et al.,
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2015a; McGee-Lawrence et al., 2011], interferes with lineage-progression at least in part by
effects on cell proliferation. Consequently, Hdac inactivation by gene knock-out, knock-
down or chemical inhibition in mouse models typically has negative effects on skeletal
development and bone mineral density [Bradley et al., 2015; Gordon et al., 2015; McGee-
Lawrence et al., 2011; Pratap et al., 2010; Razidlo et al., 2010; Senn et al., 2010; Zhang et
al., 2008]. Similarly, HDAC inhibitors have negative effects on bone parameters in the
human skeleton [Boluk et al., 2004; Elliott et al., 2007; Sheth et al., 1995; Vestergaard et al.,
2004]. Because expression screening using our RT-qPCR expression platform indicates that
different HDAC isoforms are maximally expressed at either uncommitted (e.g., HDAC?2) or
phenotype committed (e.g., HDAC5 and HDACY) stages of human MSC differentiation, it
appears that the negative biological consequences of pharmacological inhibition using pan-
HDAC drugs are directly attributable to robust HDAC isoform expression at multiple stages
of osteogenesis.

In conclusion, the integration of semi-automated RT-gPCR, RNA-seq and FileMerge
represents a generally applicable expression screening strategy for understanding which
epigenetic regulators are expressed in a given human cell type or biological condition. The
RT-gPCR platform itself, which we have validated by RNA-seq, provides a rapid high-
throughput assay to enables focus on those isoforms of epigenetic regulators that are most
relevant to a given biological process. This understanding is also clinically relevant because
it identifies specific EpiReg isoforms that could be considered as targets for drug
development to mitigate or reverse human diseases that are controlled by epigenetic
mechanisms.
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Refer to Web version on PubMed Central for supplementary material.
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EpiReg epigenetic regulator
HAT histone acetyl transferase
KMT lysine methyltransferase

HDAC histone deacetylase

EHMT euchromatic histone lysine methyltransferase
KDM lysine demethylase

BRD dromodomain

CBX chromobox

KDM5D  lysine demethylase 5D
uTy ubiquitously transcribed tetratricopeptide repeat containing, Y-linked
HDAC1 histone deacetylase 1
HDAC2 histone deacetylase 2
HDAC4 histone deacetylase 4
HDAC5 histone deacetylase 5
HDAC7 histone deacetylase 7
HDAC9 histone deacetylase 9
HDAC10  histone deacetylase 10
HDAC11  histone deacetylase 11
LBH-589 panobinostat

ALPL alkaline phosphatase

WDR5 WD repeat domain 5
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Highlights

Development of a hybrid expression screening platform for epigenetic
regulators.

Epigenetic regulators are variably expressed in human MSCs.
Osteogenic differentiation of MSCs alters expression of epigenetic regulators.

Pan-deacetylase inhibitor LBH-589 inhibits osteogenic differentiation of
AMSCs.
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Figure 1. Comparison of expression patterns of human epigenetic regulators by RNA-seq and

RT-gPCR

Expression data (n = 6 donors: #211, #222, # 234, #237, #258, #283) obtained using a semi-
automated RT-qPCR platform that examines 321 human epigenetic regulators was compared
to RNA-seq data for the same genes (n = 3 donors: #211, #258, #283) by generating a joint
database using FileMerge. The figure depicts the ratio of RNA-seq expression values (in
RPKMs) to arbitrarily standardized values obtained by RT-gPCR (that are normalized to
GAPDH set at a value of 100). The resulting arbitrary ratio is not constant but represents a
continuous variable that typically ranges from 50 to 0.5 (sloping line). The gray boxes with
dashed boundaries on the left or right of the graph indicate that there are two subsets of
genes with either disproportionally high (n = 19; ratio > 50) or low (n = 7; ratio < 0.5) ratios
of the arbitrary values obtained by RNA-seq versus RT-gPCR.
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Figure 2. Robustly expressed epigenetic regulators in MSCs
The major classes of human epigenetic regulators (A). The histone code can be modified and

interpreted by several classes of genes, including enzymes that add (writers: e.g.,
methyltransferases, acetyltransferases) or remove (erasers: e.g., demethylases, deacetylases)
functional groups on histones. Other proteins have domains (readers: e.g., bromodomain,
chromodomain) that bind to specific histone modifications and control gene expression by
recruiting other transcriptional modulators. Methylation of H3 on K4, K9, K27 or K36,
which represents a critical epigenetic post-translational modification that controls gene
expression, is modulated by several methyltransferases and demethylases (B). The table (C)
and graph (D) depict the expression patterns of the 25 most robustly expressed epigenetic
regulators in non-proliferative (confluent) MSCs (n = 3). The table and graph show
expression values expressed as reads per kilobasepair per million mapped reads (RPKM).
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Figure 3. Differential expression pattern of H3 methyltransferases and demethylases in MSCs
Expression pattern of H3 methyltransferases (A) and demethylases (B) in non-proliferative

MSCs (n = 3). The methyltransferases and demethylases are grouped by the lysine (K)
residue targeted by these epigenetic regulators. The figure shows expression values as reads
per kilobasepair per million mapped reads (RPKM).

Gene. Author manuscript; available in PMC 2018 April 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Dudakovic et al.

Page 21
0.8 p<0.01

a

n 061 uTyY
+l

<04

1]

£

5 0.2 4

b4

0 - . . . v

M#211 M#222 M#283 F#234 F#237 F #258

N
2]

p<0.01

i -

M#211 M#222 M#283 F#234 F#237 F #258
Male AMSCs Female AMSCs

N

-
(3]

KDMS5D

Norm. Exp. * STD

o
(3]

Figure 4. Gender-specific expression of epigenetic regulators in MSCs
RT-gPCR expression analysis of all epigenetic regulators (n = 321) was performed on six

(three male, three female) non-proliferative (confluent) MSCs. Genes were sorted for fold
change differences (>2 fold) between males and females, average normalized expression
values in six patients (arbitrary value > 0.1 with GAPDH set at 100), as well as statistical
confidence based on p-values for differences between male and female patients (p < 0.01).
Two epigenetic regulators, KDM5D and UTY, are differentially expressed MSCs derived
from male and female patients.
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Figure 5. Stable and differentially expressed epigenetic regulators in MSCs
RT-gPCR expression analysis of all epigenetic regulators (n = 321) was performed on six

(three male, three female) non-proliferative (confluent) MSCs. Genes were sorted for
average normalized expression value in six patients (value >1 with GAPDH set at 100). To
assess the level of variability, the standard deviation (STD) was divided by the average
expression (Ave) to generate the coefficient of variation (Co. of Var.) for each epigenetic
regulator in the six MSCs. The ten most stable epigenetic regulators are shown (A). To
demonstrate low levels of inter-patient variability, these ten highly stable genes are graphed
(B). The ten most variable ("unstable') epigenetic regulators are shown for comparison (C)
and further illustrated using bar graphs (D).
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Figure 6. Differentially expressed epigenetic regulators during osteogenic differentiation of
MSCs

RT-gPCR expression analysis of all epigenetic regulators and phenotypic genes was
performed during an osteogenic time-course (D0, D3, D6, and D11) in MSCs (female
patient #258, n = 3). Markers of osteogenic differentiation (ALPL, COL1A1, and
TNFRSF11B) are up-regulated, while chondrogenic differentiation markers (SOX9 and
COL10A1) are down-regulated during osteogenic differentiation of MSCs (A). Heat-map
showing the expression trend of robustly expressed epigenetic regulators (n = 258) in
differentiating MSCs (value >0.1 with GAPDH set at 100, out of a total of set of mMRNAs of
n = 321) (B). Expression pattern of HDAC in undifferentiated (DO0) and differentiating (D6)
MSCs (C). LE = low expression (<0.01, GAPDH = 100).
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Figure 7. HDAC Inhibition attenuates osteogenic differentiation of MSCs
The experimental procedure for treatment and differentiation of MSCs involves treatment of

cells at confluence for six days (d4-10) with vehicle (DMSQO) or 10nM LBH-589. (A).
Western blot analysis of vehicle and LBH-589 treated (24 hours) MSCs (B). RT-qPCR
expression analysis of ALPL (n=3) in differentiating MSCs in the presence of vehicle or
LBH-589 (C). Alkaline phosphatase staining (D) and alizarin-red staining (E) for MSCs
treated with vehicle or LBH-589.
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Altered expression of epigenetic regulators during osteogenic differentiation (six days).

Table 1

Up on Day 6 Down on Day 6
Gene Fold Change | Gene Fold Change
ZCWPW1 7.26 EZH2 19.86
NCOA1 5.16 H2AFX 12.63
SMARCA2 4.57 SP140 12.49
KDM4B 4.56 TCF19 9.83
TRIMG66 454 SUV39H1 9.44
MBD5 4.52 CHAF1B 8.27
HDACS5 4.17 HELLS 7.88
MLL3 3.63 DPF1 6.76
HDAC9 3.47 UHRF1 6.51
JHDM1D 3.38 H2AFZ 6.36
KDM3A 3.38 ATAD2 5.90
HDAC11 3.34 PHF19 5.83
KDM6B 3.12 WHSC1 4.36
HMGB1 3.89
HMGB3 3.42
DNMT1 3.27
SUV39H2 3.25
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